
1

FUZZY LOGIC KERNEL USING 68HC11

© 1998

GUNAWAN SETIABUDI

2

FUZZY LOGIC KERNEL USING M68HC11

By. Gunawan Setiabudi ©1998

This is the first edition of fuzzy logic kernel for micro controller 68HC11

using the C languange as the programming languange. All of the program here has

been tested and guaranteed to run. To compile the fuzzy logic kernel I use the

XGCCHC11 compiler by Oliver Kraus (oliver@cip.e-technik.uni-erlangen.de).

OVERVIEW

Fuzzy logic is new kind of control system. It was found by Prof. Lotfi Zadeh

in 1965. Word “fuzzy” means something blur, not clear, but please don’t be

mistaken, because the result of its control system is very reliable and very stable,

specially on a nonlinear control system. In fuzzy logic the operators only need to

input the linguistic input, output and rules without any complex calculation or maths.

So what fuzzy logic needs more is the experienced operator not a genius in math to

calculate a silly transfer function that is needed in a conventional control system.

The M68HC11 is an 8-bit microcontroller from Motorola Inc. This

microcontroller has a build-in EEPROM, and in 68HC11A1FN there are 512 bytes

EEPROM. I need EEPROM to store the knowledge base that send from the

knowledge base generator. And this microcontroller also has 4 channels build-in 8-

bit ADC, and also has 2 8-bit paralel outputs that can be easily connected to the

DAC to get the analog output.

I write the fuzzy logic kernel to improve the 68HC11 capabilities to control a

system better and easier. But because this kernel is written in C language, it also can

be used with another microcontroller with a little bit modification. The capabilities of

3

this fuzzy logic kernel is: able to receive 4 inputs, control 2 outputs and evaluate up

to 30 rules. It use the port E0 – E3 as the analog input and port B as the first analog

output and port C as the second analog output.

Fuzzy Logic

Fuzzy Logic is a kind of logic that has been extended to understand not only

completely true or completely false (like the Boolean Logic did) but also understand

the degree between 0 to 1. Or according Prof. Lotfi Zadeh, the definition of Fuzzy

Logic is “Computing With Words.”

In fuzzy logic, the user do not need to deal with complex calculation, but

only deal with the combination of rules, such as “If Temperature is Hot Then Fan is

Fast.” This simple rule has 2 parts, that is:

⇒ The IF part. This part also called as Antecedent. This is the input’s condition. In

the previous example, the input is temperature and the condition is hot and the

phrase “temperature is hot” is the antecedent.

⇒ The THEN part, or also called Consequent. This is the output’s condition. In the

example, the output is Fan and the condition is Fast and the phrase “Fan is Fast”

is the consequent.

In fuzzy logic, the condition is called Membership Function. So for the input

temperature, the membership function is hot. Ussualy each input has more than 1

membership, the most common number of membership function is an odd number

from 3 to 7. Why is it ussualy an odd number number? Because if you use the odd

number, so input or output can be drawn simetrically.

The advantage of using rules and linguistic descriptions, you can represent a

condition with a degree. For example, if you define the 20°C to 24°C is a warm

4

conditon, then what about 19,9°C? In Boolean logic it isn’t a warm condition

anymore, but in fuzzy logic, it is nearly warm and the 20°C is completely warm. So

the changing for each condition happens very smooth.

The other advantage is if use fuzzy logic in a non-linear system. This logic

can control a non-linier system very well because it use the rules and the lingusitic

description which is very flexible. For example, fuzzy logic has been used in the

harbour to control the smooth movement of a container transportation from the ship

to the harbour.

Now what about the disadvantage using a fuzzy logic? If you use the fuzzy

logic in a liniear system, it’s still a good alternative but it’s quite expensive if you

compare it with the conventional logic that use analog circuit.

The other disadvantage is, the word “fuzzy.” Since it means something that

not clear, for some people who has mis-understanding that could be a problem.

“How can I control something using a method that is not clear?” perhaps this is the

question for that kind of person. This reason made fuzzy logic not so popular ini

USA but it’s grown very fast in Japan, where most people didn’t care about the

word “fuzzy.”

To use the fuzzy logic in control system, you have to follow this 3 steps:

fuzzification, Rule Evaluation, and Defuzzification. Figure 1 is the description for

the steps in fuzzy logic.

5

Figure 1

Steps in Fuzzy Logic

Crisp input is the “real-world” input and ussualy it is an input from the

sensors, and it’s ussualy an analog value.

The first step in fuzzy logic is fuzzification. This step will convert the crisp

input as a fuzzy input. For an example: the temperature 20°C will be converted as

warm. From this example, the 20°C is the crisp input and the warm is the fuzzy

input. Because the membership function ussualy intersect with another membership

Fuzzification

Input Crisp

Rule Evaluation

Defuzzification

Output Crisp

Step 1

Step 2

Step 3

6

function, so it is possible if one condition has 2 membership functions. Figure 2 is

the example for an input that has 2 membership functions.

Figure 2

Example of Fuzzification Process

From this example you can see that 16.5°C has 2 membership functions that

are 0.25 cool and 0.75 cold. It makes every changing for every membership function

can happen smoothly.

The second step is rule evaluation. This step will evaluate each rule from the

knowledge base and the result is the apropriate condition. After the fuzzification

step, each input will be compared with the rules and then the result of the rule

evaluation is the most correct conditions. In my fuzzy logic kernel I use the Min-

Max Method. This method will looking for the minimum value of the antecedent for

the each rule to find the rule strength and then this value will be compared with the

other rule strength and then the overall maximum value will be fuzzy output.

And the last step is defuzzification. This process is the inversion of

fuzzification process, that is convert the fuzzy output to crisp output. The fuzzy

output is the result from rule evaluation and crisp output is the value that will be

used in the system. In fuzzy logic kernel I use the Centre-Of-Gravity Method (COG

0

1
Cold Cool Normal Warm Hot

16 18 20 22 24 26 28 30 °C

7

∑

∑

=

=
n

i

n

i

Fi

SiFi

1

1

 *

Method). I choose this method this method only needs a simple calculation and it

can simpler and faster if you use the singleton membership function. For the brief

explaination about singleton membership function you can find it in the data

structure section. Using the COG method I can calculate the crisp output using the

formula below:

Where:

F is Fuzzy Output from the rule evaluation process.

S is Singleton from the knowledge base.

N is the number of singleton.

After the crisp output calculated then this output is the final output from

your system to the application.

68HC11 Micro Controller

HC11 is an 8-bit micro controller made by Motorola Inc. If you want to ask

some information about HC11 or ask some literature, you can reach them through

their web site that has been linked in my home page.

This micro controller has a lot of build-in peripherals but I only use some of

these peripherals such as, EEPROM, ADC and timer for the delay. I use the ADC to

capture the inputs, and the EEPROM to store the knowledge base. Why do I use

EEPROM to store the knowledege base? Because by using the EEPROM, I can

store the data and the data will not change even when I shut down the power and I

8

am also able to write the data into it by using the program and I don’t have to add

any circuits at all.

If you want to program or erase the EEPROM, then you have to deal with

the PPROG register. The figure below is the figure of PPROG register.

Figure 3

PPROG Register

For the explaination for each bit, you can read the HC11 reference manual.

This is the algorithm to write any data to any EEPROM’s address.

1. Set EELAT bit in PPROG register, so EEPROM will be configurated
for programming or erasing process.

2. Write data at desired address.
3. Set EEPGM bit in PPROG register, so Vpp power activated.
4. Give necessary delay. If you use E-clock with frequency 2 MHz,

then the delay needed is 10 ms.
5. Reset PPROG register.

To write or to erase a data, you need a delay sub-routine. For the delay sub-

routine I use the build-in timer in HC11. There are 5 timers, but I only use 1 of

them, that is the second timer.

Before you write any data into EEPROM I suggest you to erase the

EEPROM first. And this is the algorithm to erase the whole data in EEPROM.

1. Set ERASE and EELAT bit in PPROG register.
2. Write any data at EEPROM’s address.
3. Set EEPGM bit in PPROG register to activate the Vpp power.
4. Give necessary delay. If you use E-clock with frequency 2 MHz,

then the delay needed is 10 ms.
5. Reset PPROG register.

- - 0 BYTE ROW ERASE EELAT EEPGM

01234567

0 0 0 0 0 0 0 0RESET

PPROG
$103B

9

To capture the inputs, I use the build-in ADC. To use it, I have to capture

the input using port E0 to E3, that means the maximum input is limited by the

hardware capabilities, and the maximum input is 4. For the output I use the paralel

output port B as the first output and port C as the second output. You only able to

use the second output if the first output has been used. And for the rules, it should

able to evaluate up to 61 rules (assuming there are 4 inputs and 2 outputs), but

because the fuzzy logic kernel evaluate the rules sequentially, so to make fuzzy logic

kernel works faster and more optimal, I suggest the maximum rules are 30. And This

is the algorithm to use the ADC.

1. At the first 64 cycles, set ADPU bit at OPTION register.
2. Set the ADC mode, number of ADC that you want to use and the

which ADC you want to use at ADCTL register.
3. Wait until CCF bit at ADCTL register set.
4. The conversion result is stored at ADR1 to ADR4, depends on

which ADC you want to use.

I don’t discuss about the registers very detail, so I hope you can refer to the

68HC11 reference manual to learn about them.

Data Structure

This section will explain how to store the information about the linguistic

data into another data format that can be understanded by the fuzzy logic kernel, and

the memory mapping in the HC11’s EEPROM. To understand how to build a fuzzy

logic kernel, you have to understand this section. But if you only want to use the

fuzzy logic kernel, you can skip this section.

To represent the membership function, I use 2 types. The first type is

trapesoidal type and the second type is the singleton type. I use the first type to

10

represent the input membership function and the second type to represent the output

membership function. Why do I use the trapesoidal type instead of triangular type?

The reason of this, is because the trapesoidal type has 2 advantages those are: with

using the trapesoidal type it is possible to draw a range of point (Example from 20°C

to 24°C is 100% warm) and the second advantage is from the trapesoidal type you

also able to draw the triangular type (with combining the top range into 1 value, ex.

Only 22°C is 100% warm). But this kind of membership function has 1 disadvantage

that is it needs 4 bytes to represent 1 membership function (if you use the triangular

type you only need 3 bytes).

To make it easier to understand, assume the figure 3 is the example of

trapesoidal membership function and the Y axis is the degree of membership and the

X axis is the range of possible input value. In this example, I use the temperature

example (again!!) and the full scale is 30°C.

Figure 4

Example of Trapesoidal Membership Function

$00

$FF

Normal

16 18 20 22 24 26 28 30 °C

Point 1 Point B

Slope 1 Slope 2

Point A Point 2
Segment 2

Segment
1

Segment 0

11

And to describe this membership function I need 4 bytes.

⇒ First byte to store the first point and the range is from $00 to $FF. The formula

to calculate the first point is: (input’s coordinate/full scale)*$FF. On the

example, the first byte will store:(20/30)*$FF = $AB.

⇒ Second byte to store the first slope and the range is also from $00 to $FF. The

formula for the slope is: $FF/(Point A – Point 1). So, the first thing to calculate

is the position of point A. By using the same formula, point A = (22/30) * $FF =

$BC. And the we can calculate the first slope is: $0F.

⇒ Third byte to store the second point and the formula is the same with the formula

for first point. From the formula we can get the second point value is: $CD.

⇒ Forth point to store the second slope and by using the same formula with the

first slope, we can get the first slope is: $0F where the second slope is always

assume to be negative.

Now, what’s a singleton type? Singleton is a special type of fuzzy set that

only has 1 element without any masses. Why do I use this type? Because by using

this type I can calculate the crisp output easier. About the calculation and how can it

make the calculation easier will be explained in the fuzzy logic kernel section.

To represent the linguistic rules, I use 2 formats. The first format is to store

the information for the antecedents, and the second format is to store the

information for the consequent. How to determine if this is the information for the

antecedent or consequent? I use the MSB as the flag. If MSB = 1 it means this is the

consequent information and if the MSB = 0, it means it is the antecedent

information.

The rest of the bits are used to store the information about which input and

which membership function that will be evaluated. The first bit is to store the

12

information for the input. For the antecedent, there are maximum 4 inputs so I need

2 bits to store this information. Meanwhile for the consequent, there are 2 outputs,

so I need only 1 bit to store the information. Next bit are used to store the

information for the membership function. Since there are maximum 8 membership

functions, so I need 3 bits to store the information. The rest bits are useless. To

make you understand easier, please refer to the figure below:

Figure 5

Format for (a) Antecedent (b) Consequent

Knowledge Base Generator

A knowledge base file is a file that store the information about the system

you want to build. So in a fuzzy logic knowledge base file, there will be information

about the number of input, input membership function, output, output membership

function and rules.

To generate a fuzzy logic knowledge base file you have to use the fuzzy

logic knowledge base generator program. This program is made from C languange.

Another way is using the knowledge base file that generated from FUDGE by

0 0 0 X X A A A

7 6 5 4 3 2 1 0

1 0 0 0 X A A A

7 6 5 4 3 2 1 0

(a)

(b)

13

Motorola Inc. Or from the FuzzyTech software. The file that is generated from those

file are fully compatible with the knowledge base I use.

The only thing you need to build yourself is the downloader program. You

can see the downloading process in the How To Download Knowledge Base File

section. You can build this program as an exercise, if you found any difficulties in

making this program, you can contact me at guns@techie.com.

Fuzzy Logic Kernel

As I’ve explain in the fuzzy logic section, there are 3 steps in fuzzy logic

there are: fuzzification, rule evaluation, defuzzification. In this section I’ll explain

about how to apply those steps in fuzzy logic kernel and which method I use in fuzzy

logic kernel.

The first step is fuzzification. This step will convert the crisp input into

fuzzy input. For example: if input’s reading is 20°C the after the fuzzification

process, it will be converted into condition “warm.” In this step I use the simplest

method, so it can make the controlling process done faster. For inputs membership

function, I use the trapesoidal type (you can see the figure in figure 4) and for

fuzzification process, I divide the membership function into 3 segment there are:

⇒ Segment 0: this segment covers the area from point 1 to the left.

⇒ Segment 1: this segment covers the area from point 1 to point 2.

⇒ Segment 2: this segment covers the area from point 2 to the right.

After the input captured, then the program will determine in which segment

is the input. After the segment found, then the fuzzy logic kernel will calculate the

fuzzy input using this formula:

⇒ If input is in segment 0 then fuzzy input = 0.

14

⇒ If input is in segment 1 then fuzzy input=(input - point 1)*slope 1 (the maximum

if $FF).

⇒ If input is in segment 2 then fuzzy input=(point 2 - input)*slope 2 (the minimum

value is $00).

In fuzzy logic kernel the result of this step will be stored at fuz_ins variable.

Since there are 4 inputs and 8 membership function each, so the fuz_ins variable

needs 32 byte to store the results. In C languange you can do it by declaring the

variable as an array.

The second step is rule evaluation. This step will evaluate the rule

according the input’s condition. For example if the input is “Temperature IS warm”

then evaluate only rule which contain condition “temperature IS warm” such as “IF

temperature IS warm THEN fan IS fast”.

To understand this step I suggest you to re-read the data format to store the

rules in the fuzzy logic kernel in Data Structure section. From the data structure,

we can define if this is an antecedent or an consequent by looking at the MSB and

the rest of the data is a pointer to the input or output condition. So in processing the

data, first the program have to check the MSB then take the appropriate action.

If the data is identified as an antecedent, then get fuzzy input. You can get

the proper fuzzy input by adding the value of rule with the fuz_ins variable. If there

is a value besides 0 in the fuz_ins variable it means the rule fit the input’s condition,

so evaluate this rule. If the value is 0, it means the input is not there, so this is a false

rule and then proceed next rule.

Since I use the Min-Max Method, for the antecedent I have to find the

minimum value and this minimum value will be the rule strength for each rule. After

all rules proceed and has its own strength, then compare each rule strength and find

15

the maximum value. This maximum value will be the fuzzy output. To make it easier

to understand let’s see this example:

Rule 1 : IF temperature IS normal(0,25) AND day IS night(0,46) THEN fan IS

slow. (rule strength 0,25).

Rule 2 : IF temperature IS warm(0,30) AND day IS evening(0,35) THENfan IS

normal. (rule strength 0,30).

Rule 3 : IF temperature IS cold(0,20) AND day IS evening(0,35) THEN fan IS

slow. (rule strength 0,20).

Rule 4 : IF temperature IS normal(0,45) AND day IS morning(0,40) THEN fan IS

normal. (rule strength 0,40).

In this example the result of overall rule strength (fuzzy output) is: fan speed

is 0,25 slow and 0,40 normal.

After the antecedent processing, next the program will process the

consequent part. First the progam will mask the MSB with 0, so the consequent will

be a pointer for the appropriate singleton. And this singleton will be used in the

defuzzification process. The result of this process will be stored at fuz_out variable.

Since there are 2 outputs and 8 membership function each, so the program needs 16

bytes to store the output. And this variable is also declared as an array.

The last step is defuzzification. This process will convert the fuzzy output

into crisp output. For example: the condition “fan IS normal” will be converted into

300 RPMs. How can it done? As I’ve told in the fuzzy logic section, I use the COG

method in this step and to calculate the crisp output I use the COG formula. You

can see an example of defuzzification process below.

16

Figure 6

Example of Defuzification Process

Suppose the figure 6 is the result of rule evaluation process. The fuzzy

outputs are 0.7 for singleton 30 RPM and 0.1 for singleton 60 RPM. And to

calculate the crisp output we can simply use the COG formula, the result will be:

The defuzzification process algoritm is quite simple, but since I use the

XGCCHC11 compiler which is not support the long int variable, so I have to use a

simple trick. To store the result of singleton and fuzzy output multiplication, I use an

array which has 8 elements of integer to store each multiplication. And another

variabel to store total of fuzzy output. And then a temp variabel to store each

division result. And the frac variable to store the overflow.

Fan Speed

60
RPM

30
RPM

0,7

0,1

Fuzzy Output

33.75
0.1 0.7

60 x 0.1 30 x 7.0
Output Crisp =

+
+

=

17

If you’re using another C compiler that support the long int variable, then

you can simplify the source code and get the faster result.

How To Use Fuzzy Logic Kernel

To use the fuzzy logic kernel is very simple, just follow this steps:

⇒ If you had downloaded the fuzzy.bin you can skip second step.

⇒ Compile the source code using any c compiler. If you use the XGCCHC11 on

my site, then go to the tmp directory and run the f.bat followed by the filename.

Example: f fuzzy (without the extention). The result of this process is the binary file

and you can go to next step.

⇒ Download the binary file to your EPROM. If you use the binary file on my site,

then use the 8 KB EPROM (type 2764).

⇒ Install the EPROM in your circuit.

⇒ Connect your inputs to port E0 - port E3. Remember the maximum inputs are 4.

⇒ Connect the outputs to port B, if you have 2 outputs, then connect the second

output to port C.

⇒ Run the knowledge base generator program and build your own knowledge

base.

⇒ Download the knowledge base to HC11.

⇒ Reset the HC11 system.

⇒ The fuzzy logic kernel is ready to run.

18

How To Download Knowledge Base File

To use the fuzzy logic kernel to control your system, first you have to build

the knowledge base file and then you have to download it to your HC11 system.

This section will discuss about how to download the file and the problems.

To download the file, I use this protocol:

⇒ First the HC11 system will send the STX signal (ASCII 02).

⇒ The HC11 will wait for about 0.5 ms for the handshake signal from the

knowledge base generator program. The expected signal is ETX (ASCII 03).

⇒ If the HC11 system receives the ETX then it is a downloading session, if the

HC11 system doesn’t receive the signal then it’s a controlling session.

⇒ On downloading session, for every line, the knowledge base generator will send

an ETX signal.

⇒ On the end of downloading, the knowledge base generator will send the ETB

signal. To make it easier to understand, you can see the figure below.

Figure 7

Downloading Process

Fuzzy Logic Kernel
Ready to Receive

Knowledge Base
Generator Ready to

Send

STX

End-of-file-
transmission

End-of-file-
transmission

ETX

ETXDATA

STX

ETB

19

Because the knowledge base generatore program expect the HC11 system to

send the signal first, so you have to turn on the fuzzy logic knowledge base program

first, then after the waiting message occurs, then reset the HC11 system and the

downloading process will be started.

In the downloading process, the most common problem is the “protocol

errors.” In this case, you should reset your HC11 system once again, and this would

fix the problem. The second problem is the downloading process won’t start at all.

To solve this problem, first check your serial cable, if it is okay, then check your

comm port is it the correct comm port? And then the next suggestion is check your

serial card is it still working? Oh I’sorry, I forgot the first step, first of all you have

to pray, and then you can start to check your problem (this is a plug and pray

device) :).

Conclusion

This fuzzy logic kernel is a universal kernel so you can use it to control any

system that fullfil its specification. From my personal exprience, this kernel can do

the controlling job very well, but I haven’t try it on a system that needs a high speed

responses. One thing you need to remember, since the rule evaluation process done

sequentially, so more rules mean slower response.

Since the source code is written in C languange, so you can transport the

code to another micro controller that has the C compiler such as PIC, 8051, 8031,

etc. To convert the source code, you only need to modificate the input source (from

PE0-PE3 to the inputs you use), output and EEPROM location.

Nowadays there are 2 kind of fuzzy logic processor. The first kind is a

dedicate fuzzy logic processor. This is a processor that specially made to run a

20

system using fuzzy logic, this kind of processor usually has analog input and analog

output. I made the kernel to work like this type of processor. The second type is a

general micro controller that support the fuzzy logic. Usually this type of processor

has additional instruction sets that support fuzzy logic. To run a system using this

type of processor, an operator that capable to write the fuzzy logic kernel is

expected. The example of this type of processor is M68HC12 by Motorola Inc.

End-of-tutorial-version-I

If you have any comments, sugestions, questions or projects you want to share

to the world please feel free to send them to guns@techie.com . Thanks for

visiting my site and hope this tutorial can help you to understand how to apply

fuzzy logic on an 8-bit micro controller. If you find out this tutorial is useful

please donate USD$5 to:

Gunawan Setiabudi

Jln. Dr. Sutomo 29B

Telp. 62-0361-232757

Denpasar – Bali

Indonesia

