0.1 Binomial Sum Divisible by Primes

1 (MM, Problem 1392, George Andrews) Prove that for any prime p in the interval PEN E16 $\left.] n, \frac{4 n}{3}\right], p$ divides

$$
\sum_{j=0}^{n}\binom{n}{j}^{4}
$$

Solution by Darij Grinberg.

The problem can be vastly generalized:

Theorem 1. Let ℓ be a positive integer. If $n_{1}, n_{2}, \ldots, n_{\ell}$ are positive integers and p is a prime such that $(\ell-1)(p-1)<\sum_{i=1}^{\ell} n_{i}$ and $n_{i}<p$ for every $i \in\{1,2, \ldots, \ell\}$, then $p \left\lvert\, \sum_{j=0}^{p-1}(-1)^{\ell j} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right.$.

Before we prove this, we first show some basic facts about binomial coefficients and remainders modulo primes. We recall how we define binomial coefficients:

Definition. The binomial coefficient $\binom{x}{u}$ is defined for all reals x and for all integers u as follows: $\binom{x}{u}=\frac{x \cdot(x-1) \cdot \ldots \cdot(x-u+1)}{u!}$ if $u \geq 0$, and $\binom{x}{u}=0$ if $u<0$.

Note that the empty product evaluates to 1 , and $0!=1$, so this yields $\binom{x}{0}=\frac{x \cdot(x-1) \cdot \ldots \cdot(x-0+1)}{0!}=$ $\frac{\text { empty product }}{0!}=\frac{1}{1}=1$ for every $x \in \mathbb{Z}$.

Theorem 2, the upper negation identity. If n is a real, and r is an integer, then $\binom{-n}{r}=(-1)^{r}\binom{n+r-1}{r}$.

Proof of Theorem 2. We distinguish two cases: the case $r<0$ and the case $r \geq 0$.
If $r<0$, then $\binom{-n}{r}=0$ and $\binom{n+r-1}{r}=0$, so that $\binom{-n}{r}=(-1)^{r}\binom{n+\bar{r}-1}{r}$ ensues.
If $r \geq 0$, then, using the definition of binomial coefficients, we have

$$
\begin{aligned}
\binom{-n}{r} & =\frac{(-n) \cdot(-n-1) \cdot \ldots \cdot(-n-r+1)}{r!}=(-1)^{r} \cdot \frac{n \cdot(n+1) \cdot \ldots \cdot(n+r-1)}{r!} \\
& =(-1)^{r} \cdot \frac{(n+r-1) \cdot \ldots \cdot(n+1) \cdot n}{r!}=(-1)^{r} \cdot\binom{n+r-1}{r} .
\end{aligned}
$$

Hence, in both cases $r<0$ and $r \geq 0$, we have established $\binom{-n}{r}=(-1)^{r}\binom{n+r-1}{r}$. Thus, $\binom{-n}{r}=(-1)^{r}\binom{n+r-1}{r}$ always holds. This proves Theorem 2.

Theorem 3. If p is a prime, if u and v are two integers such that $u \equiv v \bmod p$, and if k is an integer such that $k<p$, then $\binom{u}{k} \equiv\binom{v}{k} \bmod p$.

Proof of Theorem 3. If $k<0$, then $\binom{u}{k}=\binom{v}{k}$ (because $\binom{u}{k}=0$ and $\binom{v}{k}=0$), so that Theorem 3 is trivial. Thus, it remains to consider the case $k \geq 0$ only. In this case, k ! is coprime with p (since $k!=1 \cdot 2 \cdot \ldots \cdot k$, and all numbers $1,2, \ldots, k$ are coprime with p, since p is a prime and $k<p$).

Now, $u \equiv v \bmod p$ yields

$$
\begin{aligned}
k!\cdot\binom{u}{k} & =k!\cdot \frac{u \cdot(u-1) \cdot \ldots \cdot(u-k+1)}{k!}=u \cdot(u-1) \cdot \ldots \cdot(u-k+1) \\
& \equiv v \cdot(v-1) \cdot \ldots \cdot(v-k+1)=k!\cdot \frac{v \cdot(v-1) \cdot \ldots \cdot(v-k+1)}{k!}=k!\cdot\binom{v}{k} \bmod p
\end{aligned}
$$

Since k ! is coprime with p, we can divide this congruence by k !, and thus we get $\binom{u}{k} \equiv\binom{v}{k}$ $\bmod p$. Hence, Theorem 3 is proven.

Finally, a basic property of binomial coefficients:
Theorem 4. For every nonnegative integer n and any integer k, we have $\binom{n}{k}=$ $\binom{n}{n-k}$.

This is known, but it is important not to forget the condition that n is nonnegative (Theorem 4 would not hold without it!).

Now we will reprove an important fact:
Theorem 5. If p is a prime, and $f \in \mathbb{Q}[X]$ is a polynomial of degree $<p-1$ such that $f(j) \in \mathbb{Z}$ for all $j \in\{0,1, \ldots, p-1\}$, then $\sum_{j=0}^{p-1} f(j) \equiv 0 \bmod p$.

Before we prove Theorem 5, we recall two lemmata:
Theorem 6. If p is a prime and i is an integer satisfying $0 \leq i \leq p-1$, then $\binom{p-1}{i} \equiv(-1)^{i} \bmod p$.
Theorem 7. If N is a positive integer, and f is a polynomial of degree $<N$, then $\sum_{j=0}^{N}(-1)^{j}\binom{N}{j} f(j)=0$.

Theorem 6 appeared as Lemma 1 in [2], post $\# 2$. Theorem 7 is a standard result from finite differences theory.

Proof of Theorem 5. Let $N=p-1$. Then, f is a polynomial of degree $<N$ (since f is a polynomial of degree $<p-1$). Thus, Theorem 7 yields $\sum_{j=0}^{N}(-1)^{j}\binom{N}{j} f(j)=0$. Hence,
$0=\sum_{j=0}^{N}(-1)^{j}\binom{N}{j} f(j)=\sum_{j=0}^{p-1}(-1)^{j} \underbrace{\binom{p-1}{j}}_{\substack{\equiv(-1)^{j} \bmod p \\ \text { by Theorem } 6}} f(j) \equiv \sum_{j=0}^{p-1} \underbrace{(-1)^{j}(-1)^{j}}_{\substack{\left((-1)^{j}\right)^{2}=\left((-1)^{2}\right)^{j} \\=1^{j}=1}} f(j)=\sum_{j=0}^{p-1} f(j) \bmod p$.
This proves Theorem 5.

Proof of Theorem 1. The condition $(\ell-1)(p-1)<\sum_{i=1}^{\ell} n_{i}$ rewrites as $\ell(p-1)-(p-1)<$ $\sum_{i=1}^{\ell} n_{i}$. Equivalently, $\ell(p-1)-\sum_{i=1}^{\ell} n_{i}<p-1$.

For every $i \in\{1,2, \ldots, \ell\}$, we have $p-n_{i}-1 \geq 0$, since $n_{i}<p$ yields $n_{i}+1 \leq p$.
For every $i \in\{1,2, \ldots, \ell\}$ and every integer j with $0 \leq j<p$, we have

$$
\begin{aligned}
\binom{n_{i}}{j} & =\binom{-\left(-n_{i}\right)}{j}=(-1)^{j}\binom{\left(-n_{i}\right)+j-1}{j} \quad \text { (after Theorem 2) } \\
& \left.\equiv(-1)^{j}\binom{p-n_{i}+j-1}{j} \quad \text { (by Theorem 3, since }\left(-n_{i}\right)+j-1 \equiv p-n_{i}+j-1 \quad \bmod p \text { and } j<p\right) \\
& =(-1)^{j}\binom{p-n_{i}+j-1}{\left(p-n_{i}+j-1\right)-j}
\end{aligned}
$$

(by Theorem 4, since $p-n_{i}+j-1$ is nonnegative, since $p-n_{i}-1 \geq 0$ and $j \geq 0$)

$$
=(-1)^{j}\binom{p-n_{i}+j-1}{p-n_{i}-1}=(-1)^{j} \frac{\prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+j-1\right)-u\right)}{\left(p-n_{i}-1\right)!} \bmod p
$$

Hence, for every integer j with $0 \leq j<p$, we have

$$
\begin{aligned}
\prod_{i=1}^{\ell}\binom{n_{i}}{j} & \equiv \prod_{i=1}^{\ell}(-1)^{j} \frac{\prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+j-1\right)-u\right)}{\left(p-n_{i}-1\right)!}=\left((-1)^{j}\right)^{\ell} \prod_{i=1}^{\ell} \frac{\prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+j-1\right)-u\right)}{\left(p-n_{i}-1\right)!} \\
& =\left((-1)^{j}\right)^{\ell} \frac{\prod_{i=1}^{\ell} \prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+j-1\right)-u\right)}{\prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!} \bmod p,
\end{aligned}
$$

so that

$$
\begin{align*}
& \prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!\cdot(-1)^{\ell j} \prod_{i=1}^{\ell}\binom{n_{i}}{j} \\
& \equiv \prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!\cdot \underbrace{(-1)^{\ell j} \cdot\left((-1)^{j}\right)^{\ell}}_{\substack{=(-1)^{\ell j} \cdot(-1)^{\ell j} \\
=(-1)^{2 \ell j}=1, \text { since } \\
2 \ell j \text { is even }}} \frac{\prod_{i=1}^{\ell} \prod_{i=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+j-1\right)-u\right)}{\prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!} \\
& =\prod_{i=1}^{\ell\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}-1\right)!\cdot \frac{\prod_{i=1}^{\substack{u=0}} \prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!}{\prod_{u}}(p-1)-u\right) \\
& =\prod_{i=1}^{\ell} \prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+j-1\right)-u\right) \bmod p . \tag{1}
\end{align*}
$$

Now, define a polynomial f in one variable X by

$$
\begin{equation*}
f(X)=\prod_{i=1}^{\ell} \prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+X-1\right)-u\right) . \tag{2}
\end{equation*}
$$

Then,
$\operatorname{deg} f=\operatorname{deg}\left(\prod_{i=1}^{\ell} \prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+X-1\right)-u\right)\right)=\sum_{i=1}^{\ell} \sum_{u=0}^{\left(p-n_{i}-1\right)-1} \underbrace{\operatorname{deg}\left(\left(p-n_{i}+X-1\right)-u\right)}_{=1}$
(since the degree of a product of some polynomials is the sum of the degrees of these polynomials)

$$
=\sum_{i=1}^{\ell} \underbrace{\sum_{u=0}^{\left(p-n_{i}-1\right)-1} 1}_{\substack{=\left(p-n_{i}-1\right) \cdot 1 \\=p-n_{i}-1 \\=p-1-n_{i}}}=\sum_{i=1}^{\ell}\left(p-1-n_{i}\right)=\underbrace{\sum_{i=1}^{\ell}(p-1)}_{=\ell(p-1)}-\sum_{i=1}^{\ell} n_{i}=\ell(p-1)-\sum_{i=1}^{\ell} n_{i}<p-1
$$

In other words, f is a polynomial of degree $<p-1$. Besides, obviously, $f \in \mathbb{Q}[X]$, and we have $f(j) \in \mathbb{Z}$ for all $j \in\{0,1, \ldots, p-1\}$ (since $f \in \mathbb{Z}[X]$). Thus, Theorem 5 yields $\sum_{j=0}^{p-1} f(j) \equiv 0$ $\bmod p$. Thus,

$$
\begin{aligned}
0 & \equiv \sum_{j=0}^{p-1} f(j)=\sum_{j=0}^{p-1} \prod_{i=1}^{\ell} \prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+j-1\right)-u\right) \quad(\text { by }(2)) \\
& =\sum_{j=0}^{p-1} \prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!\cdot(-1)^{\ell j} \prod_{i=1}^{\ell}\binom{n_{i}}{j} \\
& \quad\left(\text { since } \prod_{i=1}^{\ell} \prod_{u=0}^{\left(p-n_{i}-1\right)-1}\left(\left(p-n_{i}+j-1\right)-u\right)=\prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!\cdot(-1)^{\ell j} \prod_{i=1}^{\ell}\left(\begin{array}{c}
n_{i} \\
j \\
j
\end{array}\right) \text { by }(1)\right) \\
& =\prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!\cdot \sum_{j=0}^{p-1}(-1)^{\ell j} \prod_{i=1}^{\ell}\binom{n_{i}}{j} \bmod p .
\end{aligned}
$$

In other words,

$$
\begin{equation*}
p \left\lvert\, \prod_{i=1}^{\ell}\left(p-n_{i}-1\right)!\cdot \sum_{j=0}^{p-1}(-1)^{\ell j} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right. \tag{3}
\end{equation*}
$$

For every $i \in\{1,2, \ldots, \ell\}$, the integer $\left(p-n_{i}-1\right)$! is coprime with p (since $\left(p-n_{i}-1\right)$! $=$ $1 \cdot 2 \cdot \ldots \cdot\left(p-n_{i}-1\right)$, and all numbers $1,2, \ldots, p-n_{i}-1$ are coprime with p because p is a prime and $\left.p-n_{i}-1<p\right)$. Hence, the product $\prod_{i=1}^{\ell}\left(p-n_{i}-1\right)$! is also coprime with p. Thus, (3) yields

$$
p \left\lvert\, \sum_{j=0}^{p-1}(-1)^{\ell j} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right.
$$

Thus, Theorem 1 is proven.
Theorem 1 is a rather general result; we can repeatedly specialize it and still get substantial assertions. Here is a quite strong particular case of Theorem 1:

Theorem 8. Let ℓ be an even positive integer. If $n_{1}, n_{2}, \ldots, n_{\ell}$ are positive integers and p is a prime such that $(\ell-1)(p-1)<\sum_{i=1}^{\ell} n_{i}$ and $n_{i}<p$ for every $i \in\{1,2, \ldots, \ell\}$, then $p \left\lvert\, \sum_{j=0}^{p-1} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right.$.

Proof of Theorem 8. Theorem 1 yields $p \left\lvert\, \sum_{j=0}^{p-1}(-1)^{\ell j} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right.$. But ℓ is even, so that ℓj is even for any $j \in \mathbb{Z}$, and thus

$$
\sum_{j=0}^{p-1} \underbrace{(-1)^{\ell j}}_{\substack{=1, \text { since } \\ \ell j \text { is even }}} \prod_{i=1}^{\ell}\binom{n_{i}}{j}=\sum_{j=0}^{p-1} 1 \prod_{i=1}^{\ell}\binom{n_{i}}{j}=\sum_{j=0}^{p-1} \prod_{i=1}^{\ell}\binom{n_{i}}{j} .
$$

Hence, $p \left\lvert\, \sum_{j=0}^{p-1}(-1)^{\ell j} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right.$ becomes $p \left\lvert\, \sum_{j=0}^{p-1} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right.$. Therefore, Theorem 8 is proven.
Specializing further, we arrive at the following result (which I proved in [1], post \#2):
Theorem 9. If n and k are positive integers and p is a prime such that $\frac{2 k-1}{2 k}(p-1)<$ $n<p$, then $p \left\lvert\, \sum_{j=0}^{n}\binom{n}{j}^{2 k}\right.$.

Proof of Theorem 9. Let $\ell=2 k$. Define positive integers $n_{1}, n_{2}, \ldots, n_{\ell}$ by $n_{i}=n$ for every $i \in\{1,2, \ldots, \ell\}$. Then, $n_{i}<p$ for every $i \in\{1,2, \ldots, \ell\}$ (since $n_{i}=n<p$) and

$$
(\ell-1)(p-1)=(2 k-1)(p-1)=2 k \cdot \underbrace{\frac{2 k-1}{2 k}(p-1)}_{<n}<2 k n=\ell n=\sum_{i=1}^{\ell} n=\sum_{i=1}^{\ell} n_{i} .
$$

Hence, Theorem 8 yields $p \left\lvert\, \sum_{j=0}^{p-1} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right.$. But $\prod_{i=1}^{\ell}\binom{n_{i}}{j}=\prod_{i=1}^{\ell}\binom{n}{j}=\binom{n}{j}^{\ell}=\binom{n}{j}^{2 k}$, and thus

$$
\begin{aligned}
\sum_{j=0}^{p-1} \prod_{i=1}^{\ell}\binom{n_{i}}{j} & =\sum_{j=0}^{p-1}\binom{n}{j}^{2 k}=\sum_{j=0}^{n}\binom{n}{j}^{2 k}+\sum_{j=n+1}^{p-1} \underbrace{\substack{n \\
j>n \text { yield }\left(\begin{array}{c}
n \\
j
\end{array}\right)=0}}_{=0, \text { since } n \geq 0 \text { and }} \quad(\text { since } n<p) \\
& =\sum_{j=0}^{n}\binom{n}{j}^{2 k}+\underbrace{\sum_{j=n+1}^{p-1} 0}_{=0}=\sum_{j=0}^{n}\binom{n}{j}^{2 k} .
\end{aligned}
$$

Therefore, $p \left\lvert\, \sum_{j=0}^{p-1} \prod_{i=1}^{\ell}\binom{n_{i}}{j}\right.$ becomes $p \left\lvert\, \sum_{j=0}^{n}\binom{n}{j}^{2 k}\right.$. Hence, Theorem 9 is proven.
The problem quickly follows from Theorem 9 in the particular case $k=2$.

References

1 PEN Problem E16, http://www.mathlinks.ro/viewtopic.php?t=150539
2 PEN Problem A24, http://www.mathlinks.ro/viewtopic.php?t=150392

