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2.4.1 The Equations of Evolution

The previous chapters explained how the need of genes to exactly
copy sequence results in a cost or directionality to change. Yet, however
plausible the explanation seems, equations now used in evolution do not
reveal any such effects. It is not that the effects are not there physically.
They simply do not appear on the 'radar screen' of mathematical biology.
So, if somebody proposes that these effects occur, that person needs to
explain why they are not appearing in any equations.

Needless to say, this is very difficult. The topic is highly specialized,
plus much of the subject concerns how diploid alleles will distribute in a
mostly stable population. The equations are variations to the equality;

(p + q)2 = p2 + q2 +2pq  (The Hardy-Weinberg Equation)

The problem is that diploid organisms in a stable population represent an
already highly directional form of change. (The direction is towards the
wealth of allele variety.) Yet, the first 2-3 billion years of life were
haploid, or even among diploid species, 70-90% of loci are homozygous
(with little allele variety). So, although it is often derived from a Hardy-
Weinberg equation, broader evolution can better analyzed via a so-called
Fisher/Wright model (after R. A. Fisher and Sewall Wright).

A very simple Fisher/Wright model can be shown here. Suppose an
individual has a locus X on a chromosome, which can be occupied by a
range of genes or alleles xi, where i = 1, 2, 3... (xi means the distribution
value, so 1 in 100 is 0.01. Here it also refers to the gene 'xi'.) If each
variation of xi has a fitness wi, the population has a mean fitness  (w
bar) of Σwixi about X.  R. A. Fisher showed that if wi of any gene xi was
greater than the mean, , rate of spread ∆xi of xi in a natural population
(for a haploid, at t= 0) would be;

∆xi = xi (wi  - )/  (Call it Fisher's equation.)

This shows that the fitter wi makes an individual above , the greater is
wi - , so the faster xi spreads until  rises to wi.

For example, suppose a mosquito population has 1,000 individuals.
One individual has an allele, x2, resistant to DDT (w2 =1) and the other
999 x1 individuals have only 50% resistance (w1 = 0.5) With no DDT,
each generation (wi - ) = 0, so x2 does not increase (∆x2 = 0). But once
DDT is present, x1 halves each generation, while x2 quickly increases its
frequency from x2 = 0.001 to x2 = 1.0 by about the 18th generation. So
although favorable mutations may be small, they can spread very fast.
And the spread can be traced by the history, or frequency, of the allele or
gene causing the change. This principle is so central that Fisher called it
the fundamental theorem of natural selection.
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However, by 'mean fitness' , Fisher's theorem refers to the mean

about a single locus X.  But genomes contain many loci, X, Y, Z. If one
takes a different mean fitness over all genome loci X, Y, Z... as wG, then
most equations (not just Fisher's one) rely on a condition wG = wi. This
assumption simplifies calculations by replacing fitness of the thousands
of genes in the genome, wG, by the fitness of just the one gene or allele,
wi, causing the change. Even so, assumption wG = wi "throws away the
organism", so it needs to be shown exactly which role the organism does
play, in how genes spread.

2.4.2 Gene Trajectory
Earlier, Section 2.2.3 introduced the concept of gene trajectory. As

explained, physically there are many reasons why genes alter or mutate at
different rates over the history of life. But whatever the physical cause,
one might liken fidelity of copy of a gene or DNA sequence to a force,
call it εi (eta i). If say, a gene did not alter copy by even 1 bp for eternity,
then εi = ∞. If a gene could alter each reproduction, then εi = 0. No gene
can obtain these extremes (life has not existed for eternity) so we assume
that there is an average ε (eta bar) for all genes, that can be normalized
such that ε = 1, for any typical gene.

The concept of εi, allows one to investigate the assumption wG = wi.
Basically, when gene xi increases its frequency, say 0.1→ 0.9, it does so
in a certain "direction", in which every gene in the host genome, G, also
increases frequency, say 0.1→ 0.9, by the same amount.  So it seems safe
to set wG = wi, because for any selective event every gene in G alters its
frequency by the same amount anyway. However, the value of εi, if it
exist, will be very different for each gene in the genome. And while xi in
small populations alters rapidly, εi alters slowly over the history of life,
and is unlikely to be affected by small changes.

In fact, while it is not the same, εi can be derived from mutation rate
µi (mu i). To be sure, µi, is a scalar. It measures statistical change in the
present time, such as the rate by which an allele x1→x2 mutates to enter
the gene pool of a modern population. On the other hand, εi is a vector. It
is the retentive force that holds a gene within a copy trajectory, over the
history of life. Genes also mutate for many reasons. Instability at a single
region of a gene could cause high µi, but low εi if the rest of the gene was
stable. Or an opportunistic gene can have low εi, but medium µi. Still,
data for µi is available. If average normalized ε is a function of average
mutation rate, µ (mu bar) such that;

ε = f(µ) = 1, then for any gene mutating at rate µi, approximately;
εi = 7√(µ/µi)



The Heuristic Process62
This formula gives a rough value of εi, against a measure (mutation rate)
that is familiar. The term is reduced a 7th root because εi is a weak force,
acting about 1 in 107 against xi. Highly conserved genes mutate at about
µi = 10-13 which for µ = 10-7 gives εi = 7.2; a fast mutating gene µi = 10-5

will have εi = 0.52. In fact, εi is never that accurate, and εi = 1 would
cover a range 10-6< µi < 10-8. This is to give a broad idea of εi. Its precise
values are not required here.

Having broadly defined εi, its relationship to xi must be formulated
in ways that conserve standard theory. Take distribution Di of a gene xi as
Di = xi. Then Di = xi for εi, is conserved if Di = xi(1 + jεi) where j = √-1.
However, because 0 < εi < ∞, this must be normalized to keep Di ≤ 1, so
the full expression becomes;

Di = xi(1 + jεi)/√(εi
2 + 1)

It looks complicated, but notice that the value of εi does not alter the
value of Di as xi, but only varies its complex sign. (If εi = 0, Di = xi. Yet
if εi = ∞, Di = jxi.) It is harder to show, but if εi was the same for all genes
then again Di = xi. (If for two alleles D1 = kD2, if ε1 = ε2, then x1 = kx2.)
So, the new notation is not that different from standard theory. If εi = 0, is
the same for all genes, or has no effect, standard theory is conserved. Just
that if εi does exist, or is not the same for all genes, one can now examine
what is lost when setting wG = wi.

2.4.3 The Use of Angle Notation
The effects of change in a genome, where different forces of εi act on

different genes, can be best visualized using an angle notation. When
people are told that there is an angle, they expect to see a physical angle,
like angles forming the DNA helix. However, the term (1 + jεi)/√(εi

2 + 1)
is also an angle, where θi = tan-1 (εi). So;

Di = xi (1 + jεi)/√(εi
2 + 1) is the equivalent of;

Di = xi (cos θi + j sin θi) or, Di = (xi, θi)

Further, for any value of εi, broadly;

εi = ∞,  µi ≈ 0 ("forever"),  θi = 90O

εi = 1,   µi ≈ µ ("average"),  θi = 45O

εi = 0,   µi ≈ 1 ("each reproduction"),  θi = 0O

This is shown in Fig. 2.4.1. There is no physical angle, but the notation
helps visualize how genes, genomes and DNA segments interact over the
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history of life. Highly conserved genes barely alter over huge times, so
they are at high angles. Because evolution is adaptation to change, genes
will only be able to stay unaltered while adapting into a huge variety of
types if other DNA in the genome bears the cost of change. This will
appear on the diagram as though, over time, conserved genes 'rotate'
higher, but genomes 'rotate' to lower angles.

θx2

θx1

θG2

θG1

Fig 2.4.1 Genes, DNA, and genomes
appear to spread together in single
organisms. But over the history of life,
individual genes try to avoid altering
sequence, by forcing host genomes
to bear the cost of change. On an
angle diagram, it would appear that
genes rotated 'higher' while forcing
host genomes into a lower angle.

Still, Fig 2.4.1 only shows how genes or DNA distribute over time when
mapped on a diagram of this type. The angles appear to change because
the DNA does. Yet if genes really do try to rotate to higher angles, there
must be some "force" driving them to do so. True, that force is natural
selection, but in a Fisher equation it is the pressure (wi - ) that drives
the value ∆xi to increase. So how would selection drive ∆θi to increase in
the new formulation?

Well, the equation is not fully derived yet, but to see how it works
requires setting a "goal" that all genes try to achieve. In standard theory
the gene seeks maximum probability Pi of survival in the next generation.
Take distribution of any gene as Di, and fitness of a host as Fi. The gene
has a probability of existing of Pi = Di Fi, with maximum of Pi = 1 (when
Di =1 and Fi = 1). This can be written (in standard theory) as;

Pi = xiwi

The new equations, though, would involve two new terms; εi, (the exact
copy), and wG, (the fitness of the organism). The relationship of these
new terms to wi and xi is not known. However, it is likely that that genes
at high εi (highly conserved genes) tend to spread anyway, regardless of
which host genome they happen to be in. Using this principle, one can
approximate the new equation of Pi to be something like;

Pi = xi (wG + wiεi
2)/(εi

2 + 1), or in angle notation;
Pi = xi (wG cos2 θi + wi sin2 θi)
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Note that when εi (viz. θi) is low, xi must be inside a fit genome in order
to propagate. Yet when εi is high, the gene relies on its inherent fitness.
And strange as this equation appears, it fully conserves standard theory.
For the condition wG = wi for any εi, or for εi = 0, the equation will revert
to Pi = xiwi. (Note that cos2θi + sin2θi = 1.)

However, now we have Di and Pi, we can obtain Fi by dividing Pi/Di.
Note that Pi has a "real" (scalar) value, but once this is divided by the
coordinate D (xi, θi) this will result in a complex form of Fi, so we get;

Pi  = xi (wG cos2 θi + wi sin2 θi)
Di = xi (cos θi + j sin θi) or, Di = (xi, θi)

Dividing Pi/Di gives;

Fi  ≈ wG cos θi - j wi sin θi

Note that Fi is approximate. (Following division there is an extra term in
Fi that mostly reduces to 0, but might concern "past" or "future" events.)
Again though, for the condition wG = wi or θi = 0, then Pi = xiwi. Or
multiplying complex Fi by the complex Di will also give Pi = xiwi (the 'j'
terms cancel) regardless of the value of θi (with some adjustments). So
again, standard theory is conserved throughout.

Still, the equation is interesting. The first term shows that fitness of
the organism, wG, only acts on the real component of selection (wG cosθi
is "real"). This infers that while organisms can evolve new designs by
natural selection, they carry perfected designs into the next generation
without selecting them out! This is the second term (with j = √-1). All
genes were first selected in real genomes, but in the past (-ve sign on j).
The deeper in the past (as θi >> 0O) the further the chance of selection is
rotated away from the effects of modern events.

This is why genes 'want' to rotate to higher angles. They are trying to
avoid selection! Selection is costly, for genes and nature. If a gene is
already perfected in function, it is inefficient to re-design it by selection
each time. It took billions of years to perfect the eukaryotic cell, and
hundreds of millions of years to evolve large animals. Yet an intelligent
being can evolve in a few million years by reincorporating earlier designs
perfected over billions of years past. 'Selfish' gene theory has said that
the organism is a way for genes to spread. The new formulation shows
how it works. Nature conserves perfected designs by its own processes.
But when humans model those processes with the mathematical tools
available, it appears as though genes try to avoid selection by rotating
deeper into an imaginary plane.
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2.4.4 The Fall of Fitness

One of the conditions of the Fisher equation is that mean fitness can
only rise as xi spreads. But in life, this is often violated.  Suppose that a
genome G1, consisted of two genes, xi, yi at loci X, Y. Suppose that gene
xi could double the total individuals in an area by splitting yi into two
new genes τi and ψi, then evolving G1 into two new genomes G2 and G3.
Suppose now G1, G2, G3 each have 1,000 copies. We get;

G1(xi, yi) →[G2(xi, τi) + G3(xi, ψi)] (For this case count the copies.)

Here xi has doubled but yi has decreased. Plus if G1 has gone extinct, its
fitness decreased despite that xi has increased. So fitness fell, but the
condition wi = wG of the Fisher equation was violated, by the case that;

wxi > wG1 but w yi < w G1 (Again, just count copies.)

Still, what happens when fitness falls but xi increases is that the angle of
the host genome, θG, falls. In a Fisher equation, mean fitness is a single
scalar quantity, . It has not been derived, but in the new model mean
fitness would be a complex sum, ( - jε). (The j sign is –ve, because
broadly, the population evolved in the past.)  It would be difficult to sum
this over thousands of small changes, but "pressure" about a locus X for
change would be (wi - ) + j(ε - εi). The accumulated affects of these
tiny decrements in ε over thousands of loci X, Y, Z, would be an eventual
fall in the εG (or θG) of the entire genome.

If anything, one suspects that rather than sum θG over thousands of
genes and billions of bp, one might assume that for a haploid θG ≈ 45O,
and a diploid θG ≈ 0O. (When a new form of reproduction evolves, θG

falls slightly. Evolution of sex was the 'great θG crash' from 45O to 0O,
dwarfing all other decreases in θG.)

Suppose though, that a gene maximizes spread if it replicates in a
genome at an effective 'angle' of 45O. This will occur at wG = wiεi. Then
for genes at θi < 45O, the gene can afford a lower host fitness, wG < 1, as
this helps the gene increase effective angle.  For conserved genes where
θi > 45O the gene could afford a lower wi to get a 45O effective angle. It is
not clear physically what this means, but it vaguely infers how sex
works. Highly conserved genes can accept a high fitness penalty for other
genes in the host, because they are going to spread anyway.

On the other hand, while the case wi > wG is hard to resolve, the case
wi < wG (the gene damages host fitness) becomes clearer. Note, wG acts
only on the real component of fitness. Broadly, any gene such as a rogue
or parasite at θi < 45O is losing copy at each reproduction at a faster rate
than average. (A 102 bp long fragment that is mutating at µi = 10-4 will
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destroy its copy in 106 reproductions.) The best strategy for such a gene
is to "slow" its rate of reproduction, by damaging its host's fitness, at
roughly wG ∝  εi. (At µi = 10-4 then the gene obtains equivalent copy of µ
at wG = 0.37. The figures are not researched.) Note too that the equation
of complex fitness is;

Fi = wG cos θi - j wi sin θi

Lowering wG lowers the "real" part of the equation, so it pushes effective
'angle' of complex fitness higher. As a real process, rogue DNA damages
host fitness because that is how it acts. But in the equation, the DNA is
trying to increase its effective angle, hence its survivability, by rotating
itself further away from the plane of real selection.

Generally, the gene, being "selfish", tries to manipulate a genome to
its advantage, but the strategy will depend on the (wi, θi) of the gene. A
rogue gene with a low (wi, θi) tries to replicate inside a strong genome
with a high θG, despite that rogue genes might try to lower wG of the
host. (A low angle genome, like in sexual organisms, can alter rapidly, so
it might quickly find a way to throw out the rogue gene.) Yet a very
strong gene will, paradoxically, want to see life populated by highly
variable (but low angle) genomes, so the strong gene can spread within a
huge variety of types. (It is like the computer industry. If you make a part
like the CPU needed in all computers, then the larger the variety of low
cost computers built, the more parts you can sell.)

2.4.5 An Ongoing Debate
In summary, how is it that effects claimed here to be a major factor

in evolution, do not appear in the math of standard theory?
Well, the math of standard theory is explicit. It is describing a well-

understood physical process, in that a gene that is fit is also increasing its
frequency in a population, say, from 1% to 99% distributed, relative to a
rival. Moreover, the gene that is fit, spreading this way, is also contained
"within" the equation modeling the process occurring. (The gene that is
spreading, is the same gene that the equation is describing.)  However,
when a favored gene is spreading, say 1% to 99% distributed, other genes
in the genome are also spreading, even though, perplexingly, they might
be 100% distributed already for that population. The difference is that the
gene causing the spreading, the "action" gene, was altered from an earlier
sequence to gain the fitness to spread. Yet the genes that spread anyway,
that were already distributed 100%, are now carried along by the "action"
gene into a new adaptation, but are not themselves forced to alter their
own sequence to adapt. These genes, able to adapt into new varieties
without themselves being forced to alter, gain slight fitness over genes
forced to bear the cost of change.
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To model this process, requires capturing the effects of fitness from

the perspective of any gene in the genome, not just the "action" gene.
This is done using a second quality of gene distribution; the "exact copy"
of a gene, here called εi.  Genes that survived unaltered for billions of
reproductions, or adapted into a huge variety of types at no alteration to
their sequence are versatile designs, that inherently end up widely copied.
And organisms that adapt proven genetic designs (by reshuffling existing
genes, rather than evolving new ones) ultimately adapt at lower total cost
of change. So although εi is the copy fidelity of a gene over the history of
life, it approximates the cost and directionality of change.

Yet, using εi must conserve the equations of standard theory where
these are correct. This is done by adding εi to xi as a complex sum, so
normalized distribution Di, becomes Di = xi(1 + jεi)/√(εi

2 + 1). This form
conserves standard theory (say, by setting εi = 0). Still, manipulating this
further provides a new equation, showing how wi (gene fitness) relates to
wG, (fitness of the host genome in which the gene is resident). This is;

Fi  = (wG - jwiεi)/√(εi
2 + 1), or in angle notation;

Fi  = wG cos θi - j wi sin θi

This equation is incomplete. There are missing terms, and it does not
show angle, θG, of the host genome (which might differ between diploid
to haploid organisms). The equation also does not show the time variant
conditions, or effective angle for Fi for a gene to maximize propagation.
(Though one suspects it is 45O.)  Even so, the equation does confirm how
life works! Succinctly, it shows that fitness, wG, of the host genome acts
on the "real" part of the equation, so as is the case, it is the organism (not
the gene) that is selected at each fitness event.

Genes reproduce physically, inside organisms. And they pass on to
offspring physically, like passing a baton in a relay. Yet genes still only
reproduce information. In the famous polymerase chain reaction (PCR)
humans provide the chemical ingredients. It is the "information" in the
DNA snippet, not the chemicals, that is multiplied millions of times. So,
organisms play two roles in transmitting DNA. By physical reproduction
they are a chemical relay station. By mutation and selection, they are a
way to modify DNA information. DNA as molecules is copied as a "real"
physical process, and change of sequence occurs at real physical events,
even for events in the past. Even so, when modern organisms are selected
for changes of allele frequencies, 99% of the stable sequences in those
organisms are being copied in other organisms, in other times, over the
biota of life. If one models this among a small population from which the
gene has already radiated, it should show as 'imaginary' selection in a
correctly formulated equation.
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Yet if this equation is correct, it means that any gene at any locus in

the genome, tries to increase not just its distribution fitness, xi, but its
total fitness, xi(1 + jεi)/√(εi

2 + 1), where εi is the "exact copy" of the gene.
When a gene first comes into existence, at εi = 0, the gene relies on the
fitness of its host, wG, to spread. Here, wG = wi for that gene, which
applies as in standard theory. But as the gene matures and radiates into
many types, it will become less dependent on its host to avoid sequence
death. Broadly, as εi increases the gene sequence radiates out from the
point of origin of the sequence much like a wave, through millions of
descendant reproductions. (When εi = 0, the gene is like a particle. When
εi = ∞, it is like a wave.) It has not yet been modeled, but it is hoped that
some fast mutating DNA will exhibit this wave-like effect as a concerted
synchronism across physically separate organisms.

Modern evolutionary theory has become divided between so-called
gene-centric or reductionist models, focused on genes and equations, and
a more holistic, observational approach. The assertions of this chapter
seem to take the division to an extreme. Just when the reductionist school
is conceding that genes might also be cooperative or parliamentary, this
chapter argues why DNA is consistently selfish. Genes might cooperate
to spread in unison, but each gene also competes to preserve its own copy
unaltered, and force other genes in the genome to bear the cost of change.
Just that genes compete for spread over tens of generations, but compete
for exactness of copy over millions of generations, and this difference of
scale is hard to model. This is the second contention. All the processes of
life are real physical events at the instant when they occur. But within
equations, humans try to capture events from billions of years past into
single events of the present. Within this restriction equations will show
strange effects, such as genes radiating like waves of information, rather
than processes normally associated with life.

Even so, the math explained here is more a notational argument than
proven equations, and no one equation anyway will ever fully capture the
vast processes of life. Yet incomplete as it is, the argument here can still
challenge existing models of how large-scale evolution works, or how
genes and organisms do interact. Also, despite the reductionist approach
inherent to equations, there is a cautious optimism. Even from a model of
gene selfishness, these equations illuminate the one result that everybody
suspected was the case  all along. Evolution of complex new creatures, or
complex new adaptations such as thought and emotion, will take more
than just a few changes in allele frequencies. It is the combined effects of
all evolution, accumulating over the history of life.


