$1^{\underline{a}}$ Lista de Exercícios - IAD236 - setembro de 2007

1. Considere o seguinte conjunto: $C[a,b] = \{f : [a,b] \to \mathbf{R}; \text{ f uma função contínua}\}$, munido das operações de adição e multiplicação por escalar, dadas por: $\forall f,g \in C[a,b] \in \lambda \in \mathbf{R}$,

$$(f+g)(t) = f(t) + g(t), \forall t \in [a,b] \quad \mathrm{e} \quad (\lambda f)(t) = \lambda f(t), \forall t \in [a,b]$$

Demonstre que C[a, b] é um espaço vetorial.

- **2.** Considere o conjunto S definido por
- (a) $S = \{ v \in \mathbb{R}^2; v^{T} = \alpha(1, 2), \alpha \in \mathbf{R} \}.$
- (b) $S = \{v \in \mathbb{R}^2; v^T = \alpha(1, 2) + (3, 1), \alpha \in \mathbf{R}\}.$
- S é um espaco vetorial? Interprete geometricamente este conjunto.
- 3. Caracterize geometricamente os subconjuntos do R^3 que são subespaços vetoriais.
- **4.** O conjunto de todos os polinomios $p(x) = a_0 + a_1x + a_2x^2 + a_nx^n$, onde n é um número natural qualquer, é um espaço vetorial?
- $\mathbf{5}$. Idem, considerando os polinomios de grau igual a um dado número natural n. (Por exemplo, o conjunto dos polinomios de grau exatamente 7.)
- **6.** Demonstre que o conjunto das matrizes $m \times n$ de elementos reais, denotado por $M_{m \times n}(\mathbf{R})$, é um espaço vetorial sobre \mathbf{R} .
- 7. Em cada caso abaixo, determine se o conjunto $V=R^2$, com as operações de adição e multiplicação definidas conforme as regras indicadas abaixo, é ou não um espaco vetorial. Se V não for um espaco vetorial, indique um dos axiomas da definição que é violado.
 - (a) $(x_1, x_2) +_a (y_1, y_2) = (x_1 + y_1, 0), \alpha \cdot_a (x_1, x_2) = (\alpha x_1, \alpha x_2).$
 - (b) $(x_1, x_2) +_b (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \alpha \cdot_b (x_1, x_2) = (\alpha x_1, 0).$
 - 8. Seja $V=R^3$. Verifique se W é ou não subespaco vetorial de V, onde:
 - (a) $W = \{(x, y, z); x, y, z \in \mathbf{R} \ ez = 0\};$ (b) $W = \{(x, y, z); x^2 + y^2 + z^2 = 1\}.$
- 9. Seja o intervalo I = [0, 1]. Verifique se são subespaços vetoriais de C(I) onde C(I) é o espaço vetorial das funções reais contínuas definidas em I.
 - (a) $W = \{ f \in C(I); f(0) = 0 \};$ (b) $W = \{ f \in C(I); \int_0^1 f(t)dt = 0 \}.$
- 10. Seja V o espaço vetorial das matrizes quadradas $n \times n$, $M_n(\mathbf{R})$. Verifique se W é ou não um subespaço vetorial de V, onde:
 - (a) W é o conjunto das matrizes simétricas: $W = \{A \in M_n(\mathbf{R}); A^t = A\}.$
 - (b) $W = A \in M_n(\mathbf{R})$; AT = TA onde T é uma matriz dada do espaço $M_n(\mathbf{R})$.
 - (c) W é o conjunto das matrizes anti-simétricas: $W = \{A \in M_n(\mathbf{R}); A^t = -A\}.$
- 11. Verifique se o seguinte subconjunto S das matrizes de ordem n é um subespaço vetorial: $S = \{A \in M_n(\mathbf{R}); A^2 = A\}$ (S é o conjunto das matrizes idempotentes).
- 12. Seja $A = (aij) \in M_n(\mathbf{R})$; definimos traço da matriz A, que denotamos por tr(A), da seguinte forma: $tr(A) = \sum_{i=1}^n a_{ii}$. Mostre que o conjunto $S = \{A \in M_n(\mathbf{R}); tr(A) = 0\}$ é um subespaço vetorial de $M_n(\mathbf{R})$.
- 13. Seja V em espaco vetorial. Se $\{U_i\}_{i\in J}$ é uma familia de subespacos vetoriais de V, mostre que o conjunto $S=\cap_{i\in J}U_i$ também é um subespaco vetorial de V.
- 14. Mostre que a união de dois subespaços vetoriais de um mesmo espaço vetorial é também um subespaço vetorial se e somente se um dos subespaços está contido no outro.

15. Considere o espaco vetorial real C([-a,a]) com a>0. Mostre que os subconjuntos abaixo são subespaços vetoriais de C([-a,a]).

$$S = \{ f \in C([-a, a]); f(-x) = f(x) \ \forall x \in [-a, a] \}$$
e
$$W = \{ f \in C([-a, a]); f(-x) = -f(x) \ \forall x \in [-a, a] \}$$

16. Sejam V e W espaços vetoriais sobre ${\bf F}$. Mostre que $Z=V\times W=\{(v,w);v\in Vew\in W\}$ munido das seguintes operações:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2) e \alpha(v, w) = (\alpha v, \alpha w); \alpha \in \mathbf{F},$$

é um espaço vetorial sobre F.

- 17. Dê um exemplo de três subespaços vetoriais não-triviais U, V e W de R^3 tais que $U \cap V = U \cap W = V \cap W, U + V = U + W = V + W = R^3$, porém $U \neq V, U \neq W$ e $V \neq W$.
 - 18. Encontre o conjunto solução S do sistema linear homogêneo:

- (a) Mostre que o conjunto S é um subespaço de R^3 . Qual é a representação geométrica do conjunto S?
- (b) Dado o subespaço $U = \{u \in \mathbf{R}^3; u_1 u_2 + u_3 = 0\}$ determine sua interseção com o subespaço S. Qual é a representação geométrica do conjunto U?
- 19. Mostre que $M_n(\mathbf{R}) = S \oplus W$ onde S é o subespaço das matrizes simétricas e W o subespaço das matrizes anti-simétricas.
- **20.** Seja U o subconjunto de C([-a,a]) composto pelas funções pares e W o subconjunto composto pelas funções ímpares.
 - (a) Demonstre que U e W são subespaços vetoriais de C([-a,a]).
 - (b) Encontre $U \cap W$.
- (c) Mostre que $C([-a,a]) = U \oplus W$ (Sugestão: mostre que cada função $f \in C([-a,a])$ pode ser escrita de maneira única como a soma de uma função par e uma função ímpar).
- **21.** Dado o subespaço: $V = \{x \in R^3; x_1 + 2x_2 + x_3 = 0e x_1 + 3x_2 + 2x_3 = 0, \text{ determine um subespaço } W \text{ do } R^3 \text{ tal que } R^3 = V \oplus W.$ Este subespaço é único?
- **22.** Para qual valor de k o vetor $u=(1,-2,k)\in R^3$ será uma combinação linear dos vetores v=(3,0,-2) e w=(2,-1,-5)?
- **23.** Dar um sistema de geradores (ou seja, uma descrição paramétrica) para cada um dos seguintes subespaços do R^3 :
 - (a) $U = \{(x,y,z); x-2y = 0\};$ (b) $V = \{(x,y,z); x + z = 0 \text{ e } x-2y = 0\};$
 - (c) $W = \{(x,y,z); x + 2y 3z = 0\};$ (d) $U \cap V$; (e) V + W.
- **24.** Mostre que os dois conjuntos: $\{(1,-1,2),(3,0,1)\}$ e $\{(-1,-2,3),(3,3,-4)\}$ geram o mesmo subespaço de \mathbb{R}^3 .
- **25.** Sejam U, V e W os seguintes subespaços do R^3 : $U = \{(x, y, z); x = z\}; V = \{(x, y, z); x = y = 0\}$ e $W = \{(x, y, z); x + y + z = 0\}$. Verifique que $U + V = R^3$, $U + W = R^3$ e $V + W = R^3$. Em algum dos casos a soma é direta? Interprete geometricamente.
- **26.** Seja U o subespaço do R^3 gerado pelo vetor u=(1,0,0) e W o subespaço gerado pelos vetores: w=(1,1,0) e z=(0,1,1). Mostre que $R^3=U\oplus W$.

- **27.** Mostrar que os polinômios 1-t, $(1-t)^2$, $(1-t)^3$ e 1 geram o espaço vetorial dos polinômios de grau menor do que ou igual a 3.
- **28.** Encontre condições sobre $a, b \in c$ de modo que $(a, b, c) \in R^3$ pertença ao subespaço gerado por u = (2, 1, 0), v = (1, -1, 2) e w = (0, 3, -4). Isto equivale a encontrar a descrição implícita (via equações) do subespaço gerado por u, v, e w.
 - **29.** Considerando os vetores do R^3 : u = (1, -3, 2) e v = (2, -1, 1).
 - (a) Escreva (1,7,-4) como combinação linear de $u \in v$.
 - (b) Para que valor de k, o vetor (1, k, 5) é uma combinação linear de u e v?
 - (c) Qual a condição sobre $a, b \in c$ de modo que (a, b, c) seja combinação linear de $u \in v$?
- **30.** Considere os seguintes subespaços de R^4 : $U = \{(u_1, u_2, u_3, u_4) \in R^4; u_1 + u_2 = 0 \text{ e}u_3 u_4 = 0\}$ e $W = \{(w_1, w_2, w_3, w_4) \in R^4; w_1 w_2 w_3 + w_4 = 0\}$.
 - (a) Determine $U \cap W$.
 - (b) Determine os elementos que geram o subespaço $U \cap W$.
 - (c) Determine os elementos que geram o subespaço U+W.
 - (d) U + W é soma direta? Justifique.
- **31.** Considere o subespaço vetorial W formado pelas matrizes de $M_2(\mathbf{R})$, simétricas. Mostre que as matrizes:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

geram o subespaço W.

- 32. Para cada conjunto abaixo, verifique se é linearmente independente.
- (a) $\{(1,0,0),(0,1,0),(0,0,1),(2,2,5)\}\subset R^3$.
- (b) $\{(1,1,1),(1,2,1),(3,2,-1)\}\subset R^3$.
- (c) $\{1, x 1, x^2 + 2x + 1, x^2\} \subset \mathbf{P}^4(\mathbf{R})$.
- **33.** Se u, v e w são vetores de um mesmo espaço vetorial V tais que $u \in [w]$ e $v \in [w]$, mostre que $\{u, v\}$ é linearmente dependente.
- **34.** Seja V um espaço vetorial real. Se $\{v_1, v_2, v_3\}$ é um conjunto linearmente independente em V, mostre que que o conjunto $\{v_1 + v_2, v_1 + v_3, v_2 + v_3\}$ também é linearmente independente em V.
 - **35.** Determine m e n para que os conjuntos de vetores de R^3 abaixo, seja LI:
 - (a) $\{(3,5m,1),(2,0,4),(1,m,3)\};$
 - (b) $\{(6,2,n),(3,m+n,m-1)\}.$
 - **36.** Seja W o subespaço de $M_{3\times 2}(\mathbf{R})$ gerado pelas seguintes matrizes

$$A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \end{pmatrix} e A_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

A matriz
$$A = \begin{pmatrix} 0 & 2 \\ 3 & 4 \\ 5 & 0 \end{pmatrix}$$
 per
tence a W ? Justifique.

37. Se os vetores v_1, \dots, v_m geram o espaço vetorial V, então qualquer conjunto com mais de m vetores é L.D.

3

- **38.** Se os vetores v_1, \dots, v_m geram o espaço vetorial V e os vetore u_1, \dots, u_n são L.I., então $n \leq m$.
- **39.** Considere o subespaço W de R^4 gerado pelos seguintes vetores: $v_1 = (1, -1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (-2, 2, 1, 1)$ e $v_4 = (1, 0, 0, 0)$. Pede-se:
 - (a) exiba uma base para W. Qual é a dimensão de W?
 - (b) o vetor $u = (2, -3, 2, 2) \in W$? Justifique.
 - **40.** Mostre que as matrizes

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} e A_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

formam uma base para $W = \{A \in M_{2 \times 2}(\mathbf{R}); A^t = A\}.$

- **41.** Encontre uma base para o subespaço $W = \{A \in M_{2\times 2}(\mathbf{R}); A^t = -A\}.$
- **42.** O conjunto $\{(1,1,1),(1,2,3),(2,1,1)\}$ é uma base para \mathbb{R}^3 ?
- **43.** Determine uma base de R^4 que contenha os seguintes vetores: $v_1 = (1, 1, 1, 0)$ e $v_2 = (1, 1, 2, 1)$.
- 44. Determine uma base e a dimensão do espaço solução de cada um dos seguintes sistemas lineares homogêneos:

$$(a) \left\{ \begin{array}{cccccc} x & - & y & = & 0 \\ 2x & - & 3y & = & 0 \\ 3x & + & 0.5y & = & 4 \end{array} \right. , \quad (b) \left\{ \begin{array}{ccccccc} x & + & y & + & z & = & 0 \\ 2x & - & y & - & 2z & = & 0 \\ x & + & 4y & + & 5z & = & 0 \end{array} \right.$$

- **45.** Encontre uma base e dê a dimensão do subespaço W de R^4 , onde $W = \{(x_1, x_2, x_3, x_4) \in R^4; x_1 2x_2 = 0 \text{ e } x_1 3x_2 + x_4 = 0\}.$
- **46.** No espaço vetorial R^3 , consideremos os seguintes subespaços: $U = \{(x_1, x_2, x_3); x_1 = 0\}$, $W = \{(x_1, x_2, x_3); x_2 2x_3 = 0\}$ e W = [(1, 1, 0), (0, 0, 2)]. Determine uma base e a dimensão de cada um dos seguintes subespaços: $U, V, W, U \cap V, V + W, U + V + W$.
 - 47. Determine os valores de $a \in R$ para que o seguinte conjunto seja uma base de R^3 : $B = \{(a, 1, 0), (1, a, 1), (0, 1, a)\}.$
- **48.** Complete: "Se $\dim V=7,\ U$ e Wsão subespaços de Vtais que $\dim U{=}4$ e $\dim W{=}5,$ então $\ldots \leq \dim (U\cap W) \leq \ldots$ "
- "Se U e V são subespaços de W tais que $U \neq V$, $\dim U = \dim V = 4$, $\dim W = 6$, então . . . $\leq \dim(U+V) \leq .$. . e . . . $\leq \dim(UV) \leq .$. . ".
- **49.** Se V e W são subespaços vetoriais do R^3 tais que $\dim(V)=1$, $\dim(W)=2$ e V não está contido em W, mostre que $R^3=V\oplus W$.
- **50.** Seja $B = \{v_1, v_2, v_3\}$ uma base para o espaço vetorial V. Mostre que $C = \{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ é também uma base para V.
- **51.** Considere o seguinte subespaço de $P^3([-1,1])$, $S = \{p \in P^3([-1,1]); p(-1) = 0 \text{ e } p'(1) = 0\}$. Qual é a dimensão de S? Encontre uma base para S.
- **52.** Encontre um subconjunto de $\{(2, -3, 1), (1, 4, -2), (-8, 12, -4), (1, 37, 17), (-3, -5, 8)\}$ que seja uma base para o \mathbb{R}^3 .