
VidWorks Entertainment New Developer Training Program
Tutorial #3

User Interface
NOTE: Java 1.5.0 is highly recommended for this and all subsequent tutorials.

Swing, AWT, and the JApplet

Up until now, we have been implicitly using the Java API called the Abstract
Windowing Toolkit (hence the java.awt package we've been importing from).
However, now is the time to switch to a much more powerful and much preferred Swing
API. However, in order to do so, we must first introduce the JApplet, Swing's own
version of the Applet, using some example code to illustrate the differences:

/* JHelloApplet.java */
import javax.swing.*;
import java.awt.*;
public class JHelloApplet extends JApplet {

public void init() {
JHelloPanel myPanel = new JHelloPanel();
setContentPane(myPanel);

}
}
class JHelloPanel extends JPanel {

protected void paintComponent(Graphics g) {
if (isOpaque()) {

g.setColor(getBackground());
g.fillRect(0, 0, getWidth(), getHeight());

}
g.setColor(getForeground());
g.drawString("Hello, World!", 30, 30);

}
}

As we see here, the Applet and the JApplet have different painting models. In an
Applet, everything is painted directly to the Applet. However, it turns out that the JApplet
has multiple layers, so we can't paint directly to the JApplet. Instead, we paint to what's
called the JApplet's content pane. What we do instead is, we extend a JPanel and paint to
that, then set it as the JApplet's content pane.

Note that, unless we do a custom paint job to the content pane, we don't have to
create our own subclass to JPanel and replace the JApplet's content pane. Today, we'll see
some examples where the default content pane is perfectly adequate.

The other big difference is that rather than painting in the paint() method, we
use a method called paintComponent(). In addition, Swing components don't
automatically paint the background for us, so we must check if the component is opaque,
and if so, paint its background. If we don't, since some JVMs optimize painting, if we

don't paint our background, there will be no guarantee what is painted underneath our
JPanel, and we could potentially end up with garbage.

In any case, here is our output:

Notice that it looks slightly different from our original Hello World applet (most
notably the background color in our screenshots). This is due to inherent differences in
the Swing and AWT architectures.

So if Swing is supposedly so much better than AWT, then why did I start with
teaching you the AWT Applet? Because AWT is simpler, and therefore, makes it a better
teaching tool. As we saw, Hello World was a one-liner in AWT, but it became so much
more complicated in Swing. In addition, the first two tutorials were to focus on painting
and event handling, and I didn't want to clutter things up with Swing until after we were
ready to do components.

Or you could say that it slipped my mind. It doesn't really matter.

Swing Components

Note that this tutorial is not meant to be a comprehensive guide to Swing. Swing
is far too vast for a tutorial to cover--or even 2 tutorials. Instead, we're just going to take a
brief tour through various Swing concepts to allow you to get the feel of what Swing can
do. However, it will only be through your own initiative that you can discover all of what
Swing has to offer.

Swing Components - Labels

Swing provides components that you can use to display information without
having to do any painting. One such component is the JLabel. Here are some useful
methods:

JLabel(String text) - constructor that creates the label with the given text
String getText() - gets the label's text
void setText(String text) - sets the label's text

And below is the Hello World example using labels:

/* HelloLabelEx.java */
import javax.swing.*;
import java.awt.*;
public class HelloLabelEx extends JApplet {

public void init() {
setLayout(new FlowLayout());
add(new JLabel("Hello, World!"));

}
}

Much simpler, isn't it? Oh, and our output, given a 300x200 applet, is this:

One note: the setLayout(new FlowLayout()) line. This sets the layout of
the JApplet to the FlowLayout, which is one of the simpler layouts of Java. Layouts will
be covered in a later tutorial. For now, just understand that the Flow Layout simply adds
things to the applet in the order the calls to the add method appear.

Note that we call the add() method to add components to our JApplet. However,
in version 1.4.2 and earlier, you have to use the more cumbersome "getContentPane
().add(/*stuff*/)". If you have an older version of Java, either upgrade it or be
sure to use getContentPane().add() instead.

Swing Components - Buttons

Swing provides a class called JButton, which can be used as a button on your
program. Here are some useful methods:

JButton(String text) - the constructor, it creates a button with the given text as
its label

String getText() - gets the text of the button
void setText(String text) - sets the text of the button
int getMnemonic() - gets the mnemonic of the button. A mnemonic is a keyboard

shortcut that triggers a button push. If the mnemonic is M, for example, then Alt+M
triggers the button. The mnemonic is in the form of a KeyEvent constant, for example,
VK_M. Note that mnemonics are case-insensitive

void setMnemonic(int mnemonic) - sets the mnemonic
String getToolTipText() - gets the tool tip text of the button, if any. A tool tip is

the helper text that appears when the mouse hovers over the button.
void setToolTipText(String text) - sets the tool tip text. Pass null to the

method to turn off the tool tip
boolean isEnabled() - returns whether or not the button is enabled
void setEnabled(boolean b) - enables or disables the button. A button is, by

default, enabled.

In addition, you may set one of the buttons on your applet to be the default button,
which means it gets highlighted and it'll usually trigger when the user hits Enter. To set
the default button, you'll first need to get the root pane of the applet by calling
getRootPane() on the JApplet. The root pane has the following methods that allow
you to get and set the default button:

JButton getDefaultButton()
void setDefaultButton(JButton button)

Now, we want to know whenever the user clicks the button. For that, we'll use the
ActionListener interface, which has a single method:

void actionPerformed(ActionEvent e)

Sometimes, however, there will be multiple buttons on an applet, which is why
ActionEvent has the following method:

Object getSource()

Comparing the object returned by getSource() to your buttons will help you
determine which button was clicked. Notice that getSource() returns a generic
Object, which suggests (correctly) that not only buttons generate Action events.

Here's a simple example that demonstrates buttons:

/* JButtonDemo.java */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JButtonDemo extends JApplet implements ActionListener {

JButton bx, by;
JLabel lx, ly;
int countx, county;
public void init() {

setLayout(new FlowLayout());
bx = new JButton("Button X");
bx.setMnemonic(KeyEvent.VK_X);
bx.setToolTipText("This is a button");
bx.addActionListener(this);
add(bx);
by = new JButton("Button Y");
by.setMnemonic(KeyEvent.VK_Y);
by.setToolTipText("This is a button");
by.addActionListener(this);
add(by);
lx = new JLabel("Button X has been pushed 0 times");
add(lx);
ly = new JLabel("Button Y has been pushed 0 times");
add(ly);

}
public void actionPerformed(ActionEvent e) {

Object source = e.getSource();
if (source == bx) {

countx++;
lx.setText("Button x has been pushed " + countx + "

times");
} else if (source == by) {

county++;
ly.setText("Button x has been pushed " + county + "

times");
}

}
}

Using a 250x100 applet, these are some screenshots of our output:

Swing Components - Text Fields

Buttons aren't the only way for the user to interact with the applet. Swing also
provides text field components for the user to enter text, the simplest of which is the
JTextField. Some of its useful methods include:

JTextField() - the default constructor with no initial text and number of columns set
to zero

JTextField(String text) - a constructor that provides initial text, but no number
of columns

JTextField(int columns) - a constructor that provides number of columns, but
no initial text

JTextField(String text, int columns) - a constructor that provides both
initial text and number of columns

String getText() - gets the text field's text
void setText(String text) - sets the text field's text
int getColumns() - gets the number of columns the text field has
void setColumns(int columns) - sets the number of columns the text field has.

Note that the number of columns only affects the text field's preferred size. A column
size of zero means that the text field has no preferred size. Preferred sizes are not
always honored, depending on layout. However, FlowLayout will usually honor
preferred sizes.

boolean isEditable() - returns whether or not the text field is editable
void setEditable(boolean b) - makes a text field editable or non-editable.

Text fields are, by default, editable.

Text fields, like buttons, can fire Action events. When the user presses Enter
while in the text field, this will trigger an action event. We use the same Action listener as
before.

And now, for a simple example:

/* JTextFieldDemo.java */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JTextFieldDemo extends JApplet implements ActionListener {

JTextField tfield;
JLabel echo;
public void init() {

setLayout(new FlowLayout());
tfield = new JTextField("--your text here--", 80);
tfield.addActionListener(this);
add(tfield);
echo = new JLabel("");
add(echo);

}
public void actionPerformed(ActionEvent e) {

if (e.getSource() == tfield) {
echo.setText(tfield.getText());
tfield.setText("");

}
}

}

And here is an example of our output, using a 250x100 applet:

Swing Components - Check Boxes

Another useful Swing component is the JCheckBox. Both JCheckBox and
JButton were derived from the superclass AbstractButton, so both have many of the same
methods, including the methods we've already covered for getting and setting text,
mnemonics, tool tips, and for disabling/enabling.

JCheckBox has the following constructors:

JCheckBox(String text) - checkboxes are, by default, not selected
JCheckBox(String text, boolean selected)

Being a button, a JCheckBox can fire Action events. However, the preferred
method of handling a JCheckBox is to use Item events. We can use the interface
ItemListener, which has one method:

void itemStateChanged(ItemEvent e)

To get information about the event, we call the following methods on
ItemEvent objects:

Object getSource()
int getStateChange() - returns ItemEvent.ITEM_SELECTED or
ItemEvent.ITEM_DESELECTED

Object getItem() - this method usually returns a String containing the text of the
item. We'll need to cast it into a String.

With this information, we can now understand the following example:

/* JCheckBoxDemo.java */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JCheckBoxDemo extends JApplet implements ItemListener {

JCheckBox iBox, bBox;
JLabel pretty;
boolean italics, bold;
public void init() {

setLayout(new FlowLayout());
iBox = new JCheckBox("Italics");
iBox.setMnemonic(KeyEvent.VK_I);
iBox.setToolTipText("Italicize the text");
iBox.addItemListener(this);
add(iBox);
bBox = new JCheckBox("Bold");
bBox.setMnemonic(KeyEvent.VK_B);

bBox.setToolTipText("Bolden the text");
bBox.addItemListener(this);
add(bBox);
pretty = new JLabel("Hello, World!");
pretty.setFont(new Font("Serif", Font.PLAIN, 14));
add(pretty);

}
public void itemStateChanged(ItemEvent e) {

Object source = e.getSource();
int state = e.getStateChange();
if (source == iBox) {

if (state == ItemEvent.SELECTED) {
italics = true;

} else {
italics = false;

}
} else if (source == bBox) {

if (state == ItemEvent.SELECTED) {
bold = true;

} else {
bold = false;

}
}
int mask = 0;
if (italics) { mask |= Font.ITALIC; }
if (bold) { mask |= Font.BOLD; }
pretty.setFont(new Font("Serif", mask, 14));
repaint();

}
}

And as usual, here is our output on a 250x100 applet:

Swing Components - Radio Buttons

Another component that's derived from the AbstractButton is the JRadioButton.
Similar to the check box, the radio button has all the same methods. In fact, even its
constructors are identical. For convenience, they will be listed here anyway:

JRadioButton(String text) - radio buttons are, by default, not selected
JRadioButton(String text, boolean selected)

However, unlike check boxes, selecting a radio button will always deselect all
other radio buttons in the group. However, before we can implement this feature, we must
first figure out how to group buttons.

There is a class called ButtonGroup which does exactly this. Here are some of its
methods:

ButtonGroup() - a constructor
void add(AbstractButton button) - note that you can add other buttons

besides JRadioButtons. However, for some buttons, such as the JButton, it wouldn't
make sense to do so. Note that this method implies the existence of other buttons that
can be logically grouped.

As for working with radio buttons, every time a radio button is clicked, it
generates an action event, an item event for the selected radio button (because clicking
normally always selects a radio button), and usually a second item event for the
deselected radio button. Handling radio buttons by action events or item events is good
depending on the situation. However, generally, for efficiency, we want to use action
events.

And now, for an example:

/* JRadioButtonDemo.java */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JRadioButtonDemo extends JApplet implements ActionListener
{

ButtonGroup colors;
JRadioButton rRed, rGreen, rBlue;
JLabel colorful;
public void init() {

setLayout(new FlowLayout());
colors = new ButtonGroup();
rRed = new JRadioButton("Red");
rRed.setMnemonic(KeyEvent.VK_R);
rRed.setToolTipText("Paint the text red");
rRed.addActionListener(this);

colors.add(rRed);
add(rRed);
rGreen = new JRadioButton("Green");
rGreen.setMnemonic(KeyEvent.VK_G);
rGreen.setToolTipText("Paint the text green");
rGreen.addActionListener(this);
colors.add(rGreen);
add(rGreen);
rBlue = new JRadioButton("Blue");
rBlue.setMnemonic(KeyEvent.VK_B);
rBlue.setToolTipText("Paint the text blue");
rBlue.addActionListener(this);
colors.add(rBlue);
add(rBlue);
colorful = new JLabel("Hello, World!");
add(colorful);

}
public void actionPerformed(ActionEvent e) {

Object source = e.getSource();
if (source == rRed) {

colorful.setForeground(Color.red);
} else if (source == rGreen) {

colorful.setForeground(Color.green);
} else if (source == rBlue) {

colorful.setForeground(Color.blue);
}
repaint();

}
}

And here is our output in a 200x100 applet:

Swing Components - Menus

Now, no UI would be complete without a menu. Fortunately, our JApplet has the
following methods to help us:

JMenuBar getJMenuBar()
void setJMenuBar(JMenuBar menubar)

The menu bar is that gray thing that runs across the top of our applications, for
example the browser or Adobe Acrobat you're looking at my tutorial with. It's used to
hold all the menus in a nice neat little row.

And JMenuBar has the following methods:

JMenuBar() - a constructor
JMenu add(JMenu menu) - note the return type; it returns the menu you just added

Now, for the JMenus:

JMenu(String text) - construct a menu with the given text
JMenuItem add(JMenuItem menuitem) - it returns the menu item you just

added
JMenuItem add(String text) - a useful shortcut; it adds a menu item with the

given text, then returns the JMenuItem object associated with that menu item
void addSeparator() - adds a separator (a little horizontal divider) to the bottom

of the menu

Now, the thing about JMenuItems is that they are a subclass of AbstractButton, so
they have most of the same methods other buttons have. Incidentally, JMenuItems work
exactly the same as a JButton, with nearly all the same methods and with an identical
constructor. You can set mnemonics and create tool tips, just like with a button. Here's
the menu item constructor for reference.

JMenuItem(String text)

Incidentally, JMenu is a subclass of JMenuItem, so you can add a JMenu to a
JMenu to create a sub-menu.

Also, there are two other subclasses of JMenuItem: JCheckBoxMenuItem and
JRadioButtonMenuItem. These, too work exactly like their button counterparts, with
many of the same methods and constructors. Here are the constructors for reference:

JCheckBox(String text)
JCheckBox(String text, boolean selected)
JRadioButton(String text)
JRadioButton(String text, boolean selected)

Now, we know enough to do a simple example:

/* JMenuDemo.java */
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class JMenuDemo extends JApplet implements ActionListener,
ItemListener {

JMenuBar myMenuBar;
JMenu options;
JMenuItem nothing;
JCheckBoxMenuItem iBox, bBox;
boolean italics, bold;
ButtonGroup colors;
JRadioButtonMenuItem rRed, rGreen, rBlue;
JLabel pretty;
public void init() {

setLayout(new FlowLayout());
myMenuBar = new JMenuBar();
setJMenuBar(myMenuBar);
options = myMenuBar.add(new JMenu("Options"));
options.setMnemonic(KeyEvent.VK_O);
nothing = options.add("This does nothing");
nothing.setMnemonic(KeyEvent.VK_T);
options.addSeparator();
iBox = new JCheckBoxMenuItem("Italic");
iBox.setMnemonic(KeyEvent.VK_I);
iBox.addItemListener(this);
options.add(iBox);
bBox = new JCheckBoxMenuItem("Bold");
bBox.setMnemonic(KeyEvent.VK_B);
bBox.addItemListener(this);
options.add(bBox);
options.addSeparator();
colors = new ButtonGroup();
rRed = new JRadioButtonMenuItem("Red");
rRed.setMnemonic(KeyEvent.VK_R);
rRed.addActionListener(this);
colors.add(rRed);
options.add(rRed);
rGreen = new JRadioButtonMenuItem("Green");
rGreen.setMnemonic(KeyEvent.VK_G);
rGreen.addActionListener(this);

colors.add(rGreen);
options.add(rGreen);
rBlue = new JRadioButtonMenuItem("Blue");
rBlue.setMnemonic(KeyEvent.VK_U);
rBlue.addActionListener(this);
colors.add(rBlue);
options.add(rBlue);
pretty = new JLabel("Hello, World!");
pretty.setFont(new Font("Serif", Font.PLAIN, 14));
add(pretty);

}
public void itemStateChanged(ItemEvent e) {

Object source = e.getSource();
int state = e.getStateChange();
if (source == iBox) {

if (state == ItemEvent.SELECTED) {
italics = true;

} else {
italics = false;

}
} else if (source == bBox) {

if (state == ItemEvent.SELECTED) {
bold = true;

} else {
bold = false;

}
}
int mask = 0;
if (italics) { mask |= Font.ITALIC; }
if (bold) { mask |= Font.BOLD; }
pretty.setFont(new Font("Serif", mask, 14));
repaint();

}
public void actionPerformed(ActionEvent e) {

Object source = e.getSource();
if (source == rRed) {

pretty.setForeground(Color.red);
} else if (source == rGreen) {

pretty.setForeground(Color.green);
} else if (source == rBlue) {

pretty.setForeground(Color.blue);
}
repaint();

}
}

And for our traditional screenshots (using a 250x150 applet):

Yes, the double menu does look kinda funny.

Swing Components - JTabbedPane

This is one of Swing's special space-saving components. This particular one
allows us break our applet into multiple pages, each page accessed by a tab. Some of its
useful methods include:

JTabbedPane() - a constructor
JTabbedPane(int tabPlacement) - use JTabbedPane.TOP,
JTabbedPane.BOTTOM, JTabbedPane.LEFT, or JTabbedPane.RIGHT.
Default placement is top.

void addTab(String title, Component component) - adds a tab with the
given title and the given component

int getMnemonicAt(int index) - gets the mnemonic for the tab with the given
index. Note that the first tab added has index 0, and the next tab added has index 1, and
so forth.

void setMnemonicAt(int index, int mnemonic)
String getToolTipTextAt(int index)
void setToolTipTextAt(int index, String text)

And now, once again, it's example time:

/* JTabbedPaneDemo.java */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JTabbedPaneDemo extends JApplet {

JTabbedPane myPane;
JLabel ll;
JButton bb;

JCheckBox cb;
public void init() {

setLayout(new BorderLayout());
myPane = new JTabbedPane();
add(myPane);
ll = new JLabel("A label!");
myPane.addTab("Tab 1", ll);
myPane.setMnemonicAt(0, KeyEvent.VK_1);
bb = new JButton("A button!");
bb.setToolTipText("This button does nothing.");
myPane.addTab("Tab 2", bb);
myPane.setMnemonicAt(1, KeyEvent.VK_2);
cb = new JCheckBox("A check box!");
cb.setToolTipText("This check box does nothing.");
myPane.addTab("Tab 3", cb);
myPane.setMnemonicAt(2, KeyEvent.VK_3);

}
}

And here is our output, using a 250x150 applet:

Three things should jump out at you. The first one is the BorderLayout I used.
This was just to make the JTabbedPane take up the whole applet. Try it using FlowLayout
instead. You'll see it looks much uglier. I'll go over Layouts in the next tutorial.

The second thing is that you can only put one component per tab. And the third
thing is that components (most notably the button) fill up the whole pane rather than
being normal-sized. There's a way to solve both of these problems, but I'll cover it in the
next tutorial where it comes naturally, but if you want a hint now: JPanel.

Swing Components - the JFrame

Now, to show you the most profound of all Swing components: the JFrame. This
is profound because it allows you to break out of using applets for GUIs. A frame is a
specific type of window--one used at the top-level and is generally never contained inside
another window. (There is also the class JInternalFrame if you want to have sub-
windows.)

To create a JFrame, we usually use five specific lines of code:

JFrame.setDefaultLookAndFeelDecorated(true);

Calling this on the static class JFrame ensures that our windows will be fully
decorated.

JFrame fr = new JFrame("JFrameDemo");

This creates our frame. The argument passed to the constructor is the title to our
window.

fr.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

This makes our program quit when our window is closed.
At this point, we add all our components to the frame, ie buttons and menus, using

the add() method like in all the previous examples.
Next line:

fr.pack();

This formats the frame so that all our components appear correctly. An alternative
would be to use fr.setSize(int width, int height), but this may make
some components appear correctly.

fr.setVisible(true);

This makes our frame appear. Our frame wouldn't be very useful if it were
invisible, after all.

Frames and Applets are actually very closely related. In fact, they are so closely
related that we could easily convert an applet program to a frame standalone application.
Our next example is a conversion of our JButton example:

/* JFrameDemo.java */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class JFrameDemo extends JFrame implements ActionListener {

JButton bx, by;

JLabel lx, ly;
int countx, county;
public JFrameDemo() {

super("JFrameDemo");
}
void createGUI() {

setLayout(new FlowLayout());
bx = new JButton("Button X");
bx.setMnemonic(KeyEvent.VK_X);
bx.setToolTipText("This is a button");
bx.addActionListener(this);
add(bx);
by = new JButton("Button Y");
by.setMnemonic(KeyEvent.VK_Y);
by.setToolTipText("This is a button");
by.addActionListener(this);
add(by);
lx = new JLabel("Button X has been pushed 0 times");
add(lx);
ly = new JLabel("Button Y has been pushed 0 times");
add(ly);

}
public void actionPerformed(ActionEvent e) {

Object source = e.getSource();
if (source == bx) {

countx++;
lx.setText("Button X has been pushed " + countx + "

times");
} else if (source == by) {

county++;
ly.setText("Button Y has been pushed " + county + "

times");
}

}
public static void main(String args[]) {

JFrame.setDefaultLookAndFeelDecorated(true);
JFrameDemo fr = new JFrameDemo();
fr.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
fr.createGUI();
fr.pack();
fr.setVisible(true);

}
}

Note that since this is a standalone application (hence the main() method), we
can go back to using our traditional "java JFrameDemo". And this is what we get:

Hmm... I guess the pack() method wasn't so great after all. Now let's try doing
fr.setSize(250, 125) instead:

Much better!

Note that there is also a class called Frame, the original AWT frame. Like the
original AWT applet, it uses the simplified model without the root pane and content pane,
so you could draw directly to it. It's very useful when you're making an application that
only does painting and uses no components. When you create an AWT Frame, you don't
use setDefaultLookAndFeelDecorated() nor
setDefaultCloseOperation(), which simplifies your start up. However, this
makes closing the window a bit more complicated. You'll have to use Window events and
Window listeners to close the window and exit the program. We won't go over an AWT
Frame example, as we're running low on time. However, you already have enough of the
framework to figure out how to implement AWT Frames without much trouble.

Also note that the VidWorks project Demons (which is all painting and no
components) uses the AWT Frame.

Other Swing Components

There are many more Swing components out there. Here's a list that's not meant to
be comprehensive, but only gives you a brief listing of the more commonly used Swing
components:

Top-Level Windows
JDialog

Organization Components
JScrollPane
JSplitPane
JToolBar

Complex Components
JColorChooser
JFileChooser

Control Components
JComboBox
JList
JSlider
JSpinner
JToggleButton
JFormattedTextField
JPasswordField
JTextArea
JEditorPane
JTextPane
JTree
JTable

In addition, you can create your own custom components (although this would be
a very advanced topic) by extending the JComponent class.

Conclusion

This time, there won't be a unifying example, since quite frankly, this tutorial is
big enough as is. However, we've shown you plenty of examples, and it should be pretty
simple to combine them all to make a decent user interface, even if you haven't had all
the concepts yet.

Next time: layout management, look & feel, and HTML formatting!

Homework Assignment!

By use of combining Swing components, make a standalone program (ie, using a
JFrame) that does something interesting when you click the buttons/menu items/other
components. Creativity counts. Extra credit if you use some components that weren't
covered in detail (like the ones listed in "Other Swing Components")!

