
Circumscribed quadrilaterals revisited / Darij Grinberg
(updated version, 13 September 2008)

The aim of this note is to prove some new properties of circumscribed quadrilaterals
and give new proofs to classical ones.
We start with some trivialities (Fig. 1).
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Fig. 1
Let ABCD be a circumscribed quadrilateral, that is, a quadrilateral which has an

incircle. Let this incircle have the centerO and the radius � and touch its sides AB; BC;
CD; DA at the points X; Y; Z; W; respectively. Then, for some very obvious reasons,
OX ? AB; OY ? BC; OZ ? CD; OW ? DA and OX = OY = OZ = OW = �:
Moreover, AW = AX; BX = BY; CY = CZ; DZ = DW; since the two tangents from
a point to a circle are equal in length. We denote

a = AW = AX; b = BX = BY ; c = CY = CZ; d = DZ = DW:

(Thus, we denote by a; b; c; d not, as usual, the sidelengths of the quadrilateral ABCD;
but the segments AW = AX; BX = BY; CY = CZ; DZ = DW:)
Then, the sidelengths of quadrilateral ABCD are

AB = AX +BX = a+ b; BC = BY + CY = b+ c;

CD = CZ +DZ = c+ d; DA = DW + AW = d+ a:
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Hence,
AB + CD = (a+ b) + (c+ d) = (b+ c) + (d+ a) = BC +DA:

Thus we have shown the maybe most famous fact about circumscribed quadrilaterals:
Theorem 1. If ABCD is a circumscribed quadrilateral1, then AB +CD = BC +

DA:
In words: In a circumscribed quadrilateral, the sums of the lengths of opposite sides

are equal.
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Now, let�s get serious and turn to the �rst nontrivial result about circumscribed
quadrilaterals (Fig. 2):
Theorem 2. The four lines AC; BD; XZ; Y W concur at one point.
This theorem is still rather well-known; it is problem 105 in [1] and also appears in

[6], [8] and [10]. Here we give two proofs of this theorem.

1In the following, we assume in every theorem that ABCD is a circumscribed quadrilateral (and
the notations are those introduced before).
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First proof of Theorem 2. (See Fig. 3.) Let P be the point of intersection of the

lines AC and YW:
The lines BC andDA touch the incircle of the quadrilateral ABCD at the points Y

andW: Hence, by the tangent-chordal angle theorem, both angles ]CYW and ]DWY
are equal to the chordal angle of the chord YW in the incircle of the quadrilateral
ABCD: Thus, ]CYW = ]DWY: In other words, ]CY P = 180� � ]AWP: Thus,
sin]CY P = sin]AWP: But after the sine law in triangle AWP; we have AP = AW �
sin]AWP
sin]APW ; and after the sine law in triangle CY P; we have CP = CY � sin]CY P

sin]CPY :
Thus,

AP

CP
=
AW � sin]AWP

sin]APW
CY � sin]CY P

sin]CPY

=
AW � sin]AWP

sin]APW
CY � sin]AWP

sin]APW

=
AW

CY
=
a

c
:

Now, let P 0 be the point of intersection of the lines AC and XZ: Then, we similarly

�nd
AP 0

CP 0
=
a

c
: Thus,

AP

CP
=
AP 0

CP 0
: This means that the points P and P 0 divide the

segment AC in the same ratio; hence, these points P and P 0 coincide. Since the point
P is the point of intersection of the lines AC and YW; and the point P 0 is the point of
intersection of the lines AC and XZ; it thus follows that the lines AC; XZ and YW
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concur at one point. Similarly, we can verify that the lines BD; XZ and YW concur
at one point. Hence, all four lines AC; BD; XZ and YW concur at one point, and
Theorem 2 is proven.
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This proof of Theorem 2 has a nice consequence (Fig. 4): The point of intersection of

the four lines AC; BD; XZ; Y W must obviously coincide with the point of intersection
P of the lines AC and YW de�ned in the above proof of Theorem 2. Now, we have

shown that this point P satis�es
AP

CP
=
a

c
: Similarly,

BP

DP
=
b

d
: Thus, we get:

Theorem 3. If P is the point of intersection of the lines AC; BD; XZ; Y W; then
AP

CP
=
a

c
and

BP

DP
=
b

d
:

Note that this result appeared in [7] and [8].
Second proof of Theorem 2. We will show that the lines AC; BD and XZ concur.

Then, analogously we can show that the lines AC; BD and YW concur, and thus it
will follow that all four lines AC; BD; XZ and YW concur, thus proving Theorem 2.
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(See Fig. 5.) Now, in order to show that the lines AC; BD and XZ concur, it

appears reasonable to apply the Brianchon theorem in a limiting case. However, one
has to be careful doing this. Here is how one should not proceed:
"Consider the degenerate hexagon AXBCZD (degenerate, since its adjacent sides

AX and XB lie on one line, and its adjacent sides CZ and ZD lie on one line). This
hexagon is obviously circumscribed, since all of its sides AX; XB; BC; CZ; ZD; DA
touch one circle (namely, the incircle of the quadrilateral ABCD). Hence, the main
diagonals AC; XZ and BD of this hexagon concur, and the proof is complete."
The mistake - to be more precise, the gap - in this argumentation becomes clear if

one applies it to the hexagon AX 0BCZD; where X 0 is an arbitrary point on the line
AB: This hexagon, too, appears to be circumscribed, since all of its sides AX 0; X 0B;
BC; CZ; ZD; DA touch one circle (namely, the incircle of the quadrilateral ABCD)
- if they are extended to lines (but this should not be a problem, since we are talking
about projective theorems, and thus arrangement shouldn�t matter). Thus, by the
Brianchon theorem, it seems to follow that the lines AC; X 0Z and BD concur - but
this is nonsense for every point X 0 di¤erent from X:
So where is the mistake? The trick is: A geometrical theorem can be used in

a degenerate case if either its proof still functions in this case, or one can deduce
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the degenerate case from the generic case by a limiting argument. Our application
of the Brianchon theorem to the hexagon AX 0BCZD did not match any of these two
conditions; thus, it was not legitimate. Hence, there is no wonder the resulting assertion
was wrong.
However, one can rescue the above proof of Theorem 2. In order to do this, one

must �nd an argument that shows why the Brianchon theorem can be applied to the
degenerate hexagon AXBCZD; but not to the degenerate hexagon AX 0BCZD with
X 0 6= X:
In order to �nd such an argument, let�s recall how the Brianchon theorem is derived

from the Pascal theorem using the polar transformation.
The Pascal theorem states: If six points A1; B1; C1; D1; E1; F1 lie on one circle, then

the points of intersection A1B1 \D1E1; B1C1 \ E1F1 and C1D1 \ F1A1 are collinear;
hereby, if two "adjacent" points - i. e., for instance, the points A1 and B1 - coincide,
then the line A1B1 has to be interpreted as the tangent to the circle at the point A1;
and not as an arbitrary line through the point A1:
After the polar transformation, this becomes: If six lines a1; b1; c1; d1; e1; f1 touch

a circle, then the lines (a1 \ b1) � (d1 \ e1) ; (b1 \ c1) � (e1 \ f1) and (c1 \ d1) � (f1 \ a1)
are concurrent2; hereby, if two "adjacent" lines - i. e., for instance, the lines a1 and b1
- coincide, then the point of intersection a1 \ b1 has to be interpreted as the point of
tangency of the line a1 with the circle, and not as an arbitrary point on the line a1:
In other words: The hexagon formed by the lines a1; b1; c1; d1; e1; f1 may be

degenerated, but if two adjacent sides lie on one line, then the vertex where these sides
meet must be the point of tangency of this line with the circle, and not just an arbitrary
point on this line.
This is ful�lled for the degenerate hexagonAXBCZD 3, but not for the degenerate

hexagon AX 0BCZD with X 0 6= X: Thus, the above argumentation for the hexagon
AXBCZD is correct - thus Theorem 2 is proven -, but the same argumentation for
the hexagon AX 0BCZD is wrong.
Now, we head over to a less classical result, one noted by myself in 2003 (Fig. 6):
Theorem 4. Let the perpendicular to the line AB at the point A meet the line

BO at a point M: Let the perpendicular to the line AD at the point A meet the line
DO at a point N: Then, MN ? AC:

2Hereby, we use the abbreviation G �H for the line joining two points G and H:
3The adjacent sides AX and XB of this hexagon lie on one line - and the vertex where they meet,

namely the vertex X; is indeed the point of tangency of this line with the circle. The same holds for
the adjacent sides CZ and ZD:
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In [4], this theorem appears as Theorem 1 and receives two proofs. Here is a di¤erent

proof of Theorem 4:
(See Fig. 7.) Let Lb and Ld be the orthogonal projections of the points B and D on

the line AC: Then, the lines BLb and DLd; both being perpendicular to AC; must be

parallel to each other, and thus Thales yields
BLb
DLd

=
BP

DP
: But according to Theorem

3, we have
BP

DP
=
b

d
: Thus

BLb
DLd

=
b

d
; or, equivalently,

BLb
b
=
DLd
d
:
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(See Fig. 8.) Let R be the orthogonal projection of the point M on the line AC:

Then, ]ARM = 90�: Compared with ]BLbA = 90�; this yields ]ARM = ]BLbA: On
the other hand, ]MAB = 90�; so that ]MAR = ]MAB � ]LbAB = 90� � ]LbAB:
But in the right-angled triangle ALbB; we have ]ABLb = 90� � ]LbAB: Hence,
]MAR = ]ABLb: From ]ARM = ]BLbA and ]MAR = ]ABLb; we see that the
triangles ARM and BLbA are similar; thus,

AR

BLb
=
AM

AB
:

On the other hand, the point M lies on the line BO; and from AM ? AB and

OX ? AB it follows that AM k OX: Hence, by Thales, AM
AB

=
OX

BX
: Thus, we obtain

AR

BLb
=
AM

AB
=
OX

BX
=
�

b
; so that AR = BLb �

�

b
= � � BLb

b
:

Similarly, we can denote by R0 the orthogonal projection of the point N on the line

AC; and show that AR0 = � � DLd
d
: Since

BLb
b
=
DLd
d
; we thus get AR = AR0: Since

the points R and R0 both lie on the segment AC; this yields that these points R and
R0 coincide. Now, since the point R is the orthogonal projection of the point M on
the line AC; we have MR ? AC; so that the point M lies on the perpendicular to the
line AC at the point R: Similarly, the point N lies on the perpendicular to the line
AC at the point R0: But since R = R0; these two perpendiculars coincide, and thus the
points M and N lie on one and the same perpendicular to the line AC: This means
MN ? AC; and Theorem 4 is proven.
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In [2], Jean-Pierre Ehrmann showed an alternate approach to Theorem 4 with the

help of hyperbola properties. A corollary of this approach is the following fact:
Theorem 5. Denote the distances from the points B and D to the line MN by m

and n; respectively. Then,
m

AB
=

n

AD
:
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Here is an elementary proof of Theorem 5. First, we focus on the points X; Y; Z;

W: We will use directed segments; in the following, the directed distance between two
points P1 and P2 will be denoted by P1P2 (as opposed to the non-directed distance,
which we will continue to write as P1P2). Also, we direct the lines AB; BC; CD; DA
in such a way that the directed segments AB; BC; CD; DA are positive (and thus the
segments BA; CB; DC; AD are negative). Then,

a = AW = AX; b = BX = BY ; c = CY = CZ; d = DZ = DW

becomes

a = WA = AX; b = XB = BY ; c = Y C = CZ; d = ZD = DW:

(See Fig. 10.) Now, let T be the point on the line AC satisfying
AT

TC
= �a

c
: Then,

TC

AT
= � c

a
; what rewrites as

CT

TA
= � c

a
: Hence,

AX

XB
� BY
Y C

� CT
TA

=
a

b
� b
c
�
�
� c
a

�
= �1:

By the Menelaos theorem, applied to the triangle ABC and the points X; Y; T on its
sides AB; BC; CA; this yields that the points X; Y; T are collinear. In other words,
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the point T lies on the line XY: As the de�nition of the point T is symmetric in B and
D; we can similarly show that this point T lies on the line ZW:
Note that we have thus shown an interesting side-result: Our point T lies on the

lines AC; XY and ZW and divides the segment AC in the ratio
AT

TC
= �a

c
: Comparing

this with
AP

PC
=
a

c
(this is just the equation

AP

CP
=
a

c
from Theorem 3, after being

rewritten with directed segments), we see that
AT

TC
= �AP

PC
; so that the point T is

the harmonic conjugate of the point P with respect to the segment AC: Thus, we have
shown:
Theorem 6. The lines AC; XY; ZW concur at one point T: This point T divides

the segment AC in the ratio
AT

TC
= �a

c
and is the harmonic conjugate of the point P

with respect to the segment AC:
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(See Fig. 11.) Now, let M 0 be the orthogonal projection of the point B on the line

MN: Then, the distance m from the point B to the line MN equals to the segment
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BM 0; so we have m = BM 0:
On the other hand, BM 0 ?MN; combined with MN ? AC; yields BM 0 k AC; so

that ]M 0BA = ]XAT:
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Fig. 11
Since ]MM 0B = 90� and ]MAB = 90�; the pointsM 0 and A lie on the circle with

diameter MB: Thus, the quadrilateral AM 0BM is cyclic, so that ]BM 0A = 180� �
]AMB: On the other hand, in the right-angled triangle AMB; we have ]AMB =
90� � ]ABM: But since the point M lies on the line BO; i. e. on the angle bisector
of the angle ABC (since the point O is the incenter of the quadrilateral ABCD), we

have ]ABM =
]ABC
2

: Finally, since BX = BY; the triangle XBY is isosceles, so

that its base angle ]BXY equals

]BXY = 180� � ]XBY
2

= 90� � ]XBY
2

= 90� � ]ABC
2

:
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Thus,

]BM 0A = 180� � ]AMB = 180� � (90� � ]ABM) = 90� + ]ABM = 90� +
]ABC
2

= 180� �
�
90� � ]ABC

2

�
= 180� � ]BXY = ]AXT:

Since ]M 0BA = ]XAT and ]BM 0A = ]AXT; the triangles BM 0A and AXT

are similar. Thus,
BM 0

AB
=
AX

TA
: Since m = BM 0 and a = AX; we therefore have

m

AB
=

a

TA
: Similarly,

n

AD
=

a

TA
: Hence,

m

AB
=

n

AD
; what proves Theorem 5.

In the remaining part of the article, we will consider some metric identities at the
circumscribed quadrilateral (Fig. 12).
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Fig. 12
The points X and Y; being the points of tangency of the incircle of the quadrilateral

ABCD with its sides AB and BC; are symmetric to each other with respect to the
angle bisector BO of the angle ABC: Hence, the segment XY is perpendicular to the
line BO and is bisected by this line. So the midpoint B0 of the segment XY lies on
the line BO: Similarly, the midpoint A0 of the segment WX lies on the line AO:
Now, from XY ? BO we see that ]XB0O = 90�; while from OX ? AB we have

]BXO = 90�: Thus, ]XB0O = ]BXO: Also, trivially, ]XOB0 = ]BOX: Thus, the
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triangles XB0O and BXO are similar, so that
OB0

OX
=
OX

OB
; and thus OB � OB0 =

OX2 = �2:

Similarly, OA � OA0 = �2: Hence, OB � OB0 = OA � OA0; so that OB
OA

=
OA0

OB0
:

Together with ]BOA = ]A0OB0; this yields the similarity of triangles BOA and
A0OB0: Consequently,

A0B0

AB
=
OA0

OB
; thus A0B0 = AB �OA

0

OB
= AB �OA �OA

0

OA �OB = AB � �2

OA �OB:

Now, the points A0 and B0 are the midpoints of the sides WX and XY of triangle

WXY ; thus, A0B0 =
YW

2
: Hence, AB � �2

OA �OB =
YW

2
: Consequently,

AB =
YW

2
� OA �OB

�2
:

Similar relations must obviously hold for BC; CD and DA: We summarize:
Theorem 7. We have

AB =
YW

2
� OA �OB

�2
; BC =

XZ

2
� OB �OC

�2
;

CD =
YW

2
� OC �OD

�2
; DA =

XZ

2
� OD �OA

�2
:

(See Fig. 13.)
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These equations can be used for deriving some other formulas. For instance, AB =

YW

2
� OA �OB

�2
transforms into

OA �OB = �2 � AB : YW
2

=
2�2 � AB
YW

:

Similarly,

OC �OD = 2�2 � CD
YW

:

Thus,

OA �OB
OC �OD =

�
2�2 � AB
YW

�
�
2�2 � CD
YW

� = AB

CD
:

Similarly,
OB �OC
OD �OA =

BC

DA
: So we have shown:

Theorem 8. We have

AB

CD
=
OA �OB
OC �OD ;

BC

DA
=
OB �OC
OD �OA:
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Proving these equations was a 10th grade problem in the 4th round of the 14th
DeMO (East German mathematical olympiad) 1974/75. This theorem entails

AB �BC
CD �DA =

AB

CD
� BC
DA

=
OA �OB
OC �OD � OB �OC

OD �OA =
OB2

OD2
;

or, equivalently,
OB2

AB �BC =
OD2

CD �DA:

Similarly,
OA2

DA � AB =
OC2

BC � CD: Thus we arrive at:
Theorem 9. We have

OB2

AB �BC =
OD2

CD �DA ;
OA2

DA � AB =
OC2

BC � CD:

This also appears with proof in [5].
Now we show a harder identity given in the China IMO TST 2003 ([8]):
Theorem 10. We have

OA �OC +OB �OD =
p
AB �BC � CD �DA:

Proof of Theorem 10. (See Fig. 14.) Let X 0 and Z 0 be the antipodes of the
points X and Z on the incircle of the quadrilateral ABCD 4, or, in other words,
the re�ections of the points X and Z with respect to the center O of this incircle.
Then, the segment XX 0 is a diameter of the incircle of the quadrilateral ABCD; and
thus ]XYX 0 = 90�; so that Y X 0 ? XY: On the other hand, XY ? BO: Hence,
Y X 0 k BO; so that ]XX 0Y = ]BOX: Together with ]XYX 0 = ]BXO (since
]XYX 0 = 90� and ]BXO = 90�) this entails that the triangles XX 0Y and BOX are

similar; consequently,
X 0Y

X 0X
=
OX

OB
; so that X 0Y = X 0X � OX

OB
: Now, X 0X = 2 � OX

(since the point X 0 is the re�ection of X in O), and thus

X 0Y = 2 �OX � OX
OB

=
2 �OX2

OB
=
2�2

OB
:

4The antipode of a point P on a circle k is de�ned as the point P 0 on the circle k such that the
segment PP 0 is a diameter of k:
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Similarly,

Z 0Y =
2�2

OC
; Z 0W =

2�2

OD
; X 0W =

2�2

OA
:

Finally, X 0Z 0 = XZ; since the points X 0 and Z 0 are the re�ections of the points X and
Z in the point O; and re�ections preserve distances.
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(See Fig. 15.) Now, the pointsX 0; Y; Z 0; W all lie on the incircle of the quadrilateral

ABCD; thus, the quadrilateral X 0Y Z 0W is cyclic, so that, after the Ptolemy theorem,

X 0Y � Z 0W +X 0W � Z 0Y = X 0Z 0 � YW:
According to the above formulas, this becomes

2�2

OB
� 2�

2

OD
+
2�2

OA
� 2�

2

OC
= XZ � YW; i. e.

4�4 �
�

1

OB �OD +
1

OA �OC

�
= XZ � YW; i. e.

4�4 � OA �OC +OB �OD
OA �OB �OC �OD = XZ � YW:

Hence,

OA �OC +OB �OD = XZ � YW �OA �OB �OC �OD
4�4

: (1)

But Theorem 7 yields

AB �BC � CD �DA

=

�
YW

2
� OA �OB

�2

�
�
�
XZ

2
� OB �OC

�2

�
�
�
YW

2
� OC �OD

�2

�
�
�
XZ

2
� OD �OA

�2

�
=

�
XZ � YW �OA �OB �OC �OD

4�4

�2
;
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so that
XZ � YW �OA �OB �OC �OD

4�4
=
p
AB �BC � CD �DA:

Hence, (1) becomes

OA �OC +OB �OD =
p
AB �BC � CD �DA;

and Theorem 10 is proven.
For our further observations, we denote by jP1P2:::Pnj the (non-directed) area of an

arbitrary polygon P1P2:::Pn:
Now, we denote the interior angles of the quadrilateral ABCD by

� = ]DAB; � = ]ABC;  = ]BCD; � = ]CDA:

Then, we are going to show:
Theorem 11. We have

OA �OC =
(a+ c) � �

sin
�+ 

2

; OB �OD = (b+ d) � �

sin
� + �

2

;

OA �OC
OB �OD =

a+ c

b+ d
; OA �OC +OB �OD = (a+ b+ c+ d) � �

sin
�+ 

2

:

O
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Fig. 16
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Proof of Theorem 11. (See Fig. 16.) Let U be the point on the ray XB satisfying
UX = c: Comparing this with c = CZ; we get UX = CZ: Furthermore, ]OXU =
90� = ]OZC and OX = OZ: Thus, the triangles OXU and OZC are congruent, so
that OU = OC and ]XOU = ]ZOC:
Since the point O; being the incenter of the quadrilateral ABCD; lies on the angle

bisector of its angle DAB; we have ]XAO = ]DAB
2

=
�

2
; in the right-angled triangle

AXO; we thus obtain ]XOA = 90��]XAO = 90�� �
2
: Similarly, ]ZOC = 90�� 

2
;

since ]XOU = ]ZOC; this becomes ]XOU = 90� � 
2
: Hence, ]AOU = ]XOA +

]XOU =
�
90� � �

2

�
+
�
90� � 

2

�
= 180� � �+ 

2
; so that sin]AOU = sin �+ 

2
:

From AX = a and UX = c; we conclude that AU = AX + UX = a+ c:
Now, the area of a triangle equals half of the product of two of its sides and the

sine of the angle between them; applying this to triangle AOU; we get jAOU j =
1

2
� OA � OU � sin]AOU ; since OU = OC and sin]AOU = sin

�+ 

2
; this becomes

jAOU j = 1

2
�OA �OC � sin �+ 

2
:

On the other hand, the area of a triangle equals half of the product of a side with
the respective altitude; applied to the triangle AOU (in which OX is the altitude to

the side AU), this yields jAOU j = 1

2
� AU � OX; since AU = a + c and OX = �; this

rewrites as jAOU j = 1

2
� (a+ c) � �:

Comparing the equations jAOU j = 1

2
�OA�OC �sin �+ 

2
and jAOU j = 1

2
�(a+ c)��;

we see that OA �OC � sin �+ 
2

= (a+ c) � �; and thus

OA �OC = (a+ c) � �

sin
�+ 

2

:

Similarly,

OB �OD = (b+ d) � �

sin
� + �

2

:

Now, by the sum of angles in the quadrilateral ABCD; we have �+�++� = 360�; so

that
�+ 

2
+
� + �

2
=
�+ � +  + �

2
=
360�

2
= 180�; and thus sin

� + �

2
= sin

�+ 

2
:

Hence, the equation

OB �OD = (b+ d) � �

sin
� + �

2

becomes OB �OD = (b+ d) � �

sin
�+ 

2

:
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Thus,

OA �OC
OB �OD =

0B@(a+ c) � �
sin
�+ 

2

1CA
0B@(b+ d) � �
sin
�+ 

2

1CA
=
a+ c

b+ d

and

OA �OC +OB �OD = (a+ c) � �

sin
�+ 

2

+
(b+ d) � �

sin
�+ 

2

=
(a+ b+ c+ d) � �

sin
�+ 

2

:

Therefore, Theorem 11 is proven.
Now, Theorem 11 asserts

OA �OC +OB �OD = (a+ b+ c+ d) � �

sin
�+ 

2

;

while Theorem 10 states that

OA �OC +OB �OD =
p
AB �BC � CD �DA:

Hence,
(a+ b+ c+ d) � �

sin
�+ 

2

=
p
AB �BC � CD �DA;

so that
(a+ b+ c+ d) � � =

p
AB �BC � CD �DA � sin �+ 

2
:

(See Fig. 13.) Now, the area of a right-angled triangle equals half of the product of

its two catets; for the right-angled triangle AWO; this yields jAWOj = 1

2
�AW �OW =

1

2
� a � �: Similarly, jAXOj = 1

2
� a � �; and thus jAWOXj = jAWOj + jAXOj =

1

2
�a ��+ 1

2
�a �� = a ��: Similarly, jBXOY j = b ��; jCY OZj = c �� and jDZOW j = d ��:

Hence,

jABCDj = jAWOXj+ jBXOY j+ jCY OZj+ jDZOW j = a � �+ b � �+ c � �+ d � �

= (a+ b+ c+ d) � � =
p
AB �BC � CD �DA � sin �+ 

2
:

Thus, we conclude:
Theorem 12. The area jABCDj of a circumscribed quadrilateral ABCD equals

jABCDj =
p
AB �BC � CD �DA � sin �+ 

2
:

This is not an unknown formula, however it is usually derived from the generalized
Brahmagupta formula for the area of an arbitrary quadrilateral ([9]) which, in turn, is
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proven by a long trigonometric calculation. Here we gave a rather long, yet synthetic
proof of Theorem 12.
Next, we are going to prove a result due to A. Zaslavsky, M. Isaev and D. Tsvetov

which was given in the �nal (�fth) round of the Allrussian Mathematical Olympiad
2005 as problem 7 for class 11 ([11]):
Theorem 13. The incenter O of a circumscribed quadrilateral ABCD coincides

with the centroid of the quadrilateral ABCD if and only if OA �OC = OB �OD: (See
Fig. 17.)
Hereby, the centroid of the quadrilateral ABCD is de�ned as follows:
Let E; F; G; H be the midpoints of the sides AB; BC; CD; DA of the quadri-

lateral ABCD: Then, according to the Varignon theorem, the quadrilateral EFGH
is a parallelogram, so that its two diagonals EG and FH bisect each other. In other
words, the segments EG and FH have a common midpoint. This midpoint is called
the centroid of the quadrilateral ABCD:

O

A

B

C

D

E

F

G

H

Fig. 17
Now, let�s prove Theorem 13. In order to do this, we have to verify two assertions:
Assertion 1. If the point O is the centroid of the quadrilateral ABCD; then OA �

OC = OB �OD:
Assertion 2. If OA � OC = OB � OD; then the point O is the centroid of the
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quadrilateral ABCD:
Before we establish any of these assertions, we start with a few observations holding

for every circumscribed quadrilateral ABCD (Fig. 18):

Since the point E is the midpoint of the segment AB; we have AE =
AB

2
=
a+ b

2
;

and thus

EX = jAX � AEj =
����a� a+ b2

���� = ����a� b2
���� = ja� bj

2
:

Similarly, GZ =
jc� dj
2

:

Also, note that the triangles EOX and GOZ are right-angled at their vertices X
and Z; since ]OXE = 90� and ]OZG = 90�:

O

A

B

C

D

X

Z

E

G

Fig. 18
Now, we are going to establish Assertions 1 and 2.
Proof of Assertion 1. First, we assume that a+ c 6= b+ d:
The point O is the centroid of the quadrilateral ABCD; i. e. the midpoint of

the segment EG: Thus, OE = OG: Also, OX = OZ: Hence, the two right-angled
triangles EOX and GOZ have the hypotenuse and one catet in common; thus, they are
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congruent, and we conclude that EX = GZ: Since EX =
ja� bj
2

and GZ =
jc� dj
2

;

this yields ja� bj = jc� dj : Thus, either a � b = c � d; or a � b = d � c: Now,
a � b = d � c would lead to a + c = b + d; what is impossible since we assumed
that a + c 6= b + d: Hence, it remains only the possibility a � b = c � d; that is,
a + d = b + c: Similarly to a � b = c � d; we can prove that a � d = c � b; and
thus 2a = (a+ d) + (a� d) = (b+ c) + (c� b) = 2c: In other words, a = c: Similarly,
b = d: Hence, opposite sides of the quadrilateral ABCD are equal; this means that
the quadrilateral ABCD is a parallelogram, and since it is circumscribed, it must be
a rhombus (in fact, among all parallelograms, only rhombi are circumscribed). Hence,
a = b = c = d; but this obviously contradicts with a+ c 6= b+ d:
Hence, our assumption that a+c 6= b+d was wrong, and we must have a+c = b+d:

As we have
OA �OC
OB �OD =

a+ c

b+ d
from Theorem 11, this yields OA �OC = OB �OD; and

Assertion 1 is proven.

Proof of Assertion 2. From Theorem 11, we have
OA �OC
OB �OD =

a+ c

b+ d
; so that

OA � OC = OB � OD immediately yields a + c = b + d: Hence, a � b = d � c; and
thus EX =

ja� bj
2

=
jd� cj
2

=
jc� dj
2

= GZ: Furthermore, OX = OZ: Thus, the two

right-angled triangles EOX and GOZ have the same catets; hence, they are congruent,
and it follows that OE = OG: So the point O lies on the perpendicular bisector of the
segment EG: Similarly, the point O lies on the perpendicular bisector of the segment
FH:
Since the circumscribed quadrilateral ABCD is convex, and E; F; G; H are the

midpoints of its sides, the linesEG and FH cannot be parallel. Thus, the perpendicular
bisectors of the segments EG and FH are not parallel as well; therefore, they have
one and only one common point. This common point is obviously the centroid of the
quadrilateral ABCD (since this centroid is the common midpoint of the segments EG
and FH and thus lies on their perpendicular bisectors).
But as we have shown that the point O lies on the perpendicular bisectors of the

segments EG and FH; the point O must be this common point. Hence, the point
O is the centroid of the quadrilateral ABCD: Assertion 2 is shown, and the proof of
Theorem 13 is complete.
Now we return to the case of an arbitrary circumscribed quadrilateral ABCD: We

prove an identity formulated by Pengshi in [12]:
Theorem 14. The radius � of the incircle of the circumscribed quadrilateral

ABCD satis�es

�2 =
bcd+ cda+ dab+ abc

a+ b+ c+ d
:

Our proof of this theorem will only slightly di¤er from Anipoh�s in [12]; the key is
the following lemma:
Theorem 15. Let x; y; z; w be four angles such that x+ y+ z +w = 180�: Then,

tan x+ tan y + tan z + tanw

= tan y � tan z � tanw + tan z � tanw � tan x+ tanw � tan x � tan y + tan x � tan y � tan z:

Proof of Theorem 15. From x + y + z + w = 180� it follows that x + y =
180� � (z + w) ; so that tan (x+ y) = tan (180� � (z + w)) = � tan (z + w) and thus
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tan (x+ y) + tan (z + w) = 0: But the addition formulas for the tan function yield

tan (x+ y) =
tan x+ tan y

1� tan x tan y and tan (z + w) =
tan z + tanw

1� tan z tanw ; hence, tan (x+ y) +

tan (z + w) = 0 becomes
tan x+ tan y

1� tan x tan y +
tan z + tanw

1� tan z tanw = 0: Multiplication by

(1� tan x tan y) (1� tan z tanw) yields

(tan x+ tan y) (1� tan z tanw) + (tan z + tanw) (1� tan x tan y) = 0;

thus

(tanx+ tan y � tan z tanw tan x� tan y tan z tanw)
+ (tan z + tanw � tan x tan y tan z � tanw tan x tan y) = 0;

thus

tan x+tan y+tan z+tanw = tan y tan z tanw+tan z tanw tan x+tanw tan x tan y+tanx tan y tan z:

This proves Theorem 15.
Now we come to the proof of Theorem 14: With the notations �; �; ; � for the

angles of the quadrilateral ABCD; we have

�+ � +  + � = ]DAB + ]ABC + ]BCD + ]CDA = 360�

(by the sum of angles in the quadrilateral ABCD). Now set x =
�

2
; y =

�

2
; z =



2
;

w =
�

2
: Then,

x+ y + z + w =
�

2
+
�

2
+


2
+
�

2
=
�+ � +  + �

2
=
360�

2
= 180�:

Thus, Theorem 15 yields

tan x+ tan y + tan z + tanw (2)

= tan y � tan z � tanw + tan z � tanw � tan x+ tanw � tan x � tan y + tan x � tan y � tan z:

(See Fig. 16.) During the proof of Theorem 11, we have shown that ]XAO = �

2
:

SinceOX ? AB; the triangleAXO is right-angled atX:Hence, OX = AX�tan]XAO;
so that � = a � tan x (since OX = �; AX = a and ]XAO = �

2
= x). Thus tan x =

�

a
;

similarly, tan y =
�

b
; tan z =

�

c
; and tanw =

�

d
: Thus, (2) becomes

�

a
+
�

b
+
�

c
+
�

d
=
�

b
� �
c
� �
d
+
�

c
� �
d
� �
a
+
�

d
� �
a
� �
b
+
�

a
� �
b
� �
c
:

Multiplication by abcd yields

�bcd+ �cda+ �dab+ �abc = �3a+ �3b+ �3c+ �3d:

In other words,

� (bcd+ cda+ dab+ abc) = �3 (a+ b+ c+ d) ; so that

�2 =
bcd+ cda+ dab+ abc

a+ b+ c+ d
;
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what proves Theorem 14.
A notation: If P is a point, and g is a line, we denote by dist (P ; g) the (non-

directed) distance from the point P to the line g: We will often use the following fact:

Area-distance relation: For any three points U; V; W we have jUVW j = 1

2
� VW �

dist (U ; VW ) :

This fact is just a restatement of the fact that the area of a triangle equals
1

2
�

sidelength � corresponding altitude (since in triangle UVW; the altitude from U to
VW is dist (U ; VW )).
Now comes an easy corollary of Theorem 3 (Fig. 4):
Theorem 16. We have

jAPBj
ab

=
jBPCj
bc

=
jCPDj
cd

=
jDPAj
da

: (3)

Proof of Theorem 16. By the area-distance relation, jBAP j = 1

2
�AP �dist (B; AP )

and jBCP j = 1

2
� CP � dist (B; CP ) ; so that

jAPBj
jBPCj =

jBAP j
jBCP j =

1

2
� AP � dist (B; AP )

1

2
� CP � dist (B; CP )

=
AP

CP
� dist (B; AP )
dist (B; CP )

:

Now,
dist (B; AP )

dist (B; CP )
= 1 (since dist (B; AP ) = dist (B; CP ) ; because AP and CP are

the same line), and
AP

CP
=
a

c
by Theorem 3. Hence, we get

jAPBj
jBPCj =

a

c
� 1 = a

c
=
ab

bc
;

so that
jAPBj
ab

=
jBPCj
bc

: Similarly,
jBPCj
bc

=
jCPDj
cd

and
jCPDj
cd

=
jDPAj
da

: This

proves Theorem 16.
Now we shall show a result by A. Zaslavsky from [13] (see also [14]) (Fig. 19):
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B

C

D

P

Fig. 19
Theorem 17. We have

1

dist (P ; AB)
+

1

dist (P ; CD)
=

1

dist (P ; BC)
+

1

dist (P ; DA)
:

Proof of Theorem 17. Due to the equation (3), we can de�ne

� =
jAPBj
ab

=
jBPCj
bc

=
jCPDj
cd

=
jDPAj
da

:

Then, jAPBj = �ab:
By the area-distance relation, jPABj = 1

2
� AB � dist (P ; AB) ; so that

dist (P ; AB) =
2 � jPABj
AB

=
2 � jAPBj
AB

=
2 � �ab
a+ b

(as jAPBj = �ab and AB = a+ b) ;

and thus

1

dist (P ; AB)
= 1�

2 � �ab
a+ b

=
a+ b

2 � �ab =
1

2�
� a+ b
ab

=
1

2�

�
1

a
+
1

b

�
:
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Similarly,
1

dist (P ; CD)
=
1

2�

�
1

c
+
1

d

�
; so that

1

dist (P ; AB)
+

1

dist (P ; CD)
=
1

2�

�
1

a
+
1

b

�
+
1

2�

�
1

c
+
1

d

�
=
1

2�

�
1

a
+
1

b
+
1

c
+
1

d

�
:

Similarly,
1

dist (P ; BC)
+

1

dist (P ; DA)
=
1

2�

�
1

a
+
1

b
+
1

c
+
1

d

�
:

Thus,
1

dist (P ; AB)
+

1

dist (P ; CD)
=

1

dist (P ; BC)
+

1

dist (P ; DA)
;

and Theorem 17 is proven.
Next comes a result whose part a) appeared in [15] (with a di¤erent proof) (Fig.

20):

O

A

B

C

D

W X

Y

Z

a a

b

b

c
c

d

d
P

HY

HZHX

HW

Fig. 20
Theorem 18. Let HX ; HY ; HZ ; HW be the orthocenters of triangles AOB; BOC;

COD; DOA:
a) The points P; HX ; HY ; HZ ; HW are collinear.
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b) Using directed segments, we have

�PHX
ab

=
PHY
bc

= �PHZ
cd

=
PHW
da

:

O

A

B

C
D Y

Z

b

d

HY

HZ

BY

Fig. 21
Proof of Theorem 18. (See Fig. 21.) Let BY be the foot of the altitude of triangle

BOC issuing from B: Then, the lines BBY and OY are two altitudes of triangle BOC
(for BBY ; this is clear, and for OY it follows from OY ? BC), and thus intersect at
the orthocenter HY of this triangle. Hence, ]BYHY = 90� and

]Y BHY = ]CBBY = 90� � ]BCBY (in the right-angled triangle BBYC)

= 90� � ]BCO:

Thus we have shown that ]BYHY = 90� and ]Y BHY = 90� � ]BCO: Similarly,
]DZHZ = 90� and ]ZDHZ = 90� � ]DCO:
The point O; being the incenter of the quadrilateral ABCD; lies on the angle

bisector of the angle BCD: Thus, ]BCO = ]DCO:
From ]BYHY = 90� = ]DZHZ and ]Y BHY = 90� � ]BCO = 90� � ]DCO =

]ZDHZ ; it follows that triangles BYHY and DZHZ are similar. Therefore,
BHY
DHZ

=

BY

DZ
: Since BY = b and DZ = d; this becomes

BHY
DHZ

=
b

d
:
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The line BHY is the line BBY ; thus, BBY ? CO yields BHY ? CO: Similarly,
DHZ ? CO: Consequently, BHY k DHZ :

O

A

B

C
D Y

Z

b

d

HY

HZ P0

Fig. 22
(See Fig. 22.) Now, denote by P0 the point of intersection of the lines HYHZ and

BD: Since BHY k DHZ ; the Thales theorem yields
BP0
DP0

=
BHY
DHZ

: Since
BHY
DHZ

=
b

d
;

this becomes
BP0
DP0

=
b

d
: But Theorem 3 asserts

BP

DP
=
b

d
: Thus,

BP0
DP0

=
BP

DP
: Hence,

the points P0 and P divide the segment BD in the same ratio (both internally, as
one can see by arrangement considerations5). Hence, these points P0 and P must
coincide. Thus, P0 2 HYHZ yields P 2 HYHZ : Hence, the lines PHY and PHZ
coincide. Similarly, the lines PHZ and PHW coincide, and the lines PHW and PHX
coincide. Thus, all four lines PHX ; PHY ; PHZ ; PHW coincide, i. e., the points P;
HX ; HY ; HZ ; HW are collinear. Theorem 18 a) is proven.

Because of BHY k DHZ ; the Thales theorem implies
P0HY
P0HZ

=
BHY
DHZ

: As we saw

above, P0 = P; so this becomes
PHY
PHZ

=
BHY
DHZ

: Together with
BHY
DHZ

=
b

d
; this yields

5One could also avoid arrangement considerations by working consequently with directed segments,
but this would require more theory.
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PHY
PHZ

=
b

d
: With directed segments, this transforms into

PHY

PHZ
= � b

d
(as arrange-

ment considerations show that the directed ratio
PHY

PHZ
is negative). Thus, d � PHY =

�b � PHZ ; so that
PHY
b

= �PHZ
d
: Dividing by c yields

PHY
bc

= �PHZ
cd

: Similarly,

PHW
da

= �PHZ
cd

and
PHW
da

= �PHX
ab

: Thus, �PHX
ab

=
PHY
bc

= �PHZ
cd

=
PHW
da

;

and Theorem 18 b) is proven. This completes the proof of Theorem 18.
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