
Asynchronous FIFO Architectures
(Part 1)

 Vijay A. Nebhrajani

Designing a FIFO is one of the most common problems an ASIC designer comes
across. This series of articles is aimed at looking at how FIFOs may be designed -- a
task that is not as simple as it seems.

At the onset, note that FIFOs are usually used for domain crossing, and are therefore
dual clock designs. In other words, the design works off two clocks, and so the most
general case is a FIFO that is designed with no relationship assumed between these two
clocks. However, we will not start with such an architecture -- we will start with the trivial
case of a FIFO that runs on just one clock. I imagine that such a circuit will have limited
use in practice, but it serves the very useful purpose of setting the stage for more
complex designs.

This series of articles is designed to follow the course of development of FIFO designs
from the trivial to the general. This will be the series of articles:

1. Single clock architecture
2. Dual clock architectures - Architecture 1.
3. Dual clock architectures - Architecture 2.
4. Dual clock architectures - Architecture 3.
5. Pulse mode FIFO.

The trivial case of a single clock FIFO

There are several architectures that are possible for a FIFO; and these include ripple
FIFOs, shift registers and other such architectures that we will not care much about. We
will concentrate on architectures that involve random access memory arrays. Such an
architecture is shown in Fig 1.

DPRAM Array
(Array Size Deep)

Status

rd_ptrwr_ptr

wr_addr rd_addr

clk clk

clk

valid_wr valid_rd

wr_en rd_en

empty

full

wcnt

wr_data rd_data

clk clk

Figure 1. A FIFO Architecture

Analyzing, we see that there is a RAM array with separate read and write ports. This is
chosen for convenience. If you have a single port memory, you would have to include an
arbiter that would grant access to one operation (read or write) at one time. We choose
Dual Port RAMs (not necessarily true dual port, because we simply want a separate
read and write port) because these illustrate more realistic situations.

The read and write ports have separate read and write addresses, generated by two

counters of width log2(array_size). We don't care much about the data width right
now, but this does become an important parameter in choosing architectures later. For
consistency we will refer to these counters as the "read pointer" and the "write
pointer". The write pointer points to the location that will be written next, and the read

pointer points to the location that will be read next. A write increments the write pointer,
and a read increments the read pointer.

The last block we see is the "status" block. The responsibility of this block is to
generate the "empty" and "full" signals to the FIFO. These signals tell the outside
world that the FIFO has reached a terminal condition: If "full" is active, then the FIFO has
reached a terminal condition for write and if "empty" is active, the FIFO has reached a
terminal condition for read. A terminal condition for write implies that the FIFO has no
space to accommodate more data and a terminal condition for read implies that the
FIFO has no more data available for readout. The status block may also report the
number of empty or full locations in the FIFO, and this is accomplished by an arithmetic
operation on the pointers.

The actual count of empty or full locations does not play much of a part in the FIFO itself;
it is used as a reporting mechanism to the outside world. However, the empty and full
signals play a very important role within the FIFO – they block access to further reads
and writes respectively. The importance of this blocking does not lie in the fact that data
may be overwritten (or read out twice); the critical importance lies in the fact that pointer
positions are the only control we have over the FIFO, and writes or reads change the
pointers. If we do not block the pointers from changing state at terminal conditions, we
will have a FIFO that either "eats" data or "generates" data, and that is quite
unacceptable.

Further analysis: The DPRAM could have "registered" reads -- this means that the
output data from the array is registered. If this is so, the read pointers will have to be
designed to "read and increment". This means that you will have to provide an explicit
read signal before the data at the output of the FIFO is valid. On the other hand, if the
DPRAM does not have registered outputs, valid data is available as soon as it is written;
you read this data first, and increment the pointer later. This affects the logic that reads
data out from the FIFO and the logic that performs the empty/full calculation. For the
sake of simplicity we will only treat the case where the DPRAM does not provide
registered outputs. It is not very complex to extend the same reasoning (that we will use)
to the case of a registered output DPRAM.

Functionally the FIFO works as follows: At reset, the pointers are both 0. This is the
empty condition of the FIFO, and empty is pulled high (we will use the active high
convention) and full is low. At empty, reads are blocked and so the only operation
possible is write. A write loads location 0 of the array and increments the write pointer to
1. This causes the empty signal to go LOW. Assuming that there are no reads and
subsequent cycles only write to the FIFO, there will be a time when the write pointer will
equal array_size -1. This means that the last location in the array is the next location
that will be written to. At this condition, a write will cause the write pointer to become 0,
and set full.

Note that in this condition the write and read pointers are equal, but the FIFO is full, and
not empty. This implies that the full/empty decision is not based on the pointer values
alone, but on the operation that caused the pointers to become equal. If the cause of
pointer equality is a reset or a read, the FIFO is deemed empty; if the cause is a write,
the FIFO is full.

Now assume that we begin a series of reads. Each read will increment the read pointer,
to the point where the read pointer equals array_size -1. At this point, the data from
this location is available on the output bus of the FIFO. Succeeding logic reads this data
and provides a read signal (active for one clock). This causes the read pointer to
become equal to the write pointer again (after both pointers have completed one cycle
through the array). However, since this equality came about because of a read, empty is
set.

Thus, we have the following for the empty flag: A write unconditionally clears empty.
 read_pointer = (array_size -1) and a read sets empty.

and the following for the full flag: A read unconditionally clears full.
 write_pointer = (array_size -1) and a write sets full.

However, this is a special case, since in general reads may start as soon as the FIFO is
not empty (the reading logic need not wait for the FIFO to become full), so these
conditions have to be modified to accommodate any read_pointer and
write_pointer values.

A little thought shows that we have organized the array as a circular list. Thus, if the
write pointer is numerically greater than the read pointer by 1 and a read occurs, the
FIFO is empty. This works just fine for the boundary case described above as long as
we use unsigned (n-bit) arithmetic. Similarly, if the read pointer is numerically greater
than the write pointer by 1 and a write occurs, the FIFO is full.

This leads to the conditions:
 A write unconditionally clears empty.
(write_pointer = read_pointer + 1) and a read sets empty.

 A read unconditionally clears full.
(read_pointer = write_pointer + 1) and a write sets full.

Note that a simultaneous read and write increments both pointers, but does not alter the
state of the empty and full flags. A simultaneous read and write is not allowed at the full
and empty boundaries.

With this we can now define the status block of the FIFO. I am providing the code in
VHDL, but since this is synthesizable, translation to Verilog is easy.

library IEEE, STD;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity status is
port (reset : in std_logic;

clk : in std_logic;
fifo_wr : in std_logic;
fifo_rd : in std_logic;
valid_rd : out std_logic;
valid_wr : out std_logic;
rd_ptr : out std_logic_vector(4 downto 0);

wr_ptr : out std_logic_vector(4 downto 0);
empty : out std_logic;
full : out std_logic

);
end status;

architecture status_A of status is
signal rd_ptr_s : std_logic_vector(4 downto 0);
signal wr_ptr_s : std_logic_vector(4 downto 0);
signal valid_rd_s : std_logic;
signal valid_wr_s : std_logic;

begin
empty_P : process(clk, reset)

begin
if (reset = '1') then

empty <= '1';

elsif (clk'event and clk = '1') then
if (fifo_wr = '1' and fifo_rd = '1') then

-- do nothing
null;

elsif (fifo_wr = '1') then
-- write unconditionally clears empty
empty <= '0';

elsif (fifo_rd = '1' and (wr_ptr_s = rd_ptr_s + '1')) then
-- set empty
empty <= '1';

end if;
end if;

end process;

full_P : process(clk, reset)

begin
if (reset = '1') then

full <= '0';

elsif (clk'event and clk = '1') then
if (fifo_rd = '1' and fifo_wr = '1') then

-- do nothing
null;

elsif (fifo_rd = '1') then
-- read unconditionally clears full

full <= '0';

elsif (fifo_wr = '1' and (rd_ptr_s = wr_ptr_s + '1')) then
-- set full
full <= '1';

end if;

end if;

end process;

valid_rd_s <= '1' when (empty = '0' and fifo_rd = '1');
valid_wr_s <= '1' when (full = '0' and fifo_wr = '1');

wr_ptr_s_P : process(clk, reset)

begin
if (reset = '1') then

wr_ptr_s_P <= (others => '0');

elsif (clk'event and clk = '1') then
if (valid_wr_s = '1') then

wr_ptr_s <= wr_ptr_s + '1';

end if;
end if;

end process;

rd_ptr_s_P : process(clk, reset)

begin
if (reset = '1') then

rd_ptr_s_P <= (others => '0');

elsif (clk'event and clk = '1') then
if (valid_rd_s = '1') then

rd_ptr_s <= rd_ptr_s + '1';

end if;
end if;

end process;

rd_ptr <= rd_ptr_s;
wr_ptr <= wr_ptr_s;

end status_A;

The circuit for this is shown in Fig 2.

rd_ptr
+1

(INC) ==

wr_ptr_s =
rd_ptr_s + 1

fifo_rd

fifo_wr

clk
rd_en valid_rd_s

empty

clk

valid_rd_s

wr_ptr
+1

(INC) ==

rd_ptr_s =
wr_ptr_s + 1

fifo_rd

fifo_wr

clk
wr_en valid_wr_s

empty

clk

valid_wr_s

RD_CLK DOMAIN

WR_CLK DOMAIN

Figure 2: Circuit for Status block and pointers of FIFO of Figure 1.

The observant reader will notice that generating the full or empty flags requires the use
of both pointers. In the case of a dual clock design, the read pointer is expected to work
off the read clock and the write pointer off the write clock. This raises unexpectedly
thorny issues -- as you may try and see for yourself. These issues and some solutions
will be covered in future articles in this series.

__

