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Abstract

The condition for Lie point symmetries for reduced Ermakov systems is solved yielding three families of sEt&NR)
is always a group of symmetries when frequencies depends on time only. However, the generator of symmetries in more general
cases have a contribution not associated witf&h@, R) group.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction oretical viewpoint, Ermakov systems always admit a
constant of motion, the Ermakov invariant, and are
Ermakov system§l—3] play an important role in ~ amenable to a nonlinear superposition [48]. In ad-
a variety of physical and mathematical situations. dition, Ermakov systems are linearizable under broad
The most recent analysis involving Ermakov sys- circumstancefl4,15]
tems deals with Bose—Einstein condensates and cos- As is well known, the group theoretic approach
mological models[4—6], nonlinear supersymmetric to a dynamical system is a subject of relevafib@]
Darboux transformationfZ], the free fall of a quan-  not only for the reduction of order and the search for
tum bouncing bal[8], conformal quantum mechanics invariants for the system, but also for a better under-
[9], general covariance and time-dependent metrics in standing of its structural properties. The point symme-
quantum mechanicd 0], geometric phased 1] and try group of Ermakov systems has been identified as
generalized Hamiltonian structurd®]. From the the- the SL(2, R) group in the case of frequency functions
depending on time only and also for a large class of
* Corresponding author. more gen_eral frequency functloms7—121} More re-
E-mail addresses: ferhaas@exatas. unisinos (Bt Haas), cently, using the converse to Noether’s theorem, it has
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ciated to a dynamical symmetry, in the cases where so that the fourth-order non-reduced Ermakov system
the system admits a variational formulatif2?]. In (1)«2) can always be cast in the reduced form
addition,S.(2, R) has also been foun@3,24]as the

symmetry group of Kepler—Ermakov systems, which = A(r, ¢, 1), (7)
can be viewed either as perturbations of the planar Ke- ;2 — 1, (8)
pler problem or of the classical Ermakov system. The

purpose of this Letter is to follow this trend from a dif- Where the functiom is defined by

ferent perspective and study the Lie point symmetries 1

of Ermakov systems restricted to manifolds where the A(r, ¢, 1) = —w®r + (F + H ) 9)

Ermakov invariant has a fixed constant value. The im- .
portance of this study may not be underestimated since!n (9), F and H are functlons ofy through(6) and

the existence of the Ermakov invariant is automatic.

This point will be illustrated with an interesting exam-
ple at the end of this section.
In polar coordinates, the Ermakov system reads

> F@®

r—rt9'2—|—a)r=—3 , (D)
r
. . GO
i+ 216 = 29 @)
r

where F and G are arbitrary functions of the angle
6 and w, in principle, can depend arbitrarily on the
dynamical variables. More oftem is a function of

time only, in which case it has the interpretation of

the implicit function theorem. The fact théw /97 = 0
ensures the indicated functional dependenceAof
Notice, however, thatv can freely depend, for in-
stance, o, since this dependence can be eliminated
through(8). The choicedw /a7 = 0 has a decisive in-
fluence on the simplification of the symmetry analysis
but imposes some limitations on the generality of our
results. In addition, since the symmetry analysis is in-
sensitive to coordinate transformations, working with
¢ and not withd does not affect the final result.

Egs. (7)~(8) are a third-order dynamical system,
which we shall call theeduced Ermakov system. Even
if not explicitly shown, the reduced equations depend

a time-dependent frequency. Here, however, we do parametrically orf. Also, the functionH is notidenti-
not impose this constraint and allow for more general cally zero except for the trivial cage= G = 0, which
functional dependences. Also, for simplicity we con- we do not consider here.

sider the caséw/dr = 0. Independently of the special The purpose of this work is to perform the Lie
form of w, the Ermakov systems always possess the point symmetry analysis of reduced Ermakov systems.

constant of motion
0

1, ..
I= E(rze)z—fc(qs)dqs,

the so-called Ermakov invariafit—3].

3

Since for Lagrangian Ermakov systems the Ermakov
invariant is directly related to a dynamical Noether
symmetry[22], it is to be expected that the algebra
d(2, R) will play a fundamental role on the reduced
Ermakov system. Let us stress, however, that the re-

The existence of a constant of motion reduces the duction process may change significantly the symme-

order of the system. More exactly, H&) can be inte-
grated once to give

%0 = H(®), (4)
where

0 12
H(®) = ﬁ([ +fG(¢)d¢> . (5)

The structure of Eq(4) suggests the introduction of
the new variable

0
d¢

H(¢)’ ©

try analysis.

In order to illustrate the differences between the
symmetry analysis of non-reduced and reduced sys-
tems, consider the third-order ordinary differential
equation introduced if25],

(10)

wherea andb are arbitrary constants. E(L.O) admits
the symmetry generators

d
Ur=q— (11)

) )
. Us=1— +3g—.
9q 2=ty +3ag,
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Moreover, Eq(10) admits the invariant o=¢+eSr p,t),
t

I = q _ b 42 =t+eT(, ¢,1), (15)
- q2k+l 2k +1) q2k+2’

wherek is any root for

(12)
for functionsr, S andT to be determined and infini-
tesimal parameter. The procedure for computing Lie

2%°+(@+3k+a+b+1=0. (13) symmetries is well knowfiL6] and we limit ourselves

to sketch the critical stepa bur case. The above infin-

Using this invariant, we obtain the reduced system o ; . . .
9 y itesimal transformation will be a Lie point symmetry

. g2 2%+1 of the reduced Ermakov system if and only)—(8)
G- 4 _ g%+ (14) _ mako :

2(k+1) g remains formally invariant unde@l5) up to first or-
For arbitrary/, the reduced system admits the symme- der ine, in the solution set of the reduced Ermakov
try generatoi/; only for k = 0 (implyinga +b+ 1= system. This symmetry condition will imply the van-
0). In a similar wayUs is admitted only ifk = —1/3 ishing of two separate polynomials i one associ-

(implying a + 3b/2+ 1/3=0). Both symmetries are  ated with the radial equatiofT), the other associated
admitted only fora = —4/3, b = 1/3. Therefore, the ~ With the angular equatiof8). Imposing the vanishing
reduced system has symmetry properties bearing no©f the coefficient of all different powers of we get
resemblance with the symmetry properties of the orig- the fo!lowing set of linear, coupled partial differential
inal, non-reduced system. The same argument may€duations,

apply to Ermakov systems implying that reduced Er-

makov systems r_equire their own symmetry analysis. 3_€ -0, (16)
The organization of the Letter is as follows. In Sec- 9r
tion 2, the general symmetry conditions to be satis- §2R 2 92T 92T 29T

fied by reduced Ermakov systems and their symmetry 5,2 = ;2 ardg 9rot + 73% -
generators are determined. In Sect®mwe solve the 2 2
symmetry conditions in the case of transformations 2 7R O°R 23R 3A8T

0, (17)

of the time not involving the dynamical coordinates. 723rde — drdr 13 dgp or
This yields three classes of reduced systems admit- 1 92T 2 92T 92T
ting Lie point symmetries. In Sectioh we show that, T 902 r2oger o2 O (18)

for frequency functions depending on time only, the

reduced Ermakov systems always ad®i(2, R) as r2§ _aT =0, (19)
a symmetry group. This shows that, more properly, arar

S.(2, R) is the natural group of symmetries foe- 95 208 19T 9T 2R _ (20)
duced Ermakov systems, the reduction being possible d¢ at  r2dep ot r '

as a consequence of a dynamical Noether symmetry in R 29T T

the case of Lagrangian Ermakov systems. In Seéjon = (g 2 % - ZE)A

we start from the equations for an ion under a general- 2 2 2
190°R 2 9°R  09°R

ized Paul trap and find the circumstances under which -4 Z ) (21)
these equations, viewed as a reduced Ermakov system, ré 99?2 r2d¢dt 912
do possess Lie point symmetries. Sectids devoted In Eq.(21), U is the generator of symmetries,
to the conclusions.
0 0 a
U=R—+S—+T_—. (22)

_ ) ar g at
2. Liesymmetries _ ) _
The solutions of Eqs(16)—(21) determine the Lie

Consider infinitesimal point transformations of the Point symmetries of the reduced Ermakov system to-
form gether with the classes of admissible functionsin
B the following section we show three categories of so-
r=r+eR 1), lutions for the determining equations.
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3. Exact solutions

A closer examination of18) shows that the func-
tion A which specifies the dynamics of the radial vari-
able in the reduced Ermakov system, will soon be-
come, to some extent, determinedif’/or # 0. In-
deed(16)and(17)immediately give the dependence
of R andT', which, in turn, will determine the depen-
dence ofA through(18). Furthermore, usin@l9)-(20)
shows that, fob T /dr # 0, A contains only two terms,
one proportional to, the other to-—3. To avoid this
excessively constrained situation we choose

aT
ar
a condition that will be ssumed throughout this Let-
ter.

Assuming this constraint off’, the solution for

(16)—(20)is
((omn—/wﬁ,

S=S@), T=p0, (24)

wherep is an arbitrary function of time and is an
arbitrary function ofep. In (24) and in the sequel, a
prime denotes derivation with respecigo

Until now, no constraint was imposed on the func-
tion A of the reduced Ermakov system, but there still
remains the symmetry conditigf21). Inserting(24)
into (21), we get the following determining equation,

-0, (23)

i
2r3’

whereU is the generator of Lie point symmetries for
reduced Ermakov systems,

U S P L

= - = |Jr— — —.
PP ) or T80 TP o

The vector fieldU contains two arbitrary functions,

p(t) andS(g).
The d(2, R) algebra is obtained fror(26) in the
particular case

s’
UA:—(S,O,()+E>A+(,0,0 +3p5)r — (25)

(26)

S =0, (27)

wherecg, c1 andc; are arbitrary numerical constants.
The three generators of the)2, R) algebra are ob-

,02 = co+ c1t +cat?,
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symmetries of the non-reduced Ermakov sysféif+
21], the new ingredient ot/ is S(¢). Also, p?(1) is

not necessarily a second-degree polynomiad.itn
Section4, we present a more detailed account of the
relation between the point symmetries of reduced Er-
makov systems and thsx2, R) algebra.

Eq. (25) can be viewed either as an equation for
or for S. We feel more productive to consider it as the
determining equation foA, sincesS participates in the
generator through the definitiof26). Following this
choice, we find three classes of solutions fgrlisted
below. All these solutions are build using the differen-
tial invariants of the operatdy, that is, the indepen-
dent functiond1 and/, for whichUI; = U1, =0.

3.1. Thep #0, S#0case
In this situation, the method of characteristics

yields the following differential invariants for the gen-
eratorU,

1) t
do / drt
I = , 28
! /sw> p%(0) (28)
1t
r 1 dt
I = ; exp( / 2r )S ((p(‘[ Il))) (29)

In (29), ¢ = ¢(¢; 1) is a function oft as given lo-
cally by the implicit function theorem throug(28).
The differential invariants can be used to construct the
solution for(25). The result is

S’(T)
1= 2 S50
1 /(V)
S
/2() (e p(fz(V) )
1 S'(7) x
A(l, I 30
pep( /2()r>(1,z), (30)

whereg, in the integrals, is taken as a function rof
through(28) and the implicit function theoremi is
an arbitrary function of the differential invarianfs
and/lo.

To summarize, the reduced Ermakov sys{&jr{(8)
has a Lie point symmetry with generaf@6)for p # 0

tained by taking separately each of these constantsandsS # 0, providedA can be cast in the fori80), in-

non-zero. In comparison with the generator of point

cluding the arbitrary functions andsS. Notice that the
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Ermakov invariant enters as a parameter in the symme-
try generator as well as in the function This is no
surprise since the Ermakov invariant was used to elim-
inateg from the equations of motion.

The global transformations can be found from the
infinitesimal transformations following the traditional
procedurd16]. The result is

r

o 1[5®
"0 Xp( 2/ p2<r)‘”>r’
s i L
T
—e. 4, 31
! S@) ¢ / p2r) ¢ (31)

where novk is a finite parameter.
3.2. Thep #0, S=0case
This case corresponds to the usual quasi-invariance

transformationg17]. Now the differential invariants
for U are

,

Ilz -, 12:('0, (32)
o)

and the corresponding solution f#5) is
.. 1.

A=3r+—3A(5,¢), (33)
pr p

where A is an arbitrary function of the indicated ar-
guments. This class of solutions contains the arbitrary
functionsp andA, subject top # 0. The global trans-
formation is given by

/

wheree is the finite parameter of the transformation.

dt .
p2(t)

p(1)
LA
p (1)

F= €, (34)

3.3. Thep=0, S#0case

The differential invariants are

h=Sr? L=t (35)
while
1/8 §°2 -

29

for A an arbitrary function depending on the differen-
tial invariants of the symmetry generators. Now there
are the free functions andA. The global transforma-
tion is determined by

¢

1/2
(&) -
@

wheree is the finite parameter of the transformation.

S)
S(p)

e _
S(¢)

E’

4. Connection with the SL(2, R) group

S.(2, R) is the Lie point symmetry group for non-
reduced Ermakov systems with frequency functions
depending on time only and also for some classes
of more general frequency functiofts/—21] For the
sake of comparison, we have to investigate the role of
this transformations group for the reduced Ermakov
systems. For simplicity, in this section we consider Er-
makov systems containing frequencies depending on
time only. In this case (see E(®)) A is given by

1
A(r, 0, 1) = —Q2%(t)r + r—3F((p), (38)

for a time-dependent frequeney(r) and wherel” is
defined by
I(p)=F () + H?@). (39)
InsertingA in the symmetry conditio25), we get
(PP + 305 + 42%pp + 2282 p?)r
— %(S”’ +4r S 4+ 2r'S)r—=2=0. (40)

This equation has to be satisfied for arbitrarnand
therefore

PP +3pp+42%pp +2282p =0,
S +4rs’ +2r's =0.

(41)
(42)

The last equation together wiil#1) can be used
to search for symmetries of specific reduced Ermakov
systems with the traditional functional dependences
(w = £2(¢) only). However, forarbitrary reduced Er-
makov systems, that is, for completely arbitrary func-
tions I", the only possibility is

$=0. (43)
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This will be the choice if we are interested in sym- 5 p dpu 9

metries valid forall non-reduced Ermakov systems U1i= v 2,y ar
G - . Ye(u) ot
with time-dependent frequencies, regardless its spe- .
cific form. In this context, only quasi-invariance trans- 1 . du d
formations are allowed. tz vy NETRY M (53)
The remaining conditiorf41), which can be inte-

1
grated once yielding Pinney{&6] equation, is 2 dp \°d
Up=1 5 —
. 2 c W (M) ot
2=, (44) - )
. " v 0
wherec is a constant. However, this is a non-linear + (1+ ‘/”/’/ 1/fz(m) wz(v)rg' (54)

equation, and a more fruitful approach for the study of

T . .. . Calculating the Lie brackets, the result is
symmetries is the linearizing transformation

[Uo, U1] = Ub, [Uo, U] = 2U74,

2
a=p? (45)
- [U1, Uz2] = Uy, (55)
giving L .
which is thed (2, R) algebra. This shows that, for fre-
a4 42% +422a = 0. (46) guencies depending on time only, the symmetry group

for arbitrary reduced Ermakov system&ig2, R), the
same as for arbitrary non-reduced Ermakov systems
[17-21] It is interesting to note that the algebra of the
d ar 0 vector fieldsUp, U1 andUs is (2, R) regardless the

According to(26), the solution for this equation deter-
mines the symmetry generator

U= a5t T 2 ar (47) form of ¢ (it does not need to be a solution of a time-
Now, with the rescaling dependent harmonic oscillator). In addition, we no_tice
thatUp, U1 andU> do not depend on the Ermakov in-
! variant, being generators pbint transformations also
a=a/y? T= / du /v (), (48) in the non-reduced space.

Following the same approach of R§E7], we can
where ¢ is any particular solution for the time- easily find more general classes of reduced Ermakov
dependent harmonic oscillator equation systems (with frequency functions not necessarily de-
.. 5 pending on time only) also admitting th&.(2, R)
Y+ 29 =0, (49) group.
we transform(46)into
@ —0 (50) 5. Application to a generalized Paul trap
dr3
The general solutivis (compare witi{27)) Let us search for Lie point symmetries for the fol-

lowing class of Ermakov systems, written initially in
o =co+ 1T + cot?, (51) Cartesian coordinates,
for constantscg, ¢1 and cp. Taking separately each 5 V(xy—yx,y/x) L?
of these constants non-zero, we obtain three symme-* (wo T T (21,232 )x Rl (56)
try generators for arbitrary reduced Ermakov systems B (xy — yi
‘ : . . . 2 Yy —yx,y/x)
with frequency functions depending on time only. In ¥ + (wo - 2—23/2) =0, (57)
the original, non-rescaled variables and ugig), the x4 y9)
Corresponding symmetry generators are wherewg and L are constants and is an initially
arbitrary function of the indicated arguments. For con-
_ 20 0 tant?, these are the equations for the secular mo-
U=y E-Hﬂwa_r’ (52) S , q

tion for ions in the presence of a Paul tr§d7]
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with equal secular frequencies. In this context, we
call (56)+57) the equations of motion for a general-

31

o so thatA in (62) is included in some of the sub-
classes 3.1, 3.2 or 3.3, a more convenient approach is

ized Paul trap. Paul traps are standard configurationsto substituteA in the symmetry conditior§25). This

used in ion trapping experimer{8]. They are given
in terms of time-dependent external fields character-
ized by a fast and a slow time scales. After averag-
ing over the fast time scale, we obtain autonomous
equations describing the ion secular motion, as in
(56)-(57). In this context, for constant, (56)(57)
describe the relative secular motion of two ions subject
to their own electrostatic repulsion and to the trapping
field. Also notice that, forwg = 0 and ¥ depending
only ony/x, Eqs.(56)~(57) are a particular case of
the Kepler—-Ermakov systems, which are linearizable
through point transformationfd4]. Here we ask for
the classes of functiong for which the correspond-
ing reduced Ermakov systems admit Lie point sym-
metries.

In polar coordinates, the generalized Paul trap can
be cast in the Ermakov forifl)~(2) with

F@y= L? () = L?sing
~ co%6’ ~ cos$h’
9 (26, tand)
Notice the generalized characterwf
The associated Ermakov invariant is
1 212 L2
I ==(r<o , 59
2(r )+ 2co0%6 (59)
while the functionH in (5) and the new angle in (6)
are
N 12
HO)=—(1-= —sirfg) |, 60
©) cosy ( 21 ) (60)
1 . sing
Q= arcsw( ) (61)
V21 V1-12/21

Using the invariantd andg, we construct the re-
duced Ermakov systeii7)—«8) with the function

> o olp) 21
A(r, @, 1) = —wir + —2 T3 (62)
where we have defined
o(p) =9 (H(6), tang). (63)

Let us search for symmetries of the type shown in
Section3. In practice, instead of looking for functions

symmetry condition then gives
3

(PP +3pp + dwipp)r — (So’ + Es’a + ppo>r—2
1

— E(S/” +8I8) r2=0. (64)

We split the symmetry conditio64) into three
equations, corresponding to different powers of

PP +3pj +4wipp =0, (65)
So’ + :—235/0 + ppo =0, (66)
" +8I1S =0. (67)
For consistency, in Eq66) we must have

pp =k, (68)

for some constark. Substituting this int¢65), we get
k =0, so that

£ = pos (69)
for pp a constant.

Eq.(67)has the solution
S = So+ 5109221 ) + Sasin(2v/21¢), (70)

whereSp, S1 andS» are constants, while E¢66) ad-

mits two classes of solution. Fér= 0, o is left arbi-

trary, reflecting the fact that the system is autonomous

and hence invariant under time translations. §e£ 0,

(66) has the solution
00

o = m, (71)

for some constartp. In all cases, the symmetry gen-
erator is

U =2I(S1sin2v21p)
-5 cos(Z«/Z@)raa—r

. d
+ (So + S1c082v21 ) + S28iN(2V/219)) 7

50

Let us observe that we cannot take separaiglys; or
S2 non-zero, because these numerical constants partic-
ipate into the equations of motion through the function
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o. In addition, according to the values pf, So, S1
and S», the generatot/ falls into the classes 3.1, 3.2
or 3.3.

In the Sf + Sg # 0 case, the solution faf contains
the Ermakov invariant, which is dependentdA. Ex-
cluding time translations, this implies and then
depending on-26. Hence, at least in the generalized
Paul trap case, excluding mere time translations we
have not found solutions for whichis a function of
only, a necessary condition to yield a Kepler—Ermakov
system.

We can use the symmetry to further reduce the or-
der of the system. In order to appreciate this in the

case of the generalized Paul trap, we consider the case

wherepg = 0, leaving us with a generator of symme-
tries of the type shown in Sectidh3. This is certainly
the less traditional situation, since fog = 0 the sym-
metry transformation is definitely not a rescaling. In
order to reduce the order of the dynamical system, we
can introduce the differential invariants ofi!, the
generator of the first extended group of symmetries.
ObtainingUM and its differential invariants is routine
calculation[16] and we omit the details. The result is
thatI; = Sr2 andl, =t as in Eq(35)together with

28%ri
I3 =

S
In=—
%

+85'r2, (73)

are the differential invariants df’'!!, for § given in

Eqg. (70). Notice that, along trajectorie$y = I1, re-
flecting the fact that the reduced Ermakov system is
of third order. Hence, onlyz, I> and/3 are sufficient.
Using EQgs.(35), (62), (70) and (71)we find that, on
the solutions manifold,

h=13/h, 74
=1, (75)
I3 = —2w§[12 + 200\/71
3
+41(S5 — 57— S2) + 5132/112' (76)

Eq. (75) is just a triviality but(74) and(76) compose

a second-order system, obtained via symmetry reduc-
tion. To solve this system, let us introduce the new
variable

F=yh.

(77)
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Using(74)and(76)we get
. dv ,. oo 2I(S5—52—52)
r:_df:_w0r+f_2 = , (78)
for

72 1(S2— 52— 52
Vv =20 20 IO ) g

72
Thanks to the symmetry, we have obtained a one-
dimensional autonomous potential system, clearly in-
tegrable by quadrature because of the existence of the
energy integral

_r V(F

The effective potentialV has one harmonic, one
Kepler-like and one Ermakov-like term. #fy = 0, a
possibility not considered here because of its triviality,
the harmonic term could be eliminated by a rescal-
ing transformatiorfl4,15] In terms of the differential
invariants, the energy integral is

2

3

+VK/11),
T /)

showing explicitly that the constant of motion is in-
variant under the symmetry group.

In general, a variety of behaviors can occur accord-
ing to the signs obo andS3 — 52 — S2. For instance,
collapse is prevented providég — $2 — $2 > 0. Once
7(t) is obtained from the quadrature of the energy in-
tegral, the angle as a function of time follows from

@ t
5]
wheregpg = ¢(10).

Some qualitative as well as quantitative informa-
tion about the solutions can be found by considering
the fixed points® = 7o for which dV /di = 0 at(78).
These fixed points satisfy

2
)

(80)

E= (81)

dt

d¢ _ [ _dr_
(1)’

= 82
S(®) (82)

7g — oofo — 21 (S5 — S2 — $%) =0. (83)

The only non-trivial situation for which this quartic
equation has simple closed form solutions is the case
S2— S2 — 82 = 0. In this situation, there is the station-
ary solution

O

~ ( 0)1/3
Fo= .
0

w2

(84)
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If we taker = rg + 71 exp(rt) in the equation of mo-
tion and linearize with respect fg, we find the imag-
inary characteristic values = +i~/3wp, showing a
linearly stable stationary solution.

Coming back to the original polar coordinates
(r,6), this shows that, fos3 — 52 — 55 = 0, there
are linearly stable orbits of the form

VS
for 7o = (00/w3)Y/® and wheres, expressed as a func-
tion of 6 through(61)and(70), is given by

2sirf o
1-12/2]
2S5 sind (1 Sin6

1/2
* J1-12/2] 1—L2/21> '

The trajectories in terms of the time parameter as-
sociated to these orbits can be found fr¢d32). For
definiteness, let us consider the set of parameiess
S1>0,82=0, ¢o =0, yielding

\/1+12

(85)

S=So+51(l—

(86)

72577
—arcsw( ! L/2“>, (87)
Vi+i2
where
2/3
=ZSo\/_< ) (t — 19). (88)

This shows that, in the original, polar coordinates, the
fixed pointr = rp yields a trajectory asymptotically
approaching a ballistic motiom, — 7of//2S0, 6 —

arcsiny/1— L2/2]) asi — oo.

6. Conclusion

We presented a general treatment for Lie point sym-

metries of reduced Ermakov systems. We found three [10]

33

the reduction process not perturbing the symmetry
structure of the non-reduced system. Notice that this
conclusion can be extended to a class of more general
reduced Ermakov systems, with frequency functions
depending also on dynamical variables, if we impose
S.(2, R) as a group of symmetries, as in REE7].

For Lagrangian Ermakov systems, the existence of the
Ermakov invariant follows from a dynamical symme-
try. Then, at least for reduced Lagrangian Ermakov
systems with traditional frequency functions, the sym-
metry structure can be split in two distinct parts: a
dynamical symmetry leading to the Ermakov invari-
ant, and theSL(2, R) group for the reduced Ermakov
system, the reduction being a consequence of the first
symmetry. However, in the particular cases shown in
Section 3, the reduced Ermakov systems can have
symmetry generators containing a term certainly not
associated t&8L(2, R), namely theS(p) term. This ex-

tra possibility is present in the generalized Paul trap of
Section5 and is used to integrate the equations of mo-
tion in a specific case.
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