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Abstract

The condition for Lie point symmetries for reduced Ermakov systems is solved yielding three families of systems.SL(2,R)

is always a group of symmetries when frequencies depends on time only. However, the generator of symmetries in mo
cases have a contribution not associated with theSL(2,R) group.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Ermakov systems[1–3] play an important role in
a variety of physical and mathematical situatio
The most recent analysis involving Ermakov s
tems deals with Bose–Einstein condensates and
mological models[4–6], nonlinear supersymmetr
Darboux transformations[7], the free fall of a quan
tum bouncing ball[8], conformal quantum mechanic
[9], general covariance and time-dependent metric
quantum mechanics[10], geometric phases[11] and
generalized Hamiltonian structures[12]. From the the-
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-

oretical viewpoint, Ermakov systems always adm
constant of motion, the Ermakov invariant, and
amenable to a nonlinear superposition law[13]. In ad-
dition, Ermakov systems are linearizable under br
circumstances[14,15].

As is well known, the group theoretic approa
to a dynamical system is a subject of relevance[16]
not only for the reduction of order and the search
invariants for the system, but also for a better und
standing of its structural properties. The point symm
try group of Ermakov systems has been identified
theSL(2,R) group in the case of frequency functio
depending on time only and also for a large class
more general frequency functions[17–21]. More re-
cently, using the converse to Noether’s theorem, it
been shown that the Ermakov invariant can be a
.
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ciated to a dynamical symmetry, in the cases wh
the system admits a variational formulation[22]. In
addition,SL(2,R) has also been found[23,24]as the
symmetry group of Kepler–Ermakov systems, wh
can be viewed either as perturbations of the planar
pler problem or of the classical Ermakov system. T
purpose of this Letter is to follow this trend from a d
ferent perspective and study the Lie point symmet
of Ermakov systems restricted to manifolds where
Ermakov invariant has a fixed constant value. The
portance of this study may not be underestimated s
the existence of the Ermakov invariant is automa
This point will be illustrated with an interesting exam
ple at the end of this section.

In polar coordinates, the Ermakov system reads

(1)r̈ − rθ̇2 + ω2r = F(θ)

r3 ,

(2)rθ̈ + 2ṙ θ̇ = G(θ)

r3 ,

whereF and G are arbitrary functions of the ang
θ and ω, in principle, can depend arbitrarily on th
dynamical variables. More often,ω is a function of
time only, in which case it has the interpretation
a time-dependent frequency. Here, however, we
not impose this constraint and allow for more gene
functional dependences. Also, for simplicity we co
sider the case∂ω/∂ṙ = 0. Independently of the speci
form of ω, the Ermakov systems always possess
constant of motion

(3)I = 1

2

(
r2θ̇

)2 −
θ∫
G(φ)dφ,

the so-called Ermakov invariant[1–3].
The existence of a constant of motion reduces

order of the system. More exactly, Eq.(2) can be inte-
grated once to give

(4)r2θ̇ = H(θ),

where

(5)H(θ) = √
2

(
I +

θ∫
G(φ)dφ

)1/2

.

The structure of Eq.(4) suggests the introduction o
the new variable

(6)ϕ =
θ∫

dφ
,

H(φ)
so that the fourth-order non-reduced Ermakov sys
(1)–(2) can always be cast in the reduced form

(7)r̈ = A(r,ϕ, t),

(8)r2ϕ̇ = 1,

where the functionA is defined by

(9)A(r,ϕ, t) = −ω2r + 1

r3

(
F + H 2).

In (9), F and H are functions ofϕ through(6) and
the implicit function theorem. The fact that∂ω/∂ṙ = 0
ensures the indicated functional dependence ofA.
Notice, however, thatω can freely depend, for in
stance, oṅϕ, since this dependence can be elimina
through(8). The choice∂ω/∂ṙ = 0 has a decisive in
fluence on the simplification of the symmetry analy
but imposes some limitations on the generality of
results. In addition, since the symmetry analysis is
sensitive to coordinate transformations, working w
ϕ and not withθ does not affect the final result.

Eqs. (7)–(8) are a third-order dynamical system
which we shall call thereduced Ermakov system. Even
if not explicitly shown, the reduced equations depe
parametrically onI . Also, the functionH is not identi-
cally zero except for the trivial caseI = G = 0, which
we do not consider here.

The purpose of this work is to perform the L
point symmetry analysis of reduced Ermakov syste
Since for Lagrangian Ermakov systems the Erma
invariant is directly related to a dynamical Noeth
symmetry[22], it is to be expected that the algeb
sl(2,R) will play a fundamental role on the reduce
Ermakov system. Let us stress, however, that the
duction process may change significantly the sym
try analysis.

In order to illustrate the differences between
symmetry analysis of non-reduced and reduced
tems, consider the third-order ordinary different
equation introduced in[25],

(10)
...
q + aq̇q̈

q
+ bq̇3

q2 = 0,

wherea andb are arbitrary constants. Eq.(10)admits
the symmetry generators

(11)U1 = q
∂

∂q
, U2 = t

∂

∂t
+ 3q

∂

∂q
.
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Moreover, Eq.(10)admits the invariant

(12)I = q̈

q2k+1 − b

2(k + 1)

q̇2

q2k+2 ,

wherek is any root for

(13)2k2 + (a + 3)k + a + b + 1= 0.

Using this invariant, we obtain the reduced system

(14)q̈ − b

2(k + 1)

q̇2

q
− Iq2k+1 = 0.

For arbitraryI , the reduced system admits the symm
try generatorU1 only for k = 0 (implyinga + b + 1 =
0). In a similar way,U2 is admitted only ifk = −1/3
(implying a + 3b/2+ 1/3 = 0). Both symmetries ar
admitted only fora = −4/3, b = 1/3. Therefore, the
reduced system has symmetry properties bearing
resemblance with the symmetry properties of the o
inal, non-reduced system. The same argument
apply to Ermakov systems implying that reduced
makov systems require their own symmetry analys

The organization of the Letter is as follows. In Se
tion 2, the general symmetry conditions to be sa
fied by reduced Ermakov systems and their symm
generators are determined. In Section3, we solve the
symmetry conditions in the case of transformatio
of the time not involving the dynamical coordinate
This yields three classes of reduced systems ad
ting Lie point symmetries. In Section4, we show that,
for frequency functions depending on time only, t
reduced Ermakov systems always admitSL(2,R) as
a symmetry group. This shows that, more prope
SL(2,R) is the natural group of symmetries forre-
duced Ermakov systems, the reduction being poss
as a consequence of a dynamical Noether symmet
the case of Lagrangian Ermakov systems. In Sectio5,
we start from the equations for an ion under a gene
ized Paul trap and find the circumstances under wh
these equations, viewed as a reduced Ermakov sys
do possess Lie point symmetries. Section6 is devoted
to the conclusions.

2. Lie symmetries

Consider infinitesimal point transformations of t
form

r̄ = r + εR(r,ϕ, t),
,

ϕ̄ = ϕ + εS(r,ϕ, t),

(15)t̄ = t + εT (r,ϕ, t),

for functionsR, S andT to be determined and infin
tesimal parameterε. The procedure for computing Li
symmetries is well known[16] and we limit ourselves
to sketch the critical steps in our case. The above infin
itesimal transformation will be a Lie point symmet
of the reduced Ermakov system if and only if(7)–(8)
remains formally invariant under(15) up to first or-
der in ε, in the solution set of the reduced Ermak
system. This symmetry condition will imply the va
ishing of two separate polynomials iṅr, one associ-
ated with the radial equation(7), the other associate
with the angular equation(8). Imposing the vanishing
of the coefficient of all different powers oḟr we get
the following set of linear, coupled partial differenti
equations,

(16)
∂2T

∂r2 = 0,

(17)
∂2R

∂r2 − 2

r2

∂2T

∂r∂ϕ
− 2

∂2T

∂r∂t
+ 2

r3

∂T

∂ϕ
= 0,

2

r2

∂2R

∂r∂ϕ
+ 2

∂2R

∂r∂t
− 2

r3

∂R

∂ϕ
− 3A

∂T

∂r

(18)− 1

r4

∂2T

∂ϕ2 − 2

r2

∂2T

∂ϕ∂t
− ∂2T

∂t2 = 0,

(19)r2∂S

∂r
− ∂T

∂r
= 0,

(20)
∂S

∂ϕ
+ r2∂S

∂t
− 1

r2

∂T

∂ϕ
− ∂T

∂t
+ 2R

r
= 0,

(21)

UA =
(

∂R

∂r
− 2

r2

∂T

∂ϕ
− 2

∂T

∂t

)
A

+ 1

r4

∂2R

∂ϕ2
+ 2

r2

∂2R

∂ϕ∂t
+ ∂2R

∂t2
.

In Eq.(21), U is the generator of symmetries,

(22)U = R
∂

∂r
+ S

∂

∂ϕ
+ T

∂

∂t
.

The solutions of Eqs.(16)–(21) determine the Lie
point symmetries of the reduced Ermakov system
gether with the classes of admissible functionsA. In
the following section we show three categories of
lutions for the determining equations.
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3. Exact solutions

A closer examination of(18) shows that the func
tion A which specifies the dynamics of the radial va
able in the reduced Ermakov system, will soon
come, to some extent, determined if∂T /∂r �= 0. In-
deed,(16)and(17)immediately give ther dependence
of R andT , which, in turn, will determine ther depen-
dence ofA through(18). Furthermore, using(19)–(20)
shows that, for∂T /∂r �= 0,A contains only two terms
one proportional tor, the other tor−3. To avoid this
excessively constrained situation we choose

(23)
∂T

∂r
= 0,

a condition that will be assumed throughout this Le
ter.

Assuming this constraint onT , the solution for
(16)–(20)is

R =
(

ρ(t)ρ̇(t) − S′(ϕ)

2

)
r,

(24)S = S(ϕ), T = ρ2(t),

whereρ is an arbitrary function of time andS is an
arbitrary function ofϕ. In (24) and in the sequel,
prime denotes derivation with respect toϕ.

Until now, no constraint was imposed on the fun
tion A of the reduced Ermakov system, but there s
remains the symmetry condition(21). Inserting(24)
into (21), we get the following determining equation

(25)UA = −
(

3ρρ̇ + S′

2

)
A + (ρ

...
ρ + 3ρ̇ρ̈)r − S′′′

2r3
,

whereU is the generator of Lie point symmetries f
reduced Ermakov systems,

(26)U =
(

ρρ̇ − S′

2

)
r

∂

∂r
+ S

∂

∂ϕ
+ ρ2 ∂

∂t
.

The vector fieldU contains two arbitrary functions
ρ(t) andS(ϕ).

The sl(2,R) algebra is obtained from(26) in the
particular case

(27)ρ2 = c0 + c1t + c2t
2, S = 0,

wherec0, c1 andc2 are arbitrary numerical constant
The three generators of thesl(2,R) algebra are ob
tained by taking separately each of these const
non-zero. In comparison with the generator of po
symmetries of the non-reduced Ermakov system[17–
21], the new ingredient ofU is S(ϕ). Also, ρ2(t) is
not necessarily a second-degree polynomial int . In
Section4, we present a more detailed account of
relation between the point symmetries of reduced
makov systems and thesl(2,R) algebra.

Eq. (25) can be viewed either as an equation forA

or for S. We feel more productive to consider it as t
determining equation forA, sinceS participates in the
generator through the definition(26). Following this
choice, we find three classes of solutions forA, listed
below. All these solutions are build using the differe
tial invariants of the operatorU , that is, the indepen
dent functionsI1 andI2 for whichUI1 = UI2 = 0.

3.1. The ρ �= 0, S �= 0 case

In this situation, the method of characterist
yields the following differential invariants for the ge
eratorU ,

(28)I1 =
ϕ∫

dφ

S(φ)
−

t∫
dτ

ρ2(τ )
,

(29)I2 = r

ρ
exp

(
1

2

t∫
dτ

ρ2(τ )
S′(ϕ(τ ; I1)

))
.

In (29), ϕ = ϕ(t; I1) is a function oft as given lo-
cally by the implicit function theorem through(28).
The differential invariants can be used to construct
solution for(25). The result is

A = ρ̈

ρ
r − 1

2r3
exp

(
−2

t∫
S′(τ )

ρ2(τ )
dτ

)

×
t∫

dµ

ρ2(µ)
S′′′(µ)exp

(
2

µ∫
S′(ν)

ρ2(ν)
dν

)

(30)+ 1

ρ3
exp

(
−1

2

t∫
S′(τ )

ρ2(τ )
dτ

)
Ã(I1, I2),

whereϕ, in the integrals, is taken as a function ot
through(28) and the implicit function theorem.̃A is
an arbitrary function of the differential invariantsI1
andI2.

To summarize, the reduced Ermakov system(7)–(8)
has a Lie point symmetry with generator(26)for ρ �= 0
andS �= 0, providedA can be cast in the form(30), in-
cluding the arbitrary functionsρ andS. Notice that the
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Ermakov invariant enters as a parameter in the sym
try generator as well as in the functionA. This is no
surprise since the Ermakov invariant was used to e
inateϕ̇ from the equations of motion.

The global transformations can be found from
infinitesimal transformations following the tradition
procedure[16]. The result is

r̄ = ρ(t̄)

ρ(t)
exp

(
−1

2

t̄∫
t

S′(τ )

ρ2(τ )
dτ

)
r,

(31)

ϕ̄∫
ϕ

dφ

S(φ)
= ε,

t̄∫
t

dτ

ρ2(τ )
= ε,

where nowε is a finite parameter.

3.2. The ρ �= 0, S = 0 case

This case corresponds to the usual quasi-invaria
transformations[17]. Now the differential invariants
for U are

(32)I1 = r

ρ
, I2 = ϕ,

and the corresponding solution for(25) is

(33)A = ρ̈

ρ
r + 1

r3 Ã

(
r

ρ
,ϕ

)
,

whereÃ is an arbitrary function of the indicated a
guments. This class of solutions contains the arbitr
functionsρ andÃ, subject toρ �= 0. The global trans
formation is given by

(34)r̄ = ρ(t̄)

ρ(t)
r, ϕ̄ = ϕ,

t̄∫
t

dτ

ρ2(τ )
= ε,

whereε is the finite parameter of the transformation

3.3. The ρ = 0, S �= 0 case

The differential invariants are

(35)I1 = Sr2, I2 = t,

while

(36)A = − 1

2r3

(
S′′

S
− S′2

2S2

)
+ rÃ(I1, I2),
for Ã an arbitrary function depending on the differe
tial invariants of the symmetry generators. Now th
are the free functionsS andÃ. The global transforma
tion is determined by

(37)r̄ =
(

S(ϕ)

S(ϕ̄)

)1/2

r,

ϕ̄∫
ϕ

dφ

S(φ)
= ε, t̄ = t,

whereε is the finite parameter of the transformation

4. Connection with the SL(2,R) group

SL(2,R) is the Lie point symmetry group for non
reduced Ermakov systems with frequency functio
depending on time only and also for some clas
of more general frequency functions[17–21]. For the
sake of comparison, we have to investigate the rol
this transformations group for the reduced Erma
systems. For simplicity, in this section we consider
makov systems containing frequencies depending
time only. In this case (see Eq.(9)) A is given by

(38)A(r,ϕ, t) = −Ω2(t)r + 1

r3
Γ (ϕ),

for a time-dependent frequencyΩ(t) and whereΓ is
defined by

(39)Γ (ϕ) = F(θ) + H 2(θ).

InsertingA in the symmetry condition(25), we get(
ρ

...
ρ + 3ρ̇ρ̈ + 4Ω2ρρ̇ + 2ΩΩ̇ρ2)r

(40)− 1

2
(S′′′ + 4Γ S′ + 2Γ ′S)r−3 = 0.

This equation has to be satisfied for arbitraryr and
therefore

(41)ρ
...
ρ + 3ρ̇ρ̈ + 4Ω2ρρ̇ + 2ΩΩ̇ρ2 = 0,

(42)S′′′ + 4Γ S′ + 2Γ ′S = 0.

The last equation together with(41) can be used
to search for symmetries of specific reduced Erma
systems with the traditional functional dependen
(ω = Ω(t) only). However, forarbitrary reduced Er-
makov systems, that is, for completely arbitrary fun
tionsΓ , the only possibility is

(43)S = 0.
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This will be the choice if we are interested in sym
metries valid forall non-reduced Ermakov system
with time-dependent frequencies, regardless its s
cific form. In this context, only quasi-invariance tran
formations are allowed.

The remaining condition(41), which can be inte-
grated once yielding Pinney’s[26] equation, is

(44)ρ̈ + Ω2ρ = c

ρ3
,

wherec is a constant. However, this is a non-line
equation, and a more fruitful approach for the study
symmetries is the linearizing transformation

(45)a = ρ2,

giving

(46)
...
a + 4Ω2ȧ + 4ΩΩ̇a = 0.

According to(26), the solution for this equation dete
mines the symmetry generator

(47)U = a
∂

∂t
+ ȧr

2

∂

∂r
.

Now, with the rescaling

(48)α = a/ψ2, τ =
t∫
dµ/ψ2(µ),

where ψ is any particular solution for the time
dependent harmonic oscillator equation

(49)ψ̈ + Ω2ψ = 0,

we transform(46) into

(50)
d3α

dτ3 = 0.

The general solution is (compare with(27))

(51)α = c0 + c1τ + c2τ
2,

for constantsc0, c1 and c2. Taking separately eac
of these constants non-zero, we obtain three sym
try generators for arbitrary reduced Ermakov syste
with frequency functions depending on time only.
the original, non-rescaled variables and using(47), the
corresponding symmetry generators are

(52)U0 = ψ2 ∂

∂t
+ ψψ̇r

∂

∂r
,

(53)

U1 = ψ2

t∫
dµ

ψ2(µ)

∂

∂t

+
(

1

2
+ ψψ̇

t∫
dµ

ψ2(µ)

)
r

∂

∂r
,

(54)

U2 = ψ2
( t∫

dµ

ψ2(µ)

)2
∂

∂t

+
(

1+ ψψ̇

t∫
dµ

ψ2(µ)

) t∫
dν

ψ2(ν)
r

∂

∂r
.

Calculating the Lie brackets, the result is

[U0,U1] = U0, [U0,U2] = 2U1,

(55)[U1,U2] = U2,

which is thesl(2,R) algebra. This shows that, for fre
quencies depending on time only, the symmetry gr
for arbitrary reduced Ermakov systems isSL(2,R), the
same as for arbitrary non-reduced Ermakov syst
[17–21]. It is interesting to note that the algebra of t
vector fieldsU0, U1 andU2 is sl(2,R) regardless the
form of ψ (it does not need to be a solution of a tim
dependent harmonic oscillator). In addition, we not
thatU0, U1 andU2 do not depend on the Ermakov i
variant, being generators ofpoint transformations also
in the non-reduced space.

Following the same approach of Ref.[17], we can
easily find more general classes of reduced Erma
systems (with frequency functions not necessarily
pending on time only) also admitting theSL(2,R)

group.

5. Application to a generalized Paul trap

Let us search for Lie point symmetries for the fo
lowing class of Ermakov systems, written initially
Cartesian coordinates,

(56)ẍ +
(

ω2
0 − ϑ(xẏ − yẋ, y/x)

(x2 + y2)3/2

)
x = L2

x3
,

(57)ÿ +
(

ω2
0 − ϑ(xẏ − yẋ, y/x)

(x2 + y2)3/2

)
y = 0,

whereω0 and L are constants andϑ is an initially
arbitrary function of the indicated arguments. For c
stantϑ , these are the equations for the secular m
tion for ions in the presence of a Paul trap[27]
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with equal secular frequencies. In this context,
call (56)–(57) the equations of motion for a genera
ized Paul trap. Paul traps are standard configurat
used in ion trapping experiments[28]. They are given
in terms of time-dependent external fields charac
ized by a fast and a slow time scales. After aver
ing over the fast time scale, we obtain autonom
equations describing the ion secular motion, as
(56)–(57). In this context, for constantϑ , (56)–(57)
describe the relative secular motion of two ions sub
to their own electrostatic repulsion and to the trapp
field. Also notice that, forω0 = 0 andϑ depending
only on y/x, Eqs.(56)–(57) are a particular case o
the Kepler–Ermakov systems, which are lineariza
through point transformations[14]. Here we ask for
the classes of functionsϑ for which the correspond
ing reduced Ermakov systems admit Lie point sy
metries.

In polar coordinates, the generalized Paul trap
be cast in the Ermakov form(1)–(2) with

F(θ) = L2

cos2 θ
, G(θ) = −L2 sinθ

cos3 θ
,

(58)ω2 = ω2
0 − ϑ(r2θ̇ , tanθ)

r3
.

Notice the generalized character ofω.
The associated Ermakov invariant is

(59)I = 1

2

(
r2θ̇

)2 + L2

2 cos2 θ
,

while the functionH in (5) and the new angleϕ in (6)
are

(60)H(θ) =
√

2I

cosθ

(
1− L2

2I
− sin2 θ

)1/2

,

(61)ϕ = 1√
2I

arcsin

(
sinθ√

1− L2/2I

)
.

Using the invariant,H andϕ, we construct the re
duced Ermakov system(7)–(8) with the function

(62)A(r,ϕ, t) = −ω2
0r + σ(ϕ)

r2 + 2I

r3 ,

where we have defined

(63)σ(ϕ) = ϑ
(
H(θ), tanθ

)
.

Let us search for symmetries of the type shown
Section3. In practice, instead of looking for function
σ so thatA in (62) is included in some of the sub
classes 3.1, 3.2 or 3.3, a more convenient approa
to substituteA in the symmetry condition(25). This
symmetry condition then gives

(
ρ

...
ρ + 3ρ̇ρ̈ + 4ω2

0ρρ̇
)
r −

(
Sσ ′ + 3

2
S′σ + ρρ̇σ

)
r−2

(64)− 1

2
(S′′′ + 8IS′)r−3 = 0.

We split the symmetry condition(64) into three
equations, corresponding to different powers ofr,

(65)ρ
...
ρ + 3ρ̇ρ̈ + 4ω2

0ρρ̇ = 0,

(66)Sσ ′ + 3

2
S′σ + ρρ̇σ = 0,

(67)S′′′ + 8IS′ = 0.

For consistency, in Eq.(66)we must have

(68)ρρ̇ = k,

for some constantk. Substituting this into(65), we get
k = 0, so that

(69)ρ = ρ0,

for ρ0 a constant.
Eq.(67)has the solution

(70)S = S0 + S1 cos(2
√

2Iϕ) + S2 sin(2
√

2Iϕ),

whereS0, S1 andS2 are constants, while Eq.(66) ad-
mits two classes of solution. ForS = 0, σ is left arbi-
trary, reflecting the fact that the system is autonom
and hence invariant under time translations. ForS �= 0,
(66)has the solution

(71)σ = σ0

S3/2 ,

for some constantσ0. In all cases, the symmetry ge
erator is

U = √
2I

(
S1 sin(2

√
2Iϕ)

− S2 cos(2
√

2Iϕ)
)
r

∂

∂r

+ (
S0 + S1 cos(2

√
2Iϕ) + S2 sin(2

√
2Iϕ)

) ∂

∂ϕ

(72)+ ρ2
0

∂

∂t
.

Let us observe that we cannot take separatelyS0, S1 or
S2 non-zero, because these numerical constants pa
ipate into the equations of motion through the funct
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σ . In addition, according to the values ofρ0, S0, S1
andS2, the generatorU falls into the classes 3.1, 3.
or 3.3.

In theS2
1 + S2

2 �= 0 case, the solution forS contains
the Ermakov invariant, which is dependent onr2θ̇ . Ex-
cluding time translations, this impliesσ and thenϑ

depending onr2θ̇ . Hence, at least in the generaliz
Paul trap case, excluding mere time translations
have not found solutions for whichσ is a function ofθ
only, a necessary condition to yield a Kepler–Ermak
system.

We can use the symmetry to further reduce the
der of the system. In order to appreciate this in
case of the generalized Paul trap, we consider the
whereρ0 = 0, leaving us with a generator of symm
tries of the type shown in Section3.3. This is certainly
the less traditional situation, since forρ0 = 0 the sym-
metry transformation is definitely not a rescaling.
order to reduce the order of the dynamical system,
can introduce the differential invariants ofU [1], the
generator of the first extended group of symmetr
ObtainingU [1] and its differential invariants is routin
calculation[16] and we omit the details. The result
thatI1 = Sr2 andI2 = t as in Eq.(35) together with

(73)I3 = 2S2rṙ

ϕ̇
+ SS′r2, I4 = S

ϕ̇

are the differential invariants ofU [1], for S given in
Eq. (70). Notice that, along trajectories,I4 = I1, re-
flecting the fact that the reduced Ermakov system
of third order. Hence, onlyI1, I2 andI3 are sufficient.
Using Eqs.(35), (62), (70) and (71), we find that, on
the solutions manifold,

(74)İ1 = I3/I1,

(75)İ2 = 1,

(76)

İ3 = −2ω2
0I

2
1 + 2σ0

√
I1

+ 4I
(
S2

0 − S2
1 − S2

2

) + 3

2
I2
3/I2

1 .

Eq. (75) is just a triviality but(74) and(76) compose
a second-order system, obtained via symmetry red
tion. To solve this system, let us introduce the n
variable

(77)r̃ = √
I1.
Using(74)and(76)we get

(78)¨̃r = −dV

dr̃
= −ω2

0r̃ + σ0

r̃2 + 2I (S2
0 − S2

1 − S2
2)

r̃3 ,

for

(79)V = V (r̃) = ω0r̃
2

2
+ σ0

r̃
+ I (S2

0 − S2
1 − S2

2)

r̃2 .

Thanks to the symmetry, we have obtained a o
dimensional autonomous potential system, clearly
tegrable by quadrature because of the existence o
energy integral

(80)E =
˙̃r2

2
+ V (r̃).

The effective potentialV has one harmonic, on
Kepler-like and one Ermakov-like term. Ifσ0 = 0, a
possibility not considered here because of its trivial
the harmonic term could be eliminated by a resc
ing transformation[14,15]. In terms of the differentia
invariants, the energy integral is

(81)E = I2
3

8I1I
2
4

+ V (
√

I1 ),

showing explicitly that the constant of motion is i
variant under the symmetry group.

In general, a variety of behaviors can occur acco
ing to the signs ofσ0 andS2

0 − S2
1 − S2

2. For instance
collapse is prevented providedS2

0 −S2
1 −S2

2 > 0. Once
r̃(t) is obtained from the quadrature of the energy
tegral, the angleϕ as a function of time follows from

(82)

ϕ∫
ϕ0

dφ

S(φ)
=

t∫
t0

dτ

r̃2(τ )
,

whereϕ0 = ϕ(t0).
Some qualitative as well as quantitative inform

tion about the solutions can be found by consider
the fixed points̃r = r̃0 for which dV/dr̃ = 0 at (78).
These fixed points satisfy

(83)ω2
0r̃

4
0 − σ0r̃0 − 2I

(
S2

0 − S2
1 − S2

2

) = 0.

The only non-trivial situation for which this quart
equation has simple closed form solutions is the c
S2

0 −S2
1 −S2

2 = 0. In this situation, there is the statio
ary solution

(84)r̃0 =
(

σ0

ω2

)1/3

.

0
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If we take r̃ = r̃0 + r̃1 exp(λt) in the equation of mo
tion and linearize with respect tõr1, we find the imag-
inary characteristic valuesλ = ±i

√
3ω0, showing a

linearly stable stationary solution.
Coming back to the original polar coordinat

(r, θ), this shows that, forS2
0 − S2

1 − S2
2 = 0, there

are linearly stable orbits of the form

(85)r = r̃0√
S

,

for r̃0 = (σ0/ω
2
0)

1/3 and whereS, expressed as a fun
tion of θ through(61)and(70), is given by

S = S0 + S1

(
1− 2 sin2 θ

1− L2/2I

)

(86)+ 2S2 sinθ√
1− L2/2I

(
1− sin2 θ

1− L2/2I

)1/2

.

The trajectories in terms of the time parameter
sociated to these orbits can be found from(82). For
definiteness, let us consider the set of parametersS0 =
S1 > 0, S2 = 0, ϕ0 = 0, yielding

r = r̃0√
2S0

√
1+ t̃2,

(87)θ = arcsin

(√
1− L2/2I t̃√

1+ t̃2

)
,

where

(88)t̃ = 2S0
√

2I

(
ω2

0

σ0

)2/3

(t − t0).

This shows that, in the original, polar coordinates,
fixed point r̃ = r̃0 yields a trajectory asymptoticall
approaching a ballistic motion,r → r̃0t̃ /

√
2S0, θ →

arcsin(
√

1− L2/2I) ast̃ → ∞.

6. Conclusion

We presented a general treatment for Lie point sy
metries of reduced Ermakov systems. We found th
classes of reduced Ermakov systems possessing
point symmetries, all of them involving arbitrary fun
tions. We have applied the results to a generalized
trap. From the theoretical viewpoint, the most imp
tant result we have found is the fact that theSL(2,R)

group is more exactly a property of thereduced Er-
makov system with time-dependent frequencies, w
the reduction process not perturbing the symme
structure of the non-reduced system. Notice that
conclusion can be extended to a class of more gen
reduced Ermakov systems, with frequency functi
depending also on dynamical variables, if we imp
SL(2,R) as a group of symmetries, as in Ref.[17].
For Lagrangian Ermakov systems, the existence of
Ermakov invariant follows from a dynamical symm
try. Then, at least for reduced Lagrangian Erma
systems with traditional frequency functions, the sy
metry structure can be split in two distinct parts
dynamical symmetry leading to the Ermakov inva
ant, and theSL(2,R) group for the reduced Ermako
system, the reduction being a consequence of the
symmetry. However, in the particular cases shown
Section 3, the reduced Ermakov systems can h
symmetry generators containing a term certainly
associated toSL(2,R), namely theS(ϕ) term. This ex-
tra possibility is present in the generalized Paul trap
Section5 and is used to integrate the equations of m
tion in a specific case.
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