The Design of Everyday Things
Donald A. Norman

Summarized by Duke Rohe
· Start recognizing poor design. How many times have you pushed instead of pulled a door. Or pushed the latch on the hinge side.

· Make things visible, guide for use: Knobs are for turning, slots are for putting interesting things into. When things are obvious: no picture, no instructions required.

· Natural mapping is showing an obvious relationship between controls (like a light switch)

· An example of great mapping is the electric seat controls on a Mercedes. It consists of cushion-shaped levers and positioned like the shape of a car seat. Pressing the levers make the car seat correspondingly move in the same area. No instructions or labeling is needed. In most cars, light switch, turn, wiper switch are good of picture mapping.

· Feedback tells the user the right or the wrong way to do it. Take a diskette. At first it appears it is square, but it is rectangle. That is why it won’t fit in sideways. Instant feedback (Japanese refer to this as Poka-Yoke (mistake proofing)

· It usually takes a designer five or six attempts to get the product right.

· What good is technology if it is too complex to use?

· Technology should never be used as an excuse for poor design. As the number of options and capabilities increase, so too must the complexity of the controls.

· The same technology that simplifies life by adding more functions also complicates it by making the device harder to learn, harder to use.

· Hand controls for hospital beds have to be usable in the dark by feel only.

· Why did you make an error? Didn’t you read the manual *!? Some excuse for poor design.

· The designer must assume that all possible errors will occur.

· Problems with design - there are gulfs of execution and evaluation. The trick is to constrain the choices such that the right one is evident and easily performed.

· How to make a procedure orientee-proof. Show

· How the right way looks

· How the wrong way looks

· Availability of support information

· What is needed

· What happens next

· Who should do it

· How important it is

· Capture attention - both the watchout, and friendly

· Instructions are best taught by demonstration and best learned through practice.

· To pass the right knowledge and make the right choice: use the power of constraints to exert controlled choice.

· Remember Cntrl-Alt-Del -- that was the bane of design.

· There are two aspects of an alarm: the signal and the message. The ideal reminder has both.

· How evident is the design of your stove with their controls RF LF RR LR

· A good designed door key is made so orientation of use doesn’t matter. It is not a big deal until you are standing outside the car in a storm.

· Distinguish between switches to know which controls what. At a Nuclear plant, operators installed and Heineken and Michelobe tap handles to delineate between two important switches.

· Make relevant parts visible and give an action immediate and obvious feedback.

· Aesthetics often win over visible function.

· Unwarranted complexity can be avoided with a good display (of how to’s).

· Wide and deep decisions. Wide may have many choices but a single decision brings you to the right conclusion. Deep require a series of choices to arrive to the right conclusion.

· Only six items can be remembered at one time.

· The degree of correct design should match the consequence to a wrong decision or action.

· Microwave has an interlocking design as a constraint of a wrong action.

· Make actions reversible.

· Design is the successive retooling of constraints until a unique product is left.

· A left-handed ruler is designed left to right from 6 to 1. Why is this important?

· Beware of creeping feature-ism. Is it really desired.

· The way to do things wrong:

· Make things invisible, widen the gulf of execution.

· Be arbitrary. Make non obvious command names.

· Make operations unintelligible, use unintelligible verbiage.

· Make operations dangerous. Allow a single erroneous action to destroy invaluable work.

· Explorable systems should invite experimentation. Good software is designed this way.

· User-centered design. The user knows what to do and can tell what is going on.

· Design it so once the user understands the process, he can bypass the prompts.

· Don’t over-automate. Don’t take away user control.

· Design for error. Plan for it. Exploit forcing (the right way) functions.

Cliifnot/design

