$1^{\underline{a}}$ Lista de Exercícios - IAD235 - março de 2008

MATRIZES

1. Sejam
$$A = \begin{pmatrix} 1 & -2 & -1 \\ 1 & 0 & -1 \\ 4 & -1 & 0 \end{pmatrix}$$
 e $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

- a) Verifique que: $xA_1 + yA_2 + zA_3 = AX$, sendo A_j a j-ésima coluna de A para j = 1, 2, 3.
- b) Usando a) verifique que: a segunda coluna de $C = A^2$ é $C_2 = -2A_1 A_3$.
- c) Tente generalizar o que foi feito em a) e b) para a seguinte situação: Sejam A uma matriz $m \times n$, B uma matriz $n \times k$ e C = AB. Se C_j é a j-ésima coluna de C, encontre C_j em termos das n colunas de A e da j-ésima coluna de B.
- 2. a) Sejam A e B duas matrizes quadradas $n \times n$. Mostre que $(A+B)^2 = A^2 + AB + BA + B^2$. b) Suponha agora que: $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ e verifique que $AB \neq BA$ e conclua que neste
- c) Voltando ao caso a). Mostre que: Se A e B são duas matrizes quadradas $n \times n$, então $(A+B)^2 =$ $A^2 + 2AB + B^2$ se e somente se AB = BA.

3. Seja
$$M = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- a) Mostre que: Se A é uma matriz 2×2 então AM = MA se e somente se $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$
- b) Mostre que se A e B são matrizes 2×2 que comutam com M então A e B comutam entre si, i.é, AB = BA.
- **4.** a) Determine todas as matrizes D, 2×2 e diagonais, que satisfazem: DB = BD para toda matriz, 2×2 . B.
- b) Determine todas as matrizes $A, 2 \times 2$, que satisfazem: AB = BA para toda matriz $B, 2 \times 2$.
 - 5. Responda falso ou verdadeiro a cada uma das afirmações abaixo (justifique suas respostas).
- a) Se A é matriz $n \times n$ e $A^2 = \mathbf{0}$ então $A = \mathbf{0}$, aqui $\mathbf{0}$ é a matriz nula.
- b) A única matriz $n \times n$ simétrica e anti-simétrica ao mesmo tempo é a matriz nula.
- c) Se A é uma matriz $n \times n$ e $A^2 = I_n$ então $A = I_n$ ou $A = -I_n$ (I_n é a matriz identidade $n \times n$).
- d) Se $A \in B$ são duas matrizes $n \times n \in AB = BA$, então $(AB)^p = A^pB^p$ para todo número natural p.
- e) Se A e B são matrizes $n \times n$ tais que $AB = \mathbf{0}$ então $BA = \mathbf{0}$.
- f) Se A é uma matriz $n \times n$ e $A^4 3A^2 + 7A I_n = \mathbf{0}$ então A é invertível (i.é. $AB = BA = I_n$ para alguma matriz $B, n \times n$.

SISTEMAS LINEARES e DETERMINANTES

6. Decida quais das matrizes abaixo estão na forma escada (ou escalonada reduzida). Para as que não estão encontre as suas respectativas matrizes na forma escada

$$\left(\begin{array}{cccc} 1 & -2 & -1 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 2 \end{array}\right); \left(\begin{array}{ccccc} 1 & 0 & 0 & 5 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right); \left(\begin{array}{ccccc} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & -1 \end{array}\right); \left(\begin{array}{ccccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{array}\right).$$

7. Em cada um dos sistemas abaixo encontre, usando o metódo de Gauss, sua solução geral:

1

8. Seja $M = \begin{pmatrix} a & 0 & b & 2 \\ a & a & 4 & 4 \\ 0 & a & 2 & b \end{pmatrix}$ a matriz ampliada (ou aumentada) do sistema linear. Para que valores

de a e b o sistema admite:

a) Solução única

- b) Solução com uma variável livre
- c) Solução com duas variáveis livres
- d) Nenhuma solução.
- **9.** Considere o sistema AX = B, com

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 3 & -1 & 5 \\ 4 & 1 & a^2 - 16 \end{pmatrix} e B = \begin{pmatrix} 4 \\ 2 \\ a + 14 \end{pmatrix}$$

- (a) Determine o valor (ou valores) de a para que o sistema tenha solução única.
- (b) Existem valores para a de forma que o sistema tenha infinitas soluções?
- (c) Existem valores para a de forma que o sistema não tenha solução?
 - **10.** Sabendo que o sistema $\begin{cases} x + y + z = 1 \\ mx + 2y + 3z = 0 \\ m^2x + 4y + 9z = 1 \end{cases}$ admite uma única solução, podemos concluir que

m pode assumir todos os valores do intervalo real:

- a) [0,1] b) [1,2] c) [3,4) d) [0,4].
- 11 Resolva o sistema dependendo dos valores dos parámetros respectivos:

a)
$$\begin{vmatrix} 2x_1 + & 3x_2 + & x_3 & = 1 \\ x_1 + & 6x_2 + & x_3 & = 3 \\ 2x_1 - & 3x_2 + & 2x_3 & = \lambda \end{vmatrix};$$
 b)
$$\begin{vmatrix} x_1 - & 2x_2 - & x_3 + & x_4 & = -2 \\ 2x_1 + & 7x_2 + & 3x_3 + & x_4 & = 6 \\ 11x_1 + & 11x_2 + & 4x_3 + & 8x_4 & = 8 \\ 10x_1 + & 2x_2 + & & 8x_4 & = \lambda \end{vmatrix}$$

- 12. a) Determine os coeficientes a, b, c e d da função polinomial $p(x) = ax^3 + bx^2 + cx + d$, cujo gráfico passa pelos pontos $P_1 = (0, 10)$, $P_2 = (1, 7)$, $P_3 = (3, -11)$ e $P_4 = (4, -14)$.
- b) Determine coeficientes a, b e c da equação do círculo, $x^2 + y^2 + ax + by + c = 0$, que passa pelos pontos $P_1 = (-2, 7), P_2 = (-4, 5)$ e $P_3 = (4, -3)$.
 - **13.** Considere o sistema (*) AX = B, com A uma matriz $m \times n$ e B uma matriz $m \times 1$.
- a) Mostre que: se Y_1 e Y_2 são soluções do sistema homogêneo associado $AX=\mathbf{0}$ e a e b são números reais então $Z=aY_1+bY_2$ também é solução do homogêneo associado.
- b) Mostre que: Se X_1 e X_2 são soluções de (*) então $Y = X_2 X_1$ é solução do sistema homogêneo associado $AX = \mathbf{0}$.
- c) Suponha que X_0 é uma solução particular de (*) e mostre que qualquer solução X de (*) é da forma $X = X_0 + Y$, com Y solução do homogêneo associado.
- **OBS:** Na verdade pode-se provar que para todo sistema homogêneo (**) $AX = \mathbf{0}$, com A uma matriz $m \times n$, existem r soluções não nulas $Y_1, \cdots, Y_r, 0 \le r \le n$, de (**) tal que toda solução Y de (**) se escreve na forma $Y = a_1Y_1 + a_2Y_2 + \cdots + a_rY_r$, com a_1, \cdots, a_r números reais (r = 0 ocorre quando (**) tem a solução nula como única solução). Portanto, por c), se o sistema (*) tem uma solução X_0 então toda solução X de (*) é do tipo $X = X_0 + a_1Y_1 + a_2Y_2 + \cdots + a_rY_r$, com a_1, \cdots, a_r números reais. A solução X_0 é comumente chamada de solução inicial (ou particular) de (*) e o conjunto $\{Y_1, \cdots, Y_r\}$ é chamado de um conjunto de geradores do sistema (*) (ou simplesmente de geradores de (*)) Observe ainda que X_0 é a única solução de (*) somente quando r = 0.
- d) Para se convencer do que a observação acima afirma, encontre para cada um dos sistemas do exercício 7., um conjunto de geradores do sistema e uma solução particular (quando existir).

2

- **14.** Considere a matriz $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$
- a) Calcule o $det(A^n)$, para todo número natural n.
- b) Usando escalonamento encontre a matriz inversa A^{-1} .
- **15.** Dada uma matriz A = CD onde $C^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix}$ e $D^{-1} = \begin{bmatrix} 2 & 5 \\ 3 & -2 \end{bmatrix}$, resolva o sistema AX = B, sabendo-se que $B = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.
 - **16.** Determine todos os valores de λ para os quais $\det(A \lambda I_3) = 0$.

$$\left(\begin{array}{ccc}
2 & -2 & 3 \\
0 & 3 & -2 \\
0 & -1 & 2
\end{array}\right); \quad \left(\begin{array}{ccc}
2 & 2 & 3 \\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right); \quad \left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 3 & 0 \\
3 & 2 & -2
\end{array}\right)$$

- 17. Sabendo-se que para toda matriz, $n \times n$, A com $\det(A) \neq 0$ existe uma matriz, $n \times n$, \overline{A} tal que $\overline{A}A = I_n$, mostre que:
- a) se B e C são matrizes $n \times n$ e $BC = I_n$ então $CB = I_n$.
- b) se $\det(B) \neq 0$ (B matriz $n \times n$) então existe uma única B^{-1} tal que $BB^{-1} = B^{-1}B = I_n$.
 - 18. Encontre a inversa da matriz abaixo (se existe):

$$\begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}, \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 6 \end{pmatrix}, \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 3 & -7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

19. Calcule os determinantes das matrizes:

a)
$$\begin{pmatrix} \sec \alpha & \cos \alpha \\ \sec \beta & \cos \beta \end{pmatrix}$$
; b) $\begin{pmatrix} a+b & a+c \\ d+b & d+c \end{pmatrix}$; c) $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$; d) $\begin{pmatrix} 1+x_1y_1 & 1+x_1y_2 \\ 1+x_2y_1 & 1+x_2y_2 \end{pmatrix}$; e) $\begin{pmatrix} 1 & a \\ 1 & b \end{pmatrix}$;

$$f) \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}; \, g) \begin{pmatrix} 0 & a & 0 \\ b & c & d \\ 0 & e & 0 \end{pmatrix}; \, h) \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}; \, i) \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}; \, j) \begin{pmatrix} \sin \alpha & \cos \alpha & 1 \\ \sin \beta & \cos \beta & 1 \\ \sin \gamma & \cos \gamma & 1 \end{pmatrix}.$$

20. Resolva a equação f(x) = 0 onde $f(x) = \det(A - xI)$ e a matriz A é a seguinte:

a)
$$\begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix}$$
; b) $\begin{pmatrix} \cos a & \sin a \\ -\sin a & \cos a \end{pmatrix}$; c) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; d) $\begin{pmatrix} 5 & 6 & -3 \\ -1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}$; e) $\begin{pmatrix} 5 & 2 & -3 \\ 4 & 5 & -4 \\ 6 & 4 & -4 \end{pmatrix}$;

$$f) \begin{pmatrix} 4 & -2 & 2 \\ -5 & 7 & -5 \\ -6 & 6 & -4 \end{pmatrix}; \ g) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \ h) \begin{pmatrix} -2 & 2 & -2 \\ 2 & 1 & -4 \\ -2 & -4 & 1 \end{pmatrix}; \ i) \begin{pmatrix} 2 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 4 \end{pmatrix}.$$

VETORES NO PLANO E NO ESPAÇO

- 21. Determine a extremidade ou a origem do segmento orientado nos seguintes casos:
- a) Representa o vetor v = (1, -2, 1) e sua origem é o ponto P = (1, 0, 1).
- b) Representa o vetor v = (-1,0,1) e sua origem é o ponto médio entre os pontos $P_1 = (1,1,3)$ e $P_2 = (-1,1,1)$.
- c) Representa o vetor v = (1, 1, 1) e sua extremidade é o ponto P = (1, 1, 1).
 - 22. Verifique se os pontos dados abaixo são colineares:
- a) A = (1,0,1), B = (2,2,0) e C = (0,-2,2);

- b) $A = (0, 1, -1), \quad B = (1, 2, 0) \quad e \ C = (0, 2, 1);$
- c) A = (3, 1, 4), B = (2, 7, 1) e C = (0, 1, 5).
 - **23.** Dados os pontos A = (1,0,1), B = (-1,1,1) e C = (0,1,2).
- a) Determine o ponto D tal que A, B, C e D sejam os vértices consecutivos de um paralelogramo
- b) Determine o ponto médio entre A e C e o ponto médio entre B e D.
- **24.** Demonstre que as diagonais de um paralelogramo se cortam ao meio (Sugestão: Sejam M e N os pontos médios das duas diagonais. Mostre $\overline{MN} = \vec{0}$.)
- 25. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e seu comprimento é a média aritmética dos comprimentos das bases.
- **26.** Sejam \vec{OA} e \vec{OB} dois vetores não colineares no espaço. Qual o conjunto dos pontos P tais que $\vec{OP} = \lambda \vec{OA} + (1 \lambda) \vec{OB}$?
- 27. Mostre que as medianas de um triângulo interseptam-se num ponto. Encontre a razão em que esse ponto divide cada mediana.
- **28.** A área do triângulo ABC é $\sqrt{6}$. Sabendo-se que $A=(2,1,0),\ B=(-1,2,1)$ e que o vértice C está no eixo Y, encontre as coordenadas de C.
- **29.** a) Decompor o vetor w = (1,3,2) como soma de dois vetores w = u + v, onde u é paralelo ao vetor (0,1,3) e v é ortogonal a (0,1,3).
- b) Encontre um vetor u que seja ortogonal aos vetores (2,3,-1) e (2,-4,6) tal que $||u||=3\sqrt{3}$.
- **30.** a) Demonstre que não existe x tal que os vetores v=(x,2,3) e u=(x,-2,3) sejam perpendiculares. b) Encontre o ângulo entre os vetores u=(2,1,0) e v=(0,1,-1) e entre os vetores w=(1,1,1) e z=(0,-2,-2).
- **31.** a) Dado um triângulo isósceles, mostre que a mediana relativa à base é a mediatriz (i.é., é perpendicular à base).
- b) Mostre que: Se um triângulo tem duas medianas iguais então ele é isósceles.
- **32.** Sejam u e v dois vetores de comprimentos iguais, mostre que para quaisquer números a e b, os vetores au + bv e av + bu têm o mesmo comprimento. O que significa isso?