[Home]

               Log Approximation(+/-0.05)

       Step 1: If want to approximate the logs, remember this:

                

            Range

Value

             1.1                  25
             1.2                  15
             1.3                  11
             1.4                  09
          1.5-5.5                  07
          5.6-7.5                  08
          7.6-9.0                  09
          9.1-10                  10

   *Important- This approximation is about +/- 0.05. For some values you can add 0.05 or subtract 0.05. 

  Example 1     

 log (1.5)

Now, we want to take log of 1.5.

 look at the table above. You'll see 1.5-5.5 and its value is 07.

Formula for log (x) is

Formula : X/(value) +/- 0.05

So, Here

(1.5/07)= 0.21-0.05=0.16

Actual value is 0.176.

Example 2

log (5.5)

5.5/07

0.79-0.05

0.74

Actual Value:0.74

Example 3

log (8)

8/09

0.88

Actual Value:0.90

Example 4

log (9.3)

9.3/10

0.93+0.05

0.98

Actual value:0.97

Example 5

log (42)

When you get this type of value, you cannot divide 42 by 07.

But you can use some math. (significant figures)

Convert 42 to 4.2*101

log of 101 always equal to 1. Then log (4.2*10) is

1+(4.2/07)

1.60

Actual value:1.62

Example 6

log (56898)

This problem seems harder but It is not.

Convert to two significant figure.

5.7*104

log of 104 is 4 and log of 5.7 is (5.7/08)

4.71+0.05

4.76

Actual value: 4.76

Example 7

log (0.0008756)

Convert to two significant figure.

8.8*10-4

log of 10-4 is -4.and log of 8.8 is (8.8/9)

-4+(0.98-0.05)

-4+(0.93)

-3.07

Actual value:-3.06

Example 8

log (5.3*10-6)

-6+(5.3/07)

-5.24

Actual value:-5.26

Exercise

 log (6.8)

 log (3569800)

 log (0.05897)

 log (0.0000092365)

-log (1.2356*10-9)

* Check all answers in your calculator.