FUZZY LOGIC KERNEL USING 68HC11

E@DDQ@Q}@ }

© 1998
GUNAWAN SETIABUDI

FUZZY LOGIC KERNEL USING M68HC11
By. Gunawan Setiabudi ©1998

This is the first edition of fuzzy logic kernel for micro controller 68HC11
using the C languange as the programming languange. All of the program here has
been tested and guaranteed to run. To compile the fuzzy logic kernel | use the

XGCCHC11 compiler by Oliver Kraus (oliver@cip.e-technik.uni-erlangen.de).

OVERVIEW

Fuzzy logic is new kind of control system. It was found by Prof. Lotfi Zadeh
in 1965. Word “fuzzy” means something blur, not clear, but please don’'t be
mistaken, because the result of its control system is very reliable and very stable,
specially on a nonlinear control system. In fuzzy logic the operators only need to
input the linguistic input, output and rules without any complex calculation or maths.
So what fuzzy logic needs more is the experienced operator not a genius in math to
caculate asilly transfer function that is needed in a conventional control system.

The M68HC11 is an 8-bit microcontroller from Motorola Inc. This
microcontroller has a build-in EEPROM, and in 68HC11A1FN there are 512 bytes
EEPROM. | need EEPROM to store the knowledge base that send from the
knowledge base generator. And this microcontroller aso has 4 channels build-in 8-
bit ADC, and aso has 2 8-bit paralel outputs that can be easily connected to the
DAC to get the analog output.

| write the fuzzy logic kernel to improve the 68HC11 capabilities to control a
system better and easier. But because this kernel is written in C language, it also can

be used with another microcontroller with a little bit modification. The capabilities of

this fuzzy logic kernel is: able to receive 4 inputs, control 2 outputs and evaluate up
to 30 rules. It use the port EO — E3 as the analog input and port B as the first analog

output and port C as the second analog output.

Fuzzy Logic

Fuzzy Logic isakind of logic that has been extended to understand not only
completely true or completely false (like the Boolean Logic did) but also understand
the degree between 0 to 1. Or according Prof. Lotfi Zadeh, the definition of Fuzzy
Logic is*“Computing With Words.”

In fuzzy logic, the user do not need to deal with complex calculation, but
only deal with the combination of rules, such as “If Temperature is Hot Then Fan is
Fast.” Thissmplerule has 2 parts, that is:

P The IF part. This part also called as Antecedent. Thisis the input’s condition. In
the previous example, the input is temperature and the condition is hot and the
phrase “temperatureis hot” is the antecedent.

P The THEN part, or aso called Consequent. This is the output’s condition. In the
example, the output is Fan and the condition is Fast and the phrase “Fan is Fast”

is the consequent.

In fuzzy logic, the condition is called Membership Function. So for the input
temperature, the membership function is hot. Ussualy each input has more than 1
membership, the most common number of membership function is an odd number
from 3 to 7. Why is it ussualy an odd number number? Because if you use the odd
number, so input or output can be drawn simetricaly.

The advantage of using rules and linguistic descriptions, you can represent a

condition with a degree. For example, if you define the 20°C to 24°C is a warm

conditon, then what about 19,9°C? In Boolean logic it isn't a warm condition
anymore, but in fuzzy logic, it is nearly warm and the 20°C is completely warm. So
the changing for each condition happens very smooth.

The other advantage is if use fuzzy logic in a non-linear system. This logic
can control a non-linier system very well because it use the rules and the lingusitic
description which is very flexible. For example, fuzzy logic has been used in the
harbour to control the smooth movement of a container transportation from the ship
to the harbour.

Now what about the disadvantage using a fuzzy logic? If you use the fuzzy
logic in a liniear system, it's still a good aternative but it's quite expensive if you
compare it with the conventional logic that use analog circuit.

The other disadvantage is, the word “fuzzy.” Since it means something that
not clear, for some people who has mis-understanding that could be a problem.
“How can | control something using a method that is not clear?’ perhaps this is the
question for that kind of person. This reason made fuzzy logic not so popular ini
USA but it's grown very fast in Japan, where most people didn't care about the
word “fuzzy.”

To use the fuzzy logic in control system, you have to follow this 3 steps:
fuzzification, Rule Evaluation, and Defuzzification. Figure 1 is the description for

the stepsin fuzzy logic.

Input Crisp
Step 1 Fuzzification
Step 2 Rule Evaluation

Defuzzification

Output Crisp

Step 3

Figure 1
Steps in Fuzzy Logic

Crisp input is the “rea-world” input and ussualy it is an input from the
sensors, and it’s ussualy an analog vaue.

The first step in fuzzy logic is fuzzification. This step will convert the crisp
input as a fuzzy input. For an example: the temperature 20°C will be converted as
warm. From this example, the 20°C is the crisp input and the warm is the fuzzy

input. Because the membership function ussualy intersect with another membership

function, so it is possible if one condition has 2 membership functions. Figure 2 is

the example for an input that has 2 membership functions.

1 A Cold Cool Normal Warm

O

16 18 20 22 24 26 28 30 °C

Figure 2

Example of Fuzzification Process

From this example you can see that 16.5°C has 2 membership functions that
are 0.25 cool and 0.75 cold. It makes every changing for every membership function
can happen smoothly.

The second step is rule evaluation. This step will evaluate each rule from the
knowledge base and the result is the apropriate condition. After the fuzzification
step, each input will be compared with the rules and then the result of the rule
evaluation is the most correct conditions. In my fuzzy logic kernel | use the Min-
Max Method. This method will looking for the minimum value of the antecedent for
the each rule to find the rule strength and then this value will be compared with the
other rule strength and then the overall maximum value will be fuzzy outpuit.

And the last step is defuzzification. This process is the inversion of
fuzzification process, that is convert the fuzzy output to crisp output. The fuzzy
output is the result from rule evaluation and crisp output is the value that will be

used in the system. In fuzzy logic kernel | use the Centre-Of-Gravity Method (COG

Method). | choose this method this method only needs a smple calculation and it
can simpler and faster if you use the singleton membership function. For the brief
explaination about singleton membership function you can find it in the data
structure section. Using the COG method | can calculate the crisp output using the

formula below:

a Fi*si

i=1
Ar
i=1
Where:
F is Fuzzy Output from the rule evaluation process.
Sis Singleton from the knowledge base.
N is the number of singleton.
After the crisp output calculated then this output is the final output from

your system to the application.

68HC11 Micro Controller

HC11 is an 8-bit micro controller made by Motorola Inc. If you want to ask
some information about HC11 or ask some literature, you can reach them through
their web site that has been linked in my home page.

This micro controller has alot of build-in peripheras but | only use some of
these peripherals such as, EEPROM, ADC and timer for the delay. | use the ADC to
capture the inputs, and the EEPROM to store the knowledge base. Why do | use
EEPROM to store the knowledege base? Because by using the EEPROM, | can

store the data and the data will not change even when | shut down the power and |

am also able to write the data into it by using the program and | don’'t have to add
any circuits at all.

If you want to program or erase the EEPROM, then you have to deal with
the PPROG register. The figure below is the figure of PPROG register.

7 6 5 4 3 2 1 0
PPROG
- - 0 BYTE ROW ERASE | EELAT | EEPGM $103B
RESET 0 0 0 0 0 0 0 0
Figure 3

PPROG Register

For the explaination for each bit, you can read the HC11 reference manual.

Thisis the algorithm to write any data to any EEPROM’ s address.

1. Set EELAT bit in PPROG register, so EEPROMw || be confi gurated
for progranm ng or erasing process.

2. Wite data at desired address.

3. Set EEPGM bit in PPROG register, so Vpp power activated.

4. G ve necessary delay. If you use E-clock with frequency 2 Mz,
then the del ay needed is 10 ns.

5. Reset PPROG register.

To write or to erase a data, you need a delay sub-routine. For the delay sub-
routine | use the build-in timer in HC11. There are 5 timers, but | only use 1 of
them, that is the second timer.

Before you write any data into EEPROM | suggest you to erase the
EEPROM first. And thisis the algorithm to erase the whole datain EEPROM.

Set ERASE and EELAT bit in PPROG register.

Wite any data at EEPROM s address.

Set EEPGM bit in PPROG regi ster to activate the Vpp power.

G ve necessary delay. If you use E-clock with frequency 2 Mz,

then the del ay needed is 10 nms.
Reset PPROG regi ster.

A e

To capture the inputs, | use the build-in ADC. To use it, | have to capture
the input using port EO to E3, that means the maximum input is limited by the
hardware capabilities, and the maximum input is 4. For the output | use the parael
output port B as the first output and port C as the second output. You only able to
use the second output if the first output has been used. And for the rules, it should
able to evaluate up to 61 rules (assuming there are 4 inputs and 2 outputs), but
because the fuzzy logic kernel evaluate the rules sequentialy, so to make fuzzy logic
kernel works faster and more optimal, | suggest the maximum rules are 30. And This
is the algorithm to use the ADC.

At the first 64 cycles, set ADPU bit at OPTION register.

Set the ADC node, nunber of ADC that you want to use and the
whi ch ADC you want to use at ADCTL register.

Wait until CCF bit at ADCTL regi ster set.

The conversion result is stored at ADRL to ADR4, depends on
whi ch ADC you want to use.

N

o

| don’t discuss about the registers very detail, so | hope you can refer to the

68HC11 reference manual to learn about them.

Data Structure

This section will explain how to store the information about the linguistic
data into another data format that can be understanded by the fuzzy logic kernel, and
the memory mapping in the HC11's EEPROM. To understand how to build a fuzzy
logic kernel, you have to understand this section. But if you only want to use the
fuzzy logic kernel, you can skip this section.

To represent the membership function, | use 2 types. The first type is
trapesoidal type and the second type is the singleton type. | use the first type to

10

represent the input membership function and the second type to represent the output
membership function. Why do | use the trapesoidal type instead of triangular type?
The reason of this, is because the trapesoidal type has 2 advantages those are: with
using the trapesoidal typeit is possible to draw arange of point (Example from 20°C
to 24°C is 100% warm) and the second advantage is from the trapesoidal type you
also able to draw the triangular type (with combining the top range into 1 value, ex.
Only 22°C is 100% warm). But this kind of membership function has 1 disadvantage
that is it needs 4 bytes to represent 1 membership function (if you use the triangular
type you only need 3 bytes).

To make it easier to understand, assume the figure 3 is the example of
trapesoidal membership function and the Y axis is the degree of membership and the
X axis is the range of possible input value. In this example, | use the temperature

example (again!!) and the full scaleis 30°C.

Segment
1

Segment O
A Point A
~

Segment 2
Point 2

SFF
Slope 1

.

Point 1

Slope 2

Y/

Point B
Normal

$00

»
»

16 18 20 22 24 26 28 30 °C

Figure 4

Example of Trapesoidal Membership Function

11

And to describe this membership function | need 4 bytes.

P First byte to store the first point and the range is from $00 to $FF. The formula
to caculate the first point is. (input's coordinate/full scae)*$FF. On the
example, the first byte will store:(20/30)* $FF = $AB.

P Second byte to store the first dope and the range is also from $00 to $FF. The
formula for the slope is: $FF/(Point A — Point 1). So, the first thing to calculate
is the position of point A. By using the same formula, point A = (22/30) * $FF =
$BC. And the we can calculate the first dopeis: $0F.

P Third byte to store the second point and the formula is the same with the formula
for first point. From the formula we can get the second point valueis. $CD.

P Forth point to store the second slope and by using the same formula with the
first Sope, we can get the first ope is: $0F where the second slope is always

assume to be negative.

Now, what's a singleton type? Singleton is a specia type of fuzzy set that
only has 1 element without any masses. Why do | use this type? Because by using
thistype | can calculate the crisp output easier. About the calculation and how can it
make the calculation easier will be explained in the fuzzy logic kernel section.

To represent the linguistic rules, | use 2 formats. The first format is to store
the information for the antecedents, and the second format is to store the
information for the consequent. How to determine if this is the information for the
antecedent or consequent? | use the MSB as theflag. If MSB = 1 it means thisis the
consequent information and if the MSB = O, it means it is the antecedent
information.

The rest of the bits are used to store the information about which input and
which membership function that will be evaluated. The first bit is to store the

12

information for the input. For the antecedent, there are maximum 4 inputs so | need
2 hits to store this information. Meanwhile for the consequent, there are 2 outputs,
so | need only 1 bit to store the information. Next bit are used to store the
information for the membership function. Since there are maximum 8 membership
functions, so | need 3 bits to store the information. The rest bits are useless. To

make you understand easier, please refer to the figure below:

7 6 5 4 3 2 1 0

0 0 0 X X A A A

(@)

(b)

Figure 5

Format for (a) Antecedent (b) Consequent

Knowledge Base Generator
A knowledge base file is a file that store the information about the system

you want to build. So in a fuzzy logic knowledge base file, there will be information
about the number of input, input membership function, output, output membership
function and rules.

To generate a fuzzy logic knowledge base file you have to use the fuzzy
logic knowledge base generator program. This program is made from C languange.

Another way is using the knowledge base file that generated from FUDGE by

13

Motorola Inc. Or from the FuzzyTech software. Thefile that is generated from those
file are fully compatible with the knowledge base | use.

The only thing you need to build yourself is the downloader program. You
can see the downloading process in the How To Download Knowledge Base File
section. You can build this program as an exercise, if you found any difficulties in

making this program, you can contact me at guns@techie.com.

Fuzzy Logic Kernel

As I've explain in the fuzzy logic section, there are 3 steps in fuzzy logic
there are: fuzzification, rule evaluation, defuzzification. In this section I'll explain
about how to apply those steps in fuzzy logic kernel and which method | use in fuzzy
logic kernel.

The first step is fuzzification. This step will convert the crisp input into
fuzzy input. For example: if input’s reading is 20°C the after the fuzzification
process, it will be converted into condition “warm.” In this step | use the smplest
method, so it can make the controlling process done faster. For inputs membership
function, | use the trapesoidal type (you can see the figure in figure 4) and for
fuzzification process, | divide the membership function into 3 segment there are:

P Segment O: this segment covers the area from point 1 to the left.
P Segment 1: this segment covers the area from point 1 to point 2.

P Segment 2: this segment covers the area from point 2 to the right.

After the input captured, then the program will determine in which segment
is the input. After the segment found, then the fuzzy logic kernel will calculate the
fuzzy input using this formula:

P If input isin segment O then fuzzy input = 0.

14

P If input isin segment 1 then fuzzy input=(input - point 1)*dope 1 (the maximum
if $FF).

P If input isin segment 2 then fuzzy input=(point 2 - input)* sope 2 (the minimum
valueis $00).

In fuzzy logic kernel the result of this step will be stored at fuz_ins variable.
Since there are 4 inputs and 8 membership function each, so the fuz_ins variable
needs 32 byte to store the results. In C languange you can do it by declaring the
variable as an array.

The second step is rule evaluation. This step will evauate the rule
according the input’s condition. For example if the input is “ Temperature IS warm”
then evaluate only rule which contain condition “temperature IS warm” such as “I1F
temperature ISwarm THEN fan IS fast”.

To understand this step | suggest you to re-read the data format to store the
rules in the fuzzy logic kerndl in Data Structure section. From the data structure,
we can define if this is an antecedent or an consequent by looking at the MSB and
the rest of the data is a pointer to the input or output condition. So in processing the
data, first the program have to check the MSB then take the appropriate action.

If the data is identified as an antecedent, then get fuzzy input. You can get
the proper fuzzy input by adding the value of rule with the fuz_ins variable. If there
isavalue besides 0 in the fuz_ins variable it means the rule fit the input’s condition,
so evaluate thisrule. If the value is O, it means the input is not there, so thisisafase
rule and then proceed next rule.

Since | use the Min-Max Method, for the antecedent | have to find the
minimum value and this minimum value will be the rule strength for each rule. After

all rules proceed and has its own strength, then compare each rule strength and find

15

the maximum value. This maximum value will be the fuzzy output. To make it easier

to understand let’ s see this example:

Rulel : IF temperature IS normal(0,25) AND day IS night(0,46) THEN fan IS
slow. (rule strength 0,25).

Rule2 : IF temperature 1S warm(0,30) AND day IS evening(0,35) THENfan IS
normal. (rule strength 0,30).

Rule3 : IF temperature IS cold(0,20) AND day IS evening(0,35) THEN fan IS
slow. (rule strength 0,20).

Rule4 : IF temperature IS normal(0,45) AND day IS morning(0,40) THEN fan IS
normal. (rule strength 0,40).

In this example the result of overall rule strength (fuzzy output) is: fan speed
is0,25 dow and 0,40 normal.

After the antecedent processing, next the program will process the
consequent part. First the progam will mask the MSB with 0, so the consequent will
be a pointer for the appropriate singleton. And this singleton will be used in the
defuzzification process. The result of this process will be stored at fuz_out variable.
Since there are 2 outputs and 8 membership function each, so the program needs 16
bytes to store the output. And this variable is a'so declared as an array.

The last step is defuzzification. This process will convert the fuzzy output
into crisp output. For example: the condition “fan IS normal” will be converted into
300 RPMs. How can it done? As I’ve told in the fuzzy logic section, | use the COG
method in this step and to calculate the crisp output | use the COG formula. You

can see an example of defuzzification process below.

16

Fuzzy Output

07 o= cc—cc—a—ca— oo —

01 bmoomoim i Y D

Fan Speed

»
»

30 60
RPM RPM

Figure 6

Example of Defuzification Process

Suppose the figure 6 is the result of rule evaluation process. The fuzzy
outputs are 0.7 for singleton 30 RPM and 0.1 for singleton 60 RPM. And to

calculate the crisp output we can ssimply use the COG formula, the result will be:
0.7x30+0.1x 60

Crisp Output = =33.75
¥ P 0.7+0.1

The defuzzification process algoritm is quite smple, but since | use the

XGCCHC11 compiler which is not support the long int variable, so | have to use a
simple trick. To store the result of singleton and fuzzy output multiplication, | use an
array which has 8 elements of integer to store each multiplication. And another
variabel to store total of fuzzy output. And then a temp variabel to store each

division result. And the frac variable to store the overflow.

17

If you're using another C compiler that support the long int variable, then

you can simplify the source code and get the faster result.

How To Use Fuzzy Logic Kernel

To use the fuzzy logic kernel is very smple, just follow this steps:
P If you had downloaded the fuzzy.bin you can skip second step.
P Compile the source code using any ¢ compiler. If you use the XGCCHC11 on
my site, then go to the tmp directory and run the f.bat followed by the filename.
Example: f fuzzy (without the extention). The result of this process is the binary file
and you can go to next step.
P Download the binary file to your EPROM. If you use the binary file on my site,
then use the 8 KB EPROM (type 2764).
P Install the EPROM in your circuit.
P Connect your inputs to port EO - port E3. Remember the maximum inputs are 4.
P Connect the outputs to port B, if you have 2 outputs, then connect the second
output to port C.
P Run the knowledge base generator program and build your own knowledge
base.
P Download the knowledge base to HC11.
P Reset the HC11 system.
P Thefuzzy logic kernel is ready to run.

18

How To Download Knowledge Base File

To use the fuzzy logic kernel to control your system, first you have to build
the knowledge base file and then you have to download it to your HC11 system.
This section will discuss about how to download the file and the problems.

To download thefile, | use this protocol:
P First the HC11 system will send the STX signal (ASCII 02).
P The HC11 will wait for about 0.5 ms for the handshake signal from the
knowledge base generator program. The expected signal is ETX (ASCII 03).
P If the HC11 system receives the ETX then it is a downloading session, if the
HC11 system doesn’t receive the signal then it’s a controlling session.
P On downloading session, for every line, the knowledge base generator will send
an ETX signal.
P On the end of downloading, the knowledge base generator will send the ETB

signal. To make it easier to understand, you can see the figure below.

Knowledge Base
Generator Ready to
Send

Fuzzy Logic Kernel
Ready to Receive

[sTx |
|STX|

[TETX |
| ETX |

Y

A

{ pATA | ETX |

]
[sTx |
l STX |
< [ETB |

A L A

A

Y

End-of-file- End-of-file-
transmission transmission

Figure 7

Downloading Process

19

Because the knowledge base generatore program expect the HC11 system to
send the signal first, so you have to turn on the fuzzy logic knowledge base program
first, then after the waiting message occurs, then reset the HC11 system and the
downloading process will be started.

In the downloading process, the most common problem is the “protocol
errors.” In this case, you should reset your HC11 system once again, and this would
fix the problem. The second problem is the downloading process won't start at all.
To solve this problem, first check your seria cable, if it is okay, then check your
comm port is it the correct comm port? And then the next suggestion is check your
serial card is it still working? Oh I'sorry, | forgot the first step, first of al you have
to pray, and then you can start to check your problem (this is a plug and pray

device)).

Conclusion

This fuzzy logic kernel is a universal kernel so you can use it to control any
system that fullfil its specification. From my personal exprience, this kernel can do
the controlling job very well, but | haven't try it on a system that needs a high speed
responses. One thing you need to remember, since the rule evaluation process done
sequentially, so more rules mean slower response.

Since the source code is written in C languange, so you can transport the
code to another micro controller that has the C compiler such as PIC, 8051, 8031,
etc. To convert the source code, you only need to modificate the input source (from
PEO-PE3 to the inputs you use), output and EEPROM location.

Nowadays there are 2 kind of fuzzy logic processor. The first kind is a

dedicate fuzzy logic processor. This is a processor that specialy made to run a

20

system using fuzzy logic, this kind of processor usually has analog input and analog
output. I made the kernel to work like this type of processor. The second type is a
general micro controller that support the fuzzy logic. Usualy this type of processor
has additional instruction sets that support fuzzy logic. To run a system using this
type of processor, an operator that capable to write the fuzzy logic kernel is

expected. The example of this type of processor is M68HC12 by Motorola Inc.

End-of-tutorial-version-I
If you have any comments, sugestions, questions or projects you want to share

to the world please feel free to send them to guns@techie.com . Thanks for

visiting my site and hope this tutorial can help you to understand how to apply
fuzzy logic on an 8-bit micro controller. If you find out this tutorial is useful
please donate USD$5 to:
Gunawan Setiabudi
JIn. Dr. Sutomo 29B
Telp. 62-0361-232757
Denpasar — Bali

Indonesia

