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I.  INTRODUCTION
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II.  METHODOLOGY

A. Orthogonal Transforms

Many studies have been published on transform coding
methods, which were applied to ECG and EEG signals.
However, we only find a few studies specifically on EMG
signals. Different methods for error-free compression of
EMG signals were compared to the other methods based on
transforms [3]. These methods based on transform coding
showed good results.

The Karhunen-Loève orthogonal transform is
considered optimal in the statistical sense [4]. However, this
transform does not have a fast algorithm, its basis functions
depend on the signal statistics and it requires a high
computational effort, which restricts its use. The Discrete
Cosine Transform (DCT) is considered sub-optimal but it
has a fast algorithm which requires only O(N.log2N)
operations. Given a discrete signal x[n], with n=0, 1,…, N-1,
[4]. Equations (1) and (2) define the Discrete Cosine
Transform (DCT).
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On the other hand, the wavelet transform is a
representation in time-scale of the analysed signal, where
the basis functions are translations, dilations and
compressions of a function. This function is called mother
wavelet. The temporal analysis is carried out by using
compressed versions (or versions with high frequency) of
the mother wavelet. The analysis in frequency is carried out
by dilated versions (or versions with low frequency) of the
mother wavelet. The choice of a Wavelet Transform is
essentially the choice of the filter bank. The Daubechies
bases, studied in this work, corresponds to a sub-band filter

ly to

the recovered EMG wave than for the compression rate.

bank outlined using FIR filters and they adapt efficient
the solution of the proposed problem._______________________________________________________________
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In order to obtain orthogonal Daubechies wavelet basis
functions, one departs from appropriate coefficients hn, and
then investigates if they correspond to an orthogonal
wavelet basis. If a finite number of hn is different from zero,
the function (denominated mother wavelet) is reduced to a
finite combination of linear functions with compact support
and, therefore, automatically the function possesses compact
support. The research results in a collection of coefficients
Mhn, where M=2,3,4,..., and 0 2 1≤ ≤ −n M . For instance,
for four coefficients we have:
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Beginning from these coefficients one can build the
function called father wavelet by solving the dilation
equation:
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Once gn=(-1)n[h-n+1] we have that
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and the basis function is:

  
ψ x( )= 2 g kφ 2x − k( )
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B. Emg pre-processing: time-invariant de-noising

When the EMG signal is digitized, it has various kinds
of noise due to physiological and instrumentation causes. In
order to get a better performance of the compression
technique we decided to pre-process the EMG signal by
applying a de-noising algorithm. Time invariant wavelet de-
noising was used in this case and, as a second result of this
investigation, it was expected to evaluate the wavelet
transform that has the best performance in the sense of space
domain decorrelation of signal.

In order to choose the orthogonal wavelet basis which
better represents the EMG signal, an algorithm was
developed to verify the data correlation in the transform
domain. This same process was adopted to evaluate the
DCT-based algorithm.

The performance in the sense of noise reduction was
measured by the mean squared error (MSE). Fig. 1 shows
the MSE versus the number of discarded coefficients in a
noisy EMG signal of some of the wavelet functions of
Daubechies’ family. The percentage of small discarded

energy coefficients is shown in the horizontal axis and the
mean square error (MSE) is shown in the vertical axis. It can
be verified that Daubechies 4 presents the maximum noise
reduction, eliminating about 93% of its coefficients.

Fig. 1. Simulation with an example of the original EMG signal and the
correspondent signal after noise reduction.

Fig. 2. Example: original signal (above), signal after noise reduction
(below).

The objective to identify the wavelet transform which
clusters more signal energy in fewer coefficients was
achieved. Thus, it is possible to use this result to create an
efficient compressed representation of the original signal.

C. Transform compression performance for EMG signals

The performance of the compression scheme was
measured objectively according to two criteria: the
compression ratio and the signal to noise ratio (SNR) of the
reconstruction. The compression ratio is defined as the ratio
between the number of bits used to represent this signal
before and after compression. The estimate of the
compression rate includes the amount of bits used to
represent the lateral information necessary for the
decodification. This information comprises a vector, which



contains the information of the position of the relevant
coefficients and the amount of bits used to quantify these
coefficients. The signal to noise ratio of the reconstruction is
defined as:

  
SNR = 10log Ex
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where Ex is the signal energy and Ee the reconstruction error
energy.

The Daubechies´ family of wavelets was chosen for
coding EMG signals because they showed a better
compression performance. The compression was done by
discarding the smaller M transformed coefficients. When we
increase the amount of eliminated coefficients, the
compression rate also increases. However, the fidelity of
reconstructed signal gets worse.

It was observed that the Daubechies-4 function takes
better advantage of the statistical characteristics of the EMG
signals and, therefore, presents a better performance when
used for the compression of these signals. As expected,
when the resolution scale is increased in the wavelet
transform, the codification performance is better, since the
transform can better extract the signal statistics. However,
for the scale resolution above L=8, no improvement in the
performance is observed, while the computational effort is
larger. The following figure shows the comparison between
the compression performance between the DCT and DWT.
It is observed, for the same compression rate, that the DWT
presents a better signal to noise ratio.

Fig. 3. Comparison  between DWT and DCT.

D. Compression algorithm overview

As the original EMG is a band limited signal [5, 6],
there is a resolution scale above which there is little or no
energy. The basic idea in the transform coding is to use an
orthogonal transform to compact the signal energy in a small
number of transformed coefficients and to eliminate those
coefficients that are considered to be non-relevant,

according to a criterion of reconstruction error control as
presented in the following section.

The block diagram of the compression algorithm is
shown in Fig. 4.
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Fig. 4. Compression algorithm block diagram.

The coding algorithm is composed by the de-noising
step using the time-invariant wavelet transform, the
orthogonal transform, the selection of the relevant
coefficients, the normalization, the quantization of those
coefficients, and computation and entropy coding of the side
information necessary for the decoding process.

The process of coefficient selection is developed and
implemented taking into account the nature of the EMG
signals. It uses a threshold algorithm. The coefficients of the
transforms that are below the threshold are set to zero. This
results in:
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where F[k] is the kth coefficient of the Wavelet transform,
and δ is the factor which defines the threshold. Computer
simulations have shown that δ must be equal or below 0.01
for high accuracy signal reconstruction. A vector of
significant amplitude positions is then constructed using one
bit as an identifier, as shown if Fig. 5. If a coefficient is
bigger than the threshold, the index position is set to 1 (one)
and, otherwise, set to 0 (zero).

Fig. 5. Coefficient amplitude identifier.

The coefficient amplitude identifier vector is an
information overhead that needs to be transmitted or stored.
More efficiency is achieved if this information is coded in
order to increase the compression ratio. The significant
coefficient vector needs to be quantized, and the amplitude
identification vector, which identifies the significant wavelet
coefficients is compressed by an entropy coding. Finally, the
compressed EMG signal is packed and stored in memory.



The decoding process is quite simple; it implies the
unpacking of the coded data, the de-quantization and de-
normalization of the significant coefficient vector, the
decoding the overhead information and use of this
information to restore the position of the significant
coefficient vector and, finally, the inverse transform, which
results in the reconstructed signal. Figure 6 shows a block
diagram illustrating the decoding algorithm.
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Fig. 6. Block diagram of the decoding algorithm.

III.  RESULTS

Experimental results were obtained by processing EMG
signals digitized at 2000 samples per second represented
with 16 bits per sample. All signals were pre-processed by
the de-noising algorithm before applying the coding process.
The algorithm was carried out by using the Daubechies-4
functions and a scale resolution of L=8. Fig. 7 and Fig. 8
show simulated examples with the original EMG signal and
the reconstructed signal after the decoding of the
compressed data.

Fig 7. Comparison between the original and the decoded EMG signal. The
Compression rate is 16 times and RSR = 17.95 dB.

IV.  CONCLUSION

In this paper, we studied the performance of
compression of EMG signals by using Wavelet Transform
when we vary the parameters such as the mother wavelet
function and the scale resolution. It was observed that, in the
wavelet functions of Daubechies’ family, the function,
which presents a better performance is the Daubechies-4. It
was also verified that when the resolution scale is increased,
the transform performance is improved until L = 8. Scale
resolution greater than 8 leads to a large computational
effort with no significant improvement in the performance.
Performance comparison between DCT and DWT has
shown a better performance for the DWT.

Figure 8. Almost perfect reconstruction. The compression rate is =15 times
and RSR = 32.68 dB.
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