Modelo Relacional

1. Histórico

♦ Foi introduzido por Codd (1970)

∜Tornou-se um padrão de fato para aplicações comerciais, devido a sua simplicidade e performance.

♦ É um modelo formal, baseado na teoria matemática das relações.

Um dos SGBD's precursores que implementaram este modelo foi o System R (IBM). Baseado em seus conceitos surgiram: DB2 (IBM), SQL-DS (IBM), Oracle, Informix, Ingres, Sybase entre outros.

2. Conceitos do Modelo Relacional

♥ O modelo relacional representa os dados num BD como uma coleção de tabelas (relações).

Ex.: Empregado

Matr	Nome	Endereço	Função	Salário	Depart
100	Ana	R. Pedro I, 12, A. Branco	Secretária	500,00	D1
250	Pedro	R. J. Silva, 24, Liberdade	Engenheiro	1500,00	D1
108	André	R. Itália, 33, B. Nações	Técnico	950,00	D2
210	Paulo	R. Pará, 98, B. Estados	Engenheiro	1810,00	D2
105	Sônia	R. Oliveira, 76, A. Branco	Engenheiro	2500,00	D1

[♥] Cada tabela terá um nome, que será único, e um conjunto de atributos com seus respectivos nomes e domínios.

• Terminologia:

Na terminologia de BD Relacional uma linha é chamada tupla, um nome de coluna é chamado de atributo e cada tabela é chamada de relação.

Definições:

✓ Domínio: Um domínio D é um conjunto de valores atômicos.

Ex.: Fone: conjunto de 10, dígitos

CPF: conjunto de 7 dígitos

Idade_Empregado: $16 \le idade \le 70$

Departamentos: Conjunto de departamentos de uma empresa.

[☼] Todos os valores de uma coluna são do mesmo tipo de dados.

✓ A cada domínio está associado um tipo de dados ou formato.

Ex.: Fone: (ddd) ddd-dddd onde $d = \{0,1,2,...,9\}$

IdadeEmpregado: inteiro entre 16 e 70.

✓ Um esquema de relação R, denotado por R(A1,A2,...,An), é um conjunto de atributos R = {A1,A2,...,An}

Cada atributo Ai é o nome de um papel realizado por algum domínio D na relação R.

D é o domínio de Ai, denotado por dom(Ai)

Um esquema de relação R é usado para descrever uma relação .

R é chamado o nome desta relação.

O *grau* de uma relação é o número de atributos que seu esquema contém.

Ex.: Seja o esquema

Estudante (matrícula, nome, fone, idade, curso)

=> grau = 5

Um instante (snapshot) de relação r, do esquema R(A1, A2, ...,An), denotado por r(R), é o conjunto de n-tuplas $r = \{t1,t2,...,tn\}$. Cada tupla t é uma lista ordenada de valores $t = \langle v1,v2,...,vn \rangle$

Os termos *intenção* para o esquema R e *extensão* para instante de relação são também empregados.

Uma instância r(R) é um subconjunto do produto cartesiano dos domínios de R.

$$r(R) \subseteq (dom(A1) \times dom(A2) \times ... \times dom(An))$$

• Características de Relações:

A ordem das tuplas e dos atributos não têm importância

Todo atributo possui valor atômico

Cada atributo numa relação tem um nome que é único dentro da relação.

Todas as tuplas devem ser únicas (conjunto).

2.1. Chaves de uma Relação

- Valem os mesmos conceitos de superchave, chave candidata e chave primária vistos anteriormente.
- Convenciona-se sublinhar os atributos que compõem a chave primária. Ex.: Empregado (Matrícula, Nome, Endereço, Função, Salário)
- Um mesmo atributo pode ter nomes diferentes nas diversas relações em que participa.

Ex.:

Empregado (Matrícula, Nome, Endereço, Função, Salário, Dep)

J.

Departamento (CodDepart, Nome, Gerente, Datalnício)

• Atributos que representam diferentes conceitos podem ter o mesmo nome. Ex.: Ver os atributos Nome do exemplo anterior.

Restrições de Integridade:

- Integridade de Chave: Toda tupla tem um conjunto de atributos que a identifica de maneira única na relação.
- 2 Integridade de Entidade: Nenhum valor de chave primária poderá ser NULO.
- **1** Integridade Referencial: Uma relação pode ter um conjunto de atributos que contém valores com mesmo domínio de um conjunto de atributos que forma a chave primária de uma outra relação. Este conjunto é chamado *chave estrangeira*.

Ex.: Departamento

	XII Debaltamente			
CodDep	Nome	MatrGerent		
D2	Produção	210		
D1	Custos	105		
D5	Pessoal	NULL		

 $\overline{\Psi}$

Empregado

Matr	Nome	Endereço	Função	Salário	Depart
100	Ana	R. Pedro I, 12, A. Branco	Secretária	500,00	D1
250	Pedro	R. J. Silva, 24, Liberdade	Engenheiro	1500,00	D1
108	André	R. Itália, 33, B. Nações	Técnico	950,00	D2
210	Paulo	R. Pará, 98, B. Estados	Engenheiro	1810,00	D2
105	Sônia	R. Oliveira, 76, A. Branco	Engenheiro	2500,00	D1

- ✓ Formalmente, um conjunto de atributos de uma relação R1 é uma chave estrangeira se satisfaz às seguintes regras:
- Os atributos da chave estrangeira têm o mesmo domínio dos atributos da chave primária de outra relação R2.
- **2** Um valor da chave estrangeira numa tupla t1 de R1 possui o mesmo valor da chave primária para alguma tupla t2 em R2 ou é NULO.

- ✓ A integridade referencial estabelece que todo valor de chave estrangeira numa relação deve corresponder a um valor de chave primária de uma segunda relação ou deve ser nulo.
- ← Uma chave estrangeira pode referenciar-se a sua própria relação (autorelacionamento).

Ex.:

Empregado(matrícula,nome,salário,matr_supervisor)

- As restrições de integridade devem ser implementadas pelo SGBD. Muitos SGBD's implementam integridade de chave e de entidade, mas não implementam integridade referencial.
- & Estudaremos as integridades semânticas mais a frente.
- Ex.: "Nenhum empregado pode ganhar mais que seu gerente"
- "O número de horas máximo que um empregado pode trabalhar num projeto é 40 horas".

• Operações de atualização em relações:

Inserção:

- 1. Inserir <'102','André',null, 'Engenheiro', '1.980','D2'> => é aceito sem problemas
- 2. Inserir <'100', 'Maria', null, 'Técnica', '950', 'D1'> => viola a restrição de chave.
- 3. Inserir <null, 'Cecília', null, 'Engenheiro', '1.950', 'D1'> => viola restrição de integridade de entidade.
- 4. Inserir <'108','Mauro','Rua 4','Técnico','980','B6'> => viola a restrição de integridade referencial.

O que fazer quando se detectar uma violação de integridade?

- Rejeitar a inserção (podendo explicar o porquê)
- ♥ Tentar corrigir a anomalia para depois inserir.

Remoção:

- 1. Remover da tabela empregado a tupla com matrícula = '100'.
 - ⇒ remoção aceita sem problemas.
- 2. Remover da tabela departamento a tupla com CodDep = 'D1'.
- => viola a regra de integridade referencial.

∃ empregados que estão alocados neste

departamento.

O que fazer quando uma violação ocorrer numa remoção?

- ♥ Rejeitar a remoção
- ♥ Dar o efeito cascata na remoção, removendo todas as tuplas referenciadas por aquela tupla que está sendo removida.
- ☼ Modificar os atributos referenciados para novos valores ou nulos (caso não façam parte da chave primária).

Modificação:

- 1. Modificar o salário do empregado com matrícula='250'
 - => operação aceita sem problemas.
- 2. Modificar o número do departamento da tupla de empregado com matrícula '210' para 'D1'
 - => operação aceita sem problemas.
- 3. Modificar o número do departamento de empregado '108' para 'D9' => viola a integridade referencial
- 4. Modificar a matrícula do empregado '100' para '250'
 - => viola regra de integridade de chave.