1

http://www.mandrakeuser.org/docs/admin/index.html

System Administration

Being 'root'
Revision / Modified: Feb. 11, 2002
Author: Tom Berger

Original documents:
http://www.mandrakeuser.org/docs/admin/aroot.html

http://www.mandrakeuser.org/docs/admin/aroot2.html

Introducing 'root'

Unix and its clones, among which is Linux, have been designed as multi-user systems. This was inevitable since back in those days, personal computers simply didn't exist. A network structure consisted of a server, the mainframe, to which the clients connected via 'dumb' terminals.

A centralized and shared resource requires someone maintaining it, the system administrator, also known as 'superuser', or 'root'.
The account name 'root' for this function is customary, but not obligatory. I think it stems from the fact that 'root' is the only account having write permissions on the '/' (or 'root') directory, which is the root of the file system (thus the name).
'root's power does not come from its name but from its user ID, which is '0':

echo $UID
0
The file permissions system in Unix is programmed to restrict access for all users on a system, except for the user account (or accounts) which do have the UID 0 in '/etc/passwd':

root:x:0:0:root:/root:/bin/bash
Since everything in Unix is done via files, this means absolute control over the system.

Notice that 'root' is sometimes also referred to as 'rute' in an attempt to honor the fact that there are also female system administrators. Don't look at me like that, it wasn't my idea ;-)

Using root Considered Harmful

It is very tempting for users new to Unix-like systems, especially those who come from operating systems without a permissions system, to get rid of this system by logging into the 'root' account and staying there. While this is a momentary relief, there are many good reasons you should get used to doing your everyday work on the system on a user account.

'root' is the administrator account

OK, this may sound lame at first, but hear me out. You can shoot yourself in the foot royally on every operating system. Operating system designers and implementers usually do their best to prevent you from doing that. But these mechanisms only work if you use the system how it was intended to be used. The Unix operating system assumes that 'root' knows exactly what he is doing. Remember that when Unix came into being, administrators were masters over huge networks in a time were the average man on the street hadn't even heard of computers. For 'root' there is no safety net whatsoever, no 'are you really sure you want to do this?' dialogs, no automatic backups. If you screw up as 'root' in Unix, you really screw up.

"Here's another story. Just imagine having the sendmail.cf file in /etc. Now, I was working on the sendmail stuff and had come up with lots of sendmail.cf.xxx which I wanted to get rid of, so I typed rm -f sendmail.cf. *. At first I was surprised about how much time it took to remove some 10 files or so. Hitting the interrupt key, when I finally saw what had happened was way to late, though."
(Richard Eiger in comp.unix.admin)

He wanted to type rm -f sendmail.cf.*. The extra space expanded the command to "delete a file called sendmail.cf. and every other file in the directory (*)" ...

You are much more likely to damage a Unix system using it as 'root' as you are for example in Windows 9x. Because the designers of Windows 9x knew that there were no permissions in this system worth speaking of they invented other methods to protect you and your system.

Not the Unix way

What's the point in using a different operating system when you just make it act like the one you already know? Apart from the fact that this strategy won't work anyway, what do you do if you're on a different Unix system and don't have the possibility to become 'root'? You will never feel at home as long as you don't accept that some things are done differently on Unix, and done differently for a reason, not just to annoy you (although it can pretty much look like that sometimes *grin*).
Security

All processes started by 'root' have 'root' privileges, which means they can do pretty much everything they want. It doesn't even need to be a malicious program like a virus or a worm. Those are very rare in Linux (so far).
Programming errors do happen, and even more so in Linux programs, which rely on the user as an active tester, than in Windows, where testing is usually done before a product is released. This is possible because the programmers can rely on the permissions mechanism in Linux to prevent their programs from doing any real damage. If you circumvent that by starting these programs as 'root', you don't have any justified reason to complain afterward when your system is broken.
But there's another point. Even mature programs can contain security related programming errors (also known as 'exploits'). These errors can allow an attacker to execute commands of his own design with the permissions of the faulty program. If this program runs with 'root' privileges, you have basically handed over the control to this malicious intruder.

The baseline is: only be root when it is absolutely necessary for the task at hand.
Tasks Which Require root Privileges

Of course there are tasks which require 'root' privileges, but these are not everyday issues. What's more is that when you use tools like the Mandrake Control Center, you will be prompted for the 'root' password automatically if you are not 'root'. And there are other tools which allow you to assume and drop 'root' privileges whenever you need to. These will be discussed on the next page.

Generally speaking, there are only two tasks which require 'root' privileges:

1. Moving files or directories into or out of system directories, copying files into system directories. Moving files out of system directories requires root privileges, because the original file is deleted in the process.
Installing software belongs here, too. RPMs usually install to system directories which are writable by root only. If you are compiling from source, you can configure most software to install and run from your user home directory, in which case you don't need 'root' privileges to install the software.
Notice that compiling software does not require 'root' privileges when done in your home directory and in fact shouldn't be done as 'root' for security reasons.

2. Writing to files in system directories. This involves editing system configuration files, either by hand or by a utility, but also running programs which write output to files in system directories like 'updatedb'. Notice that many programs allow a 'per user' configuration by files in the user's home directory.
Another case is changing permissions on files or directories you do not own.
Notice that in case to access files in system directories, you don't need to be root in the vast majority of cases. You can read most configuration files and all documentation files just fine from your user account.

So, what are these fabled utilities which allow you to become root at will, then?
Becoming 'root' With 'su'

Administrative tasks do not require you to login anew, instead you just type

su
at a (virtual) shell prompt and supply the root password. Now you are 'root' and can run any program as 'root', even graphical ones. You can return to your user account by hitting <CTRL d>.

A convenient way saving you many 'su's is to open a virtual terminal, running su once and use it for all the 'root' tasks during your session. Of course you have to be sure that no one has physical access to your computer during this session. Furthermore it is advisable to close this terminal or to log out of the 'root' account while you are online.

One important thing to keep in mind are the different $PATH settings for users and root:

· user: /usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/user/bin:

· root: /sbin:/usr/sbin:/bin:/usr/bin:/usr/X11R6/bin

So, if there is an executable in '/usr/local/bin', 'root' will have to supply the full path to run this application, otherwise the shell will just return 'not found'. Same goes for executables in the 'sbin' directories and users.

If you want to preserve environment variables like $PATH, use

su -p
Now root's $PATH is the same as the user's who su'd. Note that this command will show the user's home directory as root's home directory (since $HOME is preserved)!
The disadvantage of this switch is that directories which usually contain administrative commands like '/sbin/' and '/usr/sbin' are now no longer part of 'root's' $PATH. You have to supply the full path now if you want to run executables from this directory or adjust the $PATH setting.

Another convenient option for 'su' is '-c':

su -c "command"
will execute command as 'root' and then immediately return to the user account. One drawback is that command line completion doesn't work with su -c, so if you want to install an RPM, you better type rpm -i rpm<TAB> first and then put su -c in front of it. Do not forget to add the quotes around the command to be executed.
Another drawback is that you can't start graphical programs this way.

You can shorten this somewhat arduous procedure procedure by adding this line to '/etc/inputrc':

"\C-xs": "\C-e\"\C-asu -c \""
and from the next session on you just hit <CTRL x> on any given command line to turn it into su -c "command"!

'su' Going Graphical: 'kdesu'

'kdesu' is KDE's way to run applications with 'root' privileges on a user's desktop. The syntax is like that of 'su':

kdesu -c "command"
This will pop up a small window asking for the root password and then execute the program as 'root'.

You can run any program as 'root' via a graphical login window, you just have to create an entry in the menu for it and use the 'kdesu -c ""' command around the command which invokes that program.

Notice that all other desktops and window managers will use 'kdesu', too, as long as the 'kdebase' package is installed. I haven't found out yet what Mandrake Linux provides in case kdebase isn't installed. Maybe some KDE hater can help me out here ;-).
'su' Made Convenient: 'sudo'

'sudo' is a highly sophisticated but yet quite easy to use tool to let users do some tasks as root, even in a large network. 'sudo' supports extensive logging in connection with '/etc/syslog.conf' and the internal mailing system.

You can either get the source from 'sudo's home page or install it your Mandrake Linux CD. Control freaks and network administrators should get the source since there are a lot of important options to choose from at compile time, for everyone else (me included :)) the RPM will do.

'sudo's configuration file is '/etc/sudoers'. You configure it with the command visudo (man visudo). For those of you not familiar with the 'vi' editor, here are some basic commands:

· <i> puts you into 'insert' mode

· <ESC> <Z> <Z> exits and saves

· <ESC> <:> <q> <!> exits without saving

However, you can use another editor by setting the system variable $EDITOR appropriately (e.g. export EDITOR=/usr/bin/emacs).

You'll find the main documentation in man sudoers. It is very concise and exhaustive, in most cases however reading the EXAMPLES section will do.
A very simple example of '/etc/sudoers' for a single-user machine would be:

Host alias specification

User alias specification

Cmnd alias specification

Cmnd_Alias RPM = /bin/rpm

Cmnd_Alias SHUTDOWN = /usr/sbin/shutdown

User privilege specification

root ALL = (ALL) ALL

jim ALL = NOPASSWD: RPM, SHUTDOWN

The three aliases sections are used to define internal variables which can then be used in the last section.

The first 'ALL' refers to machines in the network, which you can define with Host_Alias. Since this is a stand-alone machine, it doesn't matter.
This sudoers file allows user 'jim' to install and remove RPM's and tarballs, and to shutdown the machine. The syntax is

sudo command (e.g. sudo rpm -i blah.rpm, no quotes!)

'NOPASSWD' means just that: 'jim' won't have to provide a password. You have to specify this option explicitly because by default 'sudo' asks for the account password before executing the command. You should use this option only if no other Linux literate has physical access to your machine. Furthermore you can set the option passwd_timeout min to specify how long the password will be kept in memory. A funny option is insults which will insult everyone who provides a wrong password :-).
There are lots of security related options you should consider carefully if working in an untrusted environment.

To list the sudo rights of the current user, type sudo -l:

User jim may run the following commands on this host:
(root) NOPASSWD: /bin/rpm
(root) NOPASSWD: /usr/sbin/shutdown
This will allow you to do the two most common administrative tasks on your machine more conveniently without compromising your security that much.

Rescue
Revision / Modified: Jan. 28, 2002
Author: Tom Berger

Original documents:
http://www.mandrakeuser.org/docs/admin/arecov.html http://www.mandrakeuser.org/docs/admin/arecov2.html http://www.mandrakeuser.org/docs/admin/arecov3.html http://www.mandrakeuser.org/docs/admin/arecov4.html

Rescue vs Reinstalling

Very often less experienced Linux users counter system problems with the troubleshooting technique they've learned on other operating systems: they reinstall the whole operating system.
This of course does not only cost quite a massive account of time, it also prevents them to feel really secure with the system, all the more since these users usually do not keep backups.

There are very few compelling reasons to ever reinstall Linux, like massive file system corruption or a hard drive failure. You can repair everything else either from within the system or from outside (via a network connection or a boot disk/CD). In contrast to other operating systems all configuration files are in plain text and can be edited with the most simple text editor. Furthermore you can reinstall, upgrade or downgrade every part of the system, since Linux only needs a minimal set of files to provide the basic functions of an operating system. Being able to repair a system is what makes you an administrator; it is arguably the most important step from being controlled by your system to take control of it.

Basic Rescue Tools

There is nothing wrong with using graphical tools to configure and administer your system. These tools often make it easier to handle complex tasks and to get things working.
In a case of emergency, however, you will most likely not be able to access them. That's why Linux administration requires at least some rudimentary knowledge of using the 'traditional' command line Unix tools.

vi

The most basic rescue tool, like it or not, is the text editor. In most cases, and on the Mandrake Linux rescue system, that's the 'vi' editor, a minimal version of 'vim'.

You open a file with 'vi' thus:

vi file
If the file isn't in the current directory, you have to put the path to that file in front of the file name:

vi /some/path/file
'vi' now displays the file. To edit the displayed file, press the <i> key. You can then move around with cursor keys insert and delete text with the usual keys.
To save an edited file, press the <ESC> key and then press <Z> twice. Notice that 'vi' makes a difference between capital and small letters, so make sure you press a capital 'Z' twice here.
To quit editing a file without saving the changes you made to it, press these keys one after the other <ESC> <:> <q> <!> <ENTER>.

Of course there's much more to 'vi' and 'vim'. Even if you do not adopt it as your favorite editor, you should get comfortable with using its basic functions, since this training will be of use to you some day. You might want to read Vikram Vaswani's Vi 101 for an entertaining introduction into the Vi editor and print out Krissy J's Vi short command reference.

Notice:

· The 'vi' command does not work on Mandrake Linux when the 'vim-enhanced' package is installed and you are working on a partition which only contains the root directory with no other partitions mounted.
Use vim-minimal instead or run

update-alternatives --config vi
to set the name of the executed binary back to '/bin/vim-minimal'.
mount

Although the current Mandrake Linux rescue system mounts your Linux partition automatically when started, there might be circumstances when you have to mount or unmount partitions or external media by hand, e.g. when your are using an older release or when your machine doesn't have a bootable CD drive, if you need to do a file system check or need access to external media.

Mounting is discussed in depth in another article in this section, but here are the basics.

In order to mount a medium, you need to know its device file name. If it is a partition on a hard disk, it's pretty easy to find out:

fdisk -l /dev/device
device stands for the device file name of the hard disk. In most case, it will be 'hda', the first IDE hard disk on the first IDE channel:

fdisk -l /dev/hda
This will list all partitions on that disk along with their device names. The second hard disk ('slave' on the first IDE channel) would be 'hdb', the first disk on the second channel 'hdc' etc. Notice that if you've got your hard disk connected to an UDMA-100 controller (on-board or card), the name of the first hard disk is 'hde'.
For more device file names read the article linked to above.

To mount a medium, you type

mount /dev/device mount_directory
mount_directory can be any existing directory on the current medium, preferably an empty one. To unmount a medium, a simple

umount mount_directory
suffices.
fsck

'fsck' a utility for performing file system checks and repairs. You start a file system check this way:

fsck -t file_system device_file
file_system has to be substituted by the file system on the partition you want to check. In contrast to 'mount', 'fsck' can't figure out the file system type on its own.
Instead of using the '-t file_system' option, you can also call the file system specific variants of 'fsck' directly: 'fsck.ext2', 'fsck.jfs', 'fsck.xfs' and 'reiserfsck'. This is actually the preferred way, since it eliminates the chance of getting options to 'fsck' and 'fsck.fs' mixed up.
Thus, to check the second primary partition on the first IDE hard drive which has the file system 'ext2':

fsck.ext2 /dev/hdb
Notice:

· 'fsck' should only be run on unmounted file systems.

· 'fsck.ext2' will also work on 'ext3' file systems.

· By default 'fsck.ext2' will not check a file system which has been cleanly unmounted. To force it to do a check, use the '-f' option.

· The man page to 'fsck.ext2' is man e2fsck.

· 'fsck.xfs' doesn't do anything. To repair an XFS, use 'xfs_repair'.

· Please be aware that the man pages to these tools might not be available in case of an emergency.

By default, a file system check will be run interactively, that is every time the checker encounters an error, it asks you if to fix it. If you find this annoying, you can turn off these questions with the '-a' option in all checkers (although 'fsck.ext2' prefers '-p').

Others

Make yourself familiar with these commands: 'mv', 'cp', 'rm', 'ls', 'cd', 'grep' and 'less'. This doesn't mean you should learn their man pages by heart, but you should know what they do and how to handle them. You will need them some day, believe me ;-).

The Mandrake Linux Rescue System

Mandrake Linux comes with a rescue system on the first CD (list of contents), introduced in release 7.1. In case your CD-R drive isn't bootable, boot from a boot floppy (images are in the '/images' directory of the first CD).
To start this rescue system, press the <F1> key and type rescue on the prompt at the bottom of the screen. Press the <ENTER> key. The rescue system will now boot from the CD, loading itself into system memory (at least 32 MB RAM needed).

Upon booting, the rescue system will automatically try to mount any available Linux hard disk partitions, which can then be accessed via the '/mnt' directory.
The rescue needs only system memory to work, which means you can remove the CD after boot (e.g. to use the drive to mount another CD).

The software contained in the rescue system allows you to

· delete, move, copy, (un)archive, (de)compress and create files, directories and symlinks to files;

· display, edit and create text files (including hex files);

· check and repair every file system available with Mandrake Linux;

· create, delete, resize (ext2 only) and repair partitions, partition tables and boot sectors;

· mount any kind of medium;

· establish an Ethernet network connection and telnet or ftp into another machine;

· install RPM packages;

· load and unload kernel modules and

· do all that with a keyboard map and console font of your choice.

You see there's hardly an accident you can't fix with this system, provided you know how these tools work. And there's the catch: the rescue system does not contain any form of documentation, apart from the '--help' option which just displays an overview on the command's syntax, if at all.
You are not supposed to learn the options of these programs by heart, instead get a good and short command reference, like Hekman's 'Linux in a Nutshell' or Petron's 'Essential Reference'. If you can't spare the money, print out the man pages to the most important commands. There's also an online man page repository with a search interface. Notice:

· USB-only keyboards do not work. If your USB keyboard comes with a second PS/2 plug, put that in.

· No mouse support.

· If you have more than one Linux installation, use the 'mount' command to make sure that the rescue system has mounted the right partitions.

· You are root during your entire 'rescue' session. Be careful.

Booting 'failsafe'

'failsafe' is a standard boot option in all Mandrake Linux systems.

Under normal circumstances, the system switches right into the preferred runlevel during boot ('3' for console, '5' for X). 'failsafe' on the other hand first boots into runlevel 1 (Single User Mode, see below), then tries to switch to runlevel 3 (console) and then, if 5 is the default runlevel, into runlevel 5.
If the 'Linuxconf' administration suite is installed, it will be started in console mode upon reaching runlevel 1. You will be presented with a runlevel menu or the possibility to use 'Linuxconf' to do system maintenance tasks.

Single User Mode

Linux also provides two built-in rescue systems, one of them is the 'single user mode', aka runlevel 1. This 'single user' is 'root'. There will only be a minimum of processes running.

There are several ways to get into this runlevel:

· From within a running system (as 'root'): init 1. Notice that this command will shutdown almost everything on your machine. It's also a popular way to simulate a reboot.

· From the prompt of a boot loader: linux single or linux init 1. You might also be dropped off here when using the 'failsafe' boot option if the system can't go to runlevel 3.
There's no login required.

The root Shell

The single user mode still relies on a working 'init'. But what if 'init' is corrupted or even missing? If you boot your system with this boot loader option:

linux init=/bin/sh
only the kernel will be loaded into system memory and you will be dropped almost immediately to a shell.

On a Mandrake Linux 8.1 system, you should add another option to turn off devfsd, because otherwise you will run into trouble with hardware related utilities:

linux init=/bin/sh devfs=nomount
Things you do not have initially in this shell:

· A national key map and font. The default ASCII font and an American key map is used.

· A PATH containing '/sbin'. Execute all commands from that directory with their full path, e.g. /sbin/fdisk -l /dev/hda instead of fdisk -l /dev/hda.

· Mounts apart from the partition containing '/'. Only '/' is mounted, nothing else (thus the name).

· A writable mount. Not only that just '/' is mounted, it is also mounted read-only.

· init. Obviously ;-). There's no 'init', no 'shutdown' or 'halt'. You have to sync and unmount all media you might have mounted during your root shell session by yourself.

The first thing you should try is getting write access to your '/' partition:

mount -o remount,rw /dev/device
Run mount to find out the name of device. Another file system you want to mount is the virtual 'proc' file system, which provides you and the system utilities with information about what's going on in your system:

mount /proc /proc -t proc
From here on you should be able to do your repair tasks. Your main objective should be getting init to work again, so that you can do further repairs in single user mode.

Before leaving this shell, flush all buffers with

sync
unmount all mounts with

umount -a
and remount the '/' mount read-only again with

mount -o remount,ro /
Press <ALT> <CTRL> simultaneously to leave the shell and reboot the machine.

Notice:

· The flags of the 'mount' command are wrong and do not reflect changes, e.g. a remount from read-only to read-write. Don't trust them.

Linux Systems On Other Media

There's quite a number of Linux distributions which run off a removable medium (floppy, CD, ZIP) or a Windows partition. CD based distributions often offer the added advantage of providing a graphical interface.

You'll find a fairly updated list of those Linux distributions on The LWN.net Linux Distribution List.

Things to keep in mind when using a third party rescue distribution:

· Make sure it works. If you've downloaded a CD image, run

md5sum name.iso
and compare the resulting number with the one provided on the server you downloaded the image from.
Floppy images are less prone to transmission CRC errors but media failures are much more likely. Having put the image onto a floppy, run

cmp /dev/fd0 name.img
to make sure the image on the floppy and the image you've downloaded are identical.
Boot your new rescue system to check if everything's OK.

· Check if the distribution is actively maintained. Linux is a fast moving target. If you can't mount your hard disk partition because of an out-of-date file system driver on your rescue system, you're back to square one.

· Have a look at the included software. If your partitions are formatted with a less common file system like XFS or JFS, it might happen that the distribution does not contain the necessary utilities. Use the content list of the Mandrake Linux rescue system as a template.
The next two pages of this article will list some common (and some less common) emergency scenarios and describe how to handle them.
Scenario I: System Doesn't Boot

Usually this error is due to a simple boot loader misconfiguration. Your main priority is getting the system to boot again so that you can adapt your boot loader configuration.

If you have a current, working boot disk for your system, you are lucky ;-). If not, I'd suggest you create one right away. You can do that very easily via the Mandrake Control Center (Boot - Boot Disk). If you prefer the command line:

mkbootdisk $(uname -r)
will do the same.
Boot with it to make sure it works.

If you are faced with a boot loader failure without having a boot floppy at hand, you have to start one of the external systems, preferably the Mandrake Linux rescue system, described on the previous page of this article and repair the boot loader configuration from outside (or at least create a working boot floppy).

When you are changing the configuration of the LiLo boot loader by editing '/etc/lilo.conf', you have to run the lilo afterward. But it has to be the 'lilo' on the hard drive, because you want to update the boot sector on that device. How to do that?
Simple. Enter the '/mnt' directory where the 'root' directory of your disk system is mounted to. Now change the 'root' directory with

chroot .
What does this do? When you are on the rescue system, your 'root' directory is that on the CD, with the system on the disk mounted to '/mnt'. With 'chroot' you basically switch your root directory to that on the disk. If you issue a command now, the disk version of this command will be executed, not the CD version. Execute

/sbin/lilo
and a new boot sector with the current configuration will be written to the master boot record. For GRUB, you'd likely execute something like

grub-install /dev/hda
although the device name might be different depending on your hardware setup. To switch your root directory back to the CD, type:

exit
Partition Table Destroyed Or Corrupted

If you can't fix your booting problems and 'cfdisk' as well as 'fdisk' tell you that there just isn't any partition table to read on your hard disk, chances are that table has been corrupted.

If the botched up table is not on the hard disk which contains your Linux installation, install the gpart partition table rescue utility and run it on the disk with the defunct boot record:

gpart /dev/device
where device is a whole disk device (e.g. hda or sda). This is just a scan to find out if 'gpart' can find any partitions at all (it usually does). Notice that this test can take quite a while and use up a considerable amount of system resources. If the findings of gpart look reasonable to you, tell it to write them to the boot record:

gpart -W /dev/device
Do not turn the computer off or kill the program until it is finished writing the table. 'gpart' may look sometimes like it was hanging, but it doesn't. Just wait. When finished, reboot.

If the partition table of the system disk has become unreadable, start from the Mandrake Linux rescue system. It contains a (undocumented) utility called 'rescuept' which ... well, I guess you can tell that by its name ;-). The first step is just like with 'gpart':

rescuept /dev/device
This will print 'rescuept's findings to the console. If these findings look reasonable, pipe them to another disk utility, 'sfdisk', which will write them to the boot sector of the hard disk:

rescuept /dev/device | sfdisk /dev/device
You want to make absolutely sure here that you use the same device name in both parts of the pipe ... When finished, knock on wood and reboot.

Super Block Damaged

Now that is really a rare emergency. From all the scenarios listed in this article, this is probably the only one which hasn't happened to me so far in my six years with Linux ;-).

The super block is the first block of each extfs2 partition. It contains important data about the file system like size, free space etc (it's similar to the File Allocation Table on FAT partitions). A partition with a damaged super block can't be mounted. Fortunately extfs2 keeps several super block backup copies.

1. Boot your preferred emergency system.

2. The backup copies are usually located at the beginning of each 8 KB (8192 bytes) block. So the next backup copy is in byte No. 8193.

3. To restore the super block from this copy, enter the command

e2fsck -b 8193 /dev/device
If that block is damaged, too, try the next one at byte No. 16384 etc.

4. Reboot.

Scenario II: System Stops During Boot

There are several critical steps where booting can fail.

Kernel Doesn't Load Properly

If this happens after a kernel upgrade, either a wrong boot loader configuration or misplaced symlinks in '/boot' are to blame. Boot another kernel or a rescue system and perform the steps outlined in the Kernel Upgrade article.

Boot Hangs On Rebuilding RPM database Or Finding Module Dependencies
If the system hangs during 'Rebuilding RPM database' or 'Finding module dependencies', just hit <CTRL> <c> simultaneously. This will skip this step and continue to boot.
Issue rpm --rebuilddb as 'root' if the hang was at 'Rebuilding RPM database'.
If your machine hangs at 'Finding module dependencies', you have most likely been through a kernel upgrade from source but haven't done it properly. Check if the files in '/boot' and the '/lib/modules' directory match the current kernel-version (i.e. have the current version number attached). Read the article on Upgrading The Kernel From Source for more.

Boot Hangs On RAMDISK: Compressed image found at block 0'
The system tries to load a RAM disk for a different kernel. Your boot loader configuration file points to a wrong or non-existent RAM disk (option initrd=). Boot another entry from your boot loader and create a RAM disk for your new kernel with 'mkinitrd' or use the 'Boot Config' module from the Mandrake Control Center, which automatically generates 'initrd' images and corresponding entries in the configuration file of your boot loader.
If you don't have another working entry to boot, use an external rescue system. See scenario I.

Boot Hangs On Kernel panic: VFS: Unable to mount root fs on xx:yy
The kernel tries to mount the 'root' partition but either doesn't find the necessary drivers or doesn't find the root partition.
If drivers necessary to access the root file system are built as kernel modules, these modules must be loaded via an 'init RAM disk' ('initrd'), referenced in your boot loader configuration file. Notice that access to non-ext2 filesystems like Reiserfs, XFS or JFS also requires modules and thus a RAM disk. See previous entry.

If the kernel can't find the root partition, check your boot loader configuration, especially the 'root' option.

File System Check Fails

If the system encounters a medium which hasn't been properly unmounted, it will run a routine file system check (fsck) or, if you use a journaling file system (default in Mandrake Linux 8), a journal recovery during the next mount of that medium.

If the file system does not feature a journal, 'fsck' will check it for consistency and delete or move empty or inconsistent data. You will find that data later in the 'lost+found' directory of the fsck'ed partition.

'fsck' will fix most errors by itself. If it comes to deleting data, however, 'fsck' will quit and you will be dropped to a root shell. Run 'fsck' again by hand on the device, where the automatic 'fsck' failed

e2fsck /dev/device
This will start 'fsck' in interactive mode and you will be prompted for each action 'fsck' wants to make. If you are not a file system guru, you might be better off to let 'fsck' do what it thinks is best:

e2fsck /dev/device
The '-p' option tells 'e2fsck' to do all the necessary repairs without asking, '-y' assumes the answer 'yes' to all questions.
When the check and repair is over, hit CTRL-D to leave the emergency console. The system will reboot.
The first thing you should do when the system has rebooted is backing up all important data to an external medium immediately. Have a look at the 'lost+found' directories on your system. These might contain '#' files. These files have been moved to these directories to improve the consistency of the file system. Which means that these files can be important system configuration files.

Scenario III: Login Fails

Before panicking, make sure that you have not just fallen victim to a typing error: check if 'capslock' is on, try different capitalization, try to login on another account or terminal (switch with ALT-F2) etc.

A failed login might be due to a wrong / corrupt entry in either '/etc/passwd', '/etc/shadow' or '/etc/securetty', wrong file permissions or a forgotten 'root' password.

1. In order to get into the system, reboot and type

linux init 1
at the LiLo boot prompt. If you are using GNU GRUB, hit the 'e' key twice and add

init 1
to the boot command and then ENTER and 'b' to boot.
This will boot the system into single user mode.

2. By default Linux keeps backups of '/etc/shadow' and '/etc/passwd', called '/etc/passwd-' and '/etc/shadow-'. Your first line of rescue is using these backup files.

1. Backup the current 'shadow' and 'passwd' files:

cp /etc/shadow /etc/shadow.old
cp /etc/passwd /etc/passwd.old
2. Now overwrite them with their system backups:

cp /etc/passwd- /etc/passwd
cp /etc/shadow- /etc/shadow
3. Try to switch to runlevel three to see if you can log into the system now:

init 3
3. If this approach doesn't work, reboot into runlevel 1 again (press <ALT> <CTRL> <BACKSPACE> simultaneously).

4. Once the system is up, type

vi /etc/passwd
Have a look at this file. It mustn't contain any blank lines, comments or non-ASCII characters. If you find them, delete them. The entry for 'root' must look exactly like this:

root:x:0:0:root:/root:/bin/bash
If it does not, change it and save the file.
Run

chmod 644 /etc/passwd
5. Next, run vi /etc/shadow.

The format of entries in '/etc/shadow' is

account_name:password:other stuff e.g.
root:1KODLGetc:10979:0:99999:7:::
The password entry is encrypted, of course.
Delete the password entry for 'root' by moving the cursor to first character of the password (usually the first '$') and typing dw. Now type :wq to save the file.

6. Also have a look at '/etc/securetty' (more /etc/securetty), which should contain these entries:

tty1
tty2
tty3
tty4
tty5
tty6
7. Other things to check include having a look at '/var/log/messages', which might reveal something about the nature of your problems with logging in, and checking the ownership and permissions (ls -al) of '/root/.bash_profile', '/root/.bashrc' and '/etc/gettydefs'. All these files must belong to 'root' and must be readable and writable for him.

8. Reboot with init 6
9. On the next login, type root for the account name and just hit <ENTER> at the 'password' prompt.

10. Once you are logged in, type passwd to give 'root' a new password.

If you still can't get into your system, there's something deeply mysterious going on. This might be one of the few cases where reinstalling might solve the problem.

Scenario IV: System Hangs On Loading X

If you have configured your machine to boot directly into graphics mode, configuration problems with your X server can prevent you from logging in.
Press <CTRL> <ALT> <F2> to log into another console, kill the process which tries to start the X server and perform the troubleshooting steps outlined in the article on X Setup Troubles.
Alternatively, reboot and use the boot loader option

linux init 3
to boot to the console while X isn't working.

Scenario V: System Freeze

Silent interruptions, commonly called 'hang' or 'freeze', are usually caused by some problem of the operating system with the hardware it is running on (bad memory chips, driver bugs, IRQ conflicts etc). These interruptions usually do not leave a trace in the system's log files in '/var/log' and require either a software update or a hardware change.

Your main task in such a situation is to prevent further damage, e.g. file system corruption by just turning the computer off. The 'Magic SysRq Key' feature comes in handy here.

The Magic SysRq Key

This feature allows you to do some basic maintenance tasks even if the rest of the system isn't responding. It is enabled by default on Mandrake Linux. In particular, it allows you to shutdown your system properly, thus avoiding the risk of file system corruption when simply turning the machine off with media still being mounted. The 'SysRq' sequence involves pressing three keys at once, the left ALT key, the 'SysRq' key (also labeled 'PrtSc' or 'F13') and a letter key:

1. <ALT> <SysRq> <r> puts the keyboard in 'raw' mode.
This might be helpful in cases where the graphical interface does not respond to keyboard or mouse commands any more. Having pressed that sequence, press <ALT> <CTRL> <BACKSPACE> simultaneously. This will try to kill the X server and drops you onto the console (i.e. it's the emergency key combination to switch from runlevel 5 to runlevel 3).

2. <ALT> <SysRq> <s> attempts to write all unsaved data to disk ('sync' the disk) to prevent file corruption.

3. <ALT> <SysRq> <e> sends a termination signal to all processes, except for 'init'.

4. <ALT> <SysRq> <i> sends a kill signal to all processes, except for init, thus terminating all processes which ignored the termination signal.

5. <ALT> <SysRq> <u> remounts all mounted file systems read-only. This prevents file system corruption.

6. <ALT> <SysRq> reboots the system. Alternatively, replace the 'b' with an 'o' to turn the machine off.

If you look at this sequence, you see that you are - apart from the first step - actually emulating the 'init' shutdown process. Therefore it is important that you press these sequences in the correct order (e.g. that you 'sync' the drives before remounting them): Raw - Sync - tErm - kIll - Umount - reBoot. A possible mnemonic phrase: 'Raising Skinny Elephants Is Utterly Boring'. Mandrake Linux user Louis suggested this phrase, which is a bit more on topic: 'Remembering the Sequence Entirely Is Useful Buddy'.

Via A Network

If your machine runs a telnet or SSH server, you should try to log into the frozen system from another machine. There are cases when just the graphical interface is frozen but the basic system and network services are still working.

Scenario VI: Important Files Deleted

Do yourself a favour and get the Recover undeletion utility (PPC Mandrake RPM, x86 Mandrake RPM), which makes file recovery a lot easier (it acts as a front end to the 'debugfs' tool). All you have to do is point it to the partition where that file was (as 'root'):

recover /dev/device
'recover' will ask you a row of questions to get the most possible deletion date, thus minimizing the files you'll have to look through later. Notice that 'recover' does recover the content of a file, but not it's name, therefore it is in your own best interest to provide as much data to it as possible.
Processes
Revision / Modified: Jan. 17, 2001
Author: Tom Berger

Original documents:
http://www.mandrakeuser.org/docs/admin/aproc.html http://www.mandrakeuser.org/docs/admin/aproc2.html

Introducing Processes

Did you ever had some program 'hanging' on you? Indeed 'hanging' so badly that it gobbled up all system resources, slowing down all operations to a crawl? And didn't you wish there were just a way to kill that damn thing? Were you ever interested in knowing how much system resources a program uses?

Well, you have come to right place, then :-). What are processes? Basically everything going on on your system: your web browser is a process, your web server - if you happen to run one - is also a process. A process boots your machine and another shuts it down. Every tiny script starts a process, albeit usually a very short one. "A process" says the textbook, "is an instance of a program in execution."

Processes can be started, stopped, killed, given priorities, scheduled. You do many of these actions already without knowing about it: when you open a program, you start a process, by closing the program, you kill the process. It's not some fancy Linux thing either, every modern operation system has them, because processes allow for multi-tasking: by keeping a unified list of what is going on, the operating system can run a schedule, thus providing its user with the illusion of being able to do many things at once.

Usually the operating system,i.e. the kernel, manages processes for you, you only need to interfere if you have special preferences (e.g. want to have a process to get more resources) or if a process goes awry and starts eating all the available system resources.

Process Monitors

The traditional Unix/Linux tools for viewing and handling processes are the console programs 'top' and 'ps' (part of the 'procps' RPM) as well as a bunch of command line programs like 'kill' or 'nice'.

There are graphical interfaces for these programs, however, which you might find more convenient and easier to use: 'ksysguard' (package 'kdeadmin', menu: Applications - Monitoring - KDE System Guard), 'kpm' (package 'kdeutils', menu: Applications - Monitoring - Process Management) and 'gtop' (package 'gtop', menu: Applications - Monitoring - GTop). 'ksysguard' even allows you to watch and control processes on other machines.

Since all these tools use the same information from the '/proc' directory (more on that later), they all display processes and their attributes in similar fashion.
If you open them, you'll find a dynamic (apart from 'ps') column display with a row for each process. Columns are:

· PID: This is the Process IDentification number. To the system, processes are not known by their name, but by a unique number. Each new process gets a higher PID. The more processes you run and / or the longer your machine runs, the higher those numbers get. That's normal.

· User (also Login): The user who 'owns', i.e. started this process. Users can only manipulate processes they own. Only 'root' can manipulate all processes.

· Pri (also Nice or NI): The priority of a process in relation to all other processes. Lower numbers indicate higher priority. Standard priority is '0'.

· Size (also VSZ or VmSize): The total amount of virtual system memory a process uses. As explained later on, that's by no means a fair indicator of how much memory the process actually uses. Compare next entry.

· Resident (also VmRSS or RSS): The amount of physical system memory a process uses up. This is more accurate for measuring how much system memory a process needs.

· Stat (missing in 'ksysguard'): The status of a process. Sane processes are either 'R'unning or 'S'leeping. It is normal that only one process is displayed as 'running' at any given time while the others are 'sleeping' (i.e. waiting for a signal).

· CPU (subdivided in User% and System% by 'ksysguard'): Percentage of the processor time taken up by the process since the last display refresh.

· MEM: Percentage of physical system memory consumed by the process.

· Time (missing in 'ksysguard'): Total amount of processor time the process has used since started.

· Command (also Cmd): Command name of the process.

Manipulating processes via the graphical utilities usually just involves 'highlighting' the process you want to handle and using the right mouse button click context menu. 'top' is controlled via shortcut keys, read man top for a list.

Notice that there's a standard key combination for killing graphical applications, <ALT> <CTRL> <ESC>. This will change the mouse pointer to a 'death' symbol. Click on an application window and that application will be killed. You still want to check if the processes of that application had been killed, too, though.
Processes In Detail

The father of all processes is 'init' (initializer). The pstree command shows this quite impressively.
'init' manages the runlevels, it controls which processes are started and stopped at which runlevels and it is responsible for bringing the system to these runlevels. If you shutdown your system, you essentially tell 'init' to bring it to runlevel 0. It's the same if you type

shutdown -h now or init 0.

Information on current processes is stored in the '/proc' file system. The '/proc' file system consists of kernel data changed in real-time. It is therefore not a 'real' file system like the others: the data contained take up no place on the hard-disk and you can't write to it. But you can extract and change the information contained therein (e.g. using the 'cat' command).

Listing '/proc', you'll find a lot of directories which names only consist of numbers. These numbers are the 'process IDs' (PIDs). If you list such a directory, you'll find files like 'cmdline', which contains the command line the process was started with, or 'stat', which contains number codes on the current process. For example:

cat /proc/1/cmdline
init
Which means: 'The process with the PID 1 was started with the command 'init''. 'init' will always be the first process and thus is the only process with a permanent PID. All other processes will have increasing PIDs, the maximum PID being 32768 (although the maximum number of processes on Linux is only limited by the amount of physical memory available).

The children of 'init' can have child processes themselves. If you start a program by typing its name on a command line, the program will be a child of the program which handles the command line. In most cases, this will be 'bash' (the 'Bourne-Again-SHell').
One important thing to know is that child processes 'inherit' some assets of their fathers. If you run a process with 'root' privileges, a child of this process will also have these privileges.

Now you might ask: 'Since init runs with 'root' privileges, and it is the father of all processes, does that mean that all processes and programs on Linux run with root privileges?'

It's obvious they don't do that. Servers like the font server, web servers, mail servers run on their own user account. The font server for example runs on the 'xfs' account, the Apache web server on the 'apache' user account. Servers which don't come with their own user account use the standard 'nobody' user account. These are not 'real' accounts: nobody can login via these so-called system accounts.
The reason for this is security: servers can be accessed from outside the machine. If one of them contains a software flaw which allows attackers to execute commands on your machine as the user who is running the server, it would be a disaster if that user would be 'root'. Notice that this isn't a system mechanism, but a standard feature of Linux servers. You should refrain at all cost from using servers which do not include it.

Another mechanism is the 'login' command. Have a look at the output of 'pstree' again. You will see that every process and program you started after boot is a child of the 'login' process. 'login' switches the permissions of these child processes depending on how you log into the system. If you log in as 'root', all children will have 'root' privileges, if you log in as a user, the children will run with the permissions (the 'UserID', UID) of this user. The latter is preferable for the system's security and stability. If you need 'root' privileges, you can always log into the 'root' account from your user account by using 'su' or 'sudo'.
setUID

As you've already seen, processes can run with a UserID different from the user who started them. Servers are started by 'root' but drop this privilege as soon as possible and run on their own system account. In Unix-speak, one says they are running 'setuid account' (e.g. Apache runs 'setuid apache').

Of course, you can also do that the other way round by providing processes started by a user root privileges.
The most prominent example is the graphical subsystem, 'X'. 'X' needs 'root' privileges to run. However, the children of X do not run as 'root'. How come?
'X' is started via a so-called wrapper, '/usr/X11/bin/Xwrapper'. If you look at the permission bits of this program, you will see it's 'setuid root': -rws--x--x. This wrapper handles the permissions part when starting X, so that X itself doesn't need to be 'setuid root'. It runs as 'root' but its children don't inherit its UID.

Priority

Processes run either in user mode or in kernel mode. The operating system and its core services run in the privileged kernel mode, whereas 'normal' applications run in user mode, this way badly behaving user processes do not interfere with system operation. Some user processes however need access to privileged kernel functions. For this they switch to kernel mode, execute the needed function and switch back to user mode.

All user processes get the same share on the processor schedule. But you can change that with the nice -n value process command. Negative values increase the priority. They can only be applied by 'root', whereas positive values can be applied by any user.
nice -n value process starts a process with a given priority, the command renice priority PID changes the priority of a running process.
Processes And Threads

A program may open several processes if needed. This however isn't very efficient: each process would need its own address (memory) space and switching between these would cost a considerable amount of system resources. This is where 'threads' come in. Threads are started by a process, but they remain within the original address space used by the process. Switching between threads consumes much less resources than between processes. Applications which use this technique are called 'multi-threaded'.
Programming thread-enabled applications cleanly is very hard which justifies the use of threads only in very complex pieces of software, like the Mozilla browser.

As a system administrator, you only have to know about them that process monitors on Linux can not discriminate a thread from a process. Point in case is the Mozilla browser. If you start it, the process monitors will show multiple entries for it:

tom 11290 13.4 2.3 33080 21124 ? S 11:47 0:02 /usr/lib/mozilla/

tom 11296 0.0 2.3 33080 21124 ? S 11:47 0:00 /usr/lib/mozilla/

tom 11297 0.0 2.3 33080 21124 ? S 11:47 0:00 /usr/lib/mozilla/

tom 11298 0.0 2.3 33080 21124 ? S 11:47 0:00 /usr/lib/mozilla/

tom 11299 0.7 2.3 33080 21124 ? S 11:47 0:00 /usr/lib/mozilla/

This does not mean that the Mozilla browser has started five processes, but that's one process with four threads, all in the same address space. How can one tell? Well, you don't get any real proof, since the monitor doesn't know either, but there are hints like the same memory consumption numbers, the same command name and the same start time. Only the first entry is valid when looking at system resource usage.

For more on Linux process management, read the Linux Gazette article Processes on Linux and Windows NT by Glen Flower.
Process Accounting

Process accounting enables you to keep detailed accounting information for the system resources used, their allocation among users, and system monitoring.
(Enabling Process Accounting on Linux HOWTO)

You will need to install the 'psacct' package from the first Mandrake Linux CD which will in turn install a system service of the same name. Documentation (and an amusing bit of Unix lore) can then be found in info accounting.
Both 'Webmin' and 'Linuxconf' offer graphical modules to configure and monitor process accounting.
Estimating Process Resource Usage

Estimating the resource usage, especially the memory consumption of processes is by far more complicated than it looks like at a first glance.
How much resources a process needs, depends on many factors, most of them varying. One is the amount of physical RAM in the system. If there is much free RAM available, more caching will be performed and thus more memory consumed. However this doesn't really count as resource usage, since this cached memory is available in case some other process needs it. Up to 20% of system memory can be used for buffering and caching. This dramatically improves disk accesses, so you don't 'loose' anything when memory is assigned to this task. Only unused memory is wasted ;-).

Graphical applications depend on certain collections of code libraries for displaying their interface (buttons, menus etc). Common collections are GTK+ (GIMP, GNOME), Qt (KDE), Tcl/Tk and others. If you use applications of many different collections, all these libraries have to be loaded into system memory, thus using more resources. An application written with Qt for KDE will use more system resources in GNOME than on KDE. If you start a second Qt application, however, it will use about as much resources as on KDE, since the first application already did load the needed interface libraries. If you close both applications, not all resources will be freed up again, instead the loaded libraries will be cached (if the amount of free RAM permits it).

The numbers for each process presented by process monitors tend to mislead and are easily misinterpreted. On the previous page you've already read about threads. But even if the process doesn't spawn threads, it is in most cases almost impossible to determine how much system memory an application really consumes.

Let me give a simple example:

1. top: Mem: 900040K av, 411864K used, 488176K free, 1048K shrd, 58592K buff, 166816K cac

2. Starting the 'bluefish' HTML editor.

3. top entry for bluefish: 4716 (size) 4716 (real) 3580 (shared).
top entry for system: Mem: 900040K av, 414268K used, 485772K free, 1432K shrd, 58620K buff, 167592K cac

According to the process table entry, 'bluefish' uses 4716 KB of real memory and 3580 KB of shared memory. The system however only reports an increase of 2404 KB general memory usage, of these being 400 KB more in shared memory, 30 KB more in buffers and 600 KB more in cache.
Regardless of how you add or subtract these numbers, you will never get the numbers from the process entry and the system numbers in sync.

I rather trust the system numbers, but even they can be misinterpreted quite easily:

42 processes: 41 sleeping, 1 running, 0 zombie, 0 stopped

CPU states: 0.9% user, 1.3% system, 0.0% nice, 97.6% idle

Mem: 257676K av, 252940K used, 4736K free, 202852K shrd, 7464K buff

Swap: 130748K av, 256K used, 130492K free, 197620K cached
What usually confuses people here is the cache and buffer management of Linux. Let's have a look at it:

Mem: 257676K av, 252940K used, 4736K free, 202852K shrd, 7464K buff

Swap: 130748K av, 256K used, 130492K free 197620K cached
'Mem' shows some 252 MB RAM installed. In fact it's 256 MB. What happened to the remaining 4 MB? Simple: they are used for 'shadowing' the system's BIOS and contain the GNU/Linux kernel.
The next fields seem to indicate that the system is on the brink of collapse: almost all of the memory seems to be used up. Is that so? No, it isn't. Look at the last entries of those lines. These tell you that about 200 MB of system memory are used for caching and buffering. This memory is available for every application which needs it.
The 'free' command line tool gives a more comprehensible overview:

$ free
 total used free [...]

Mem: 257676 253624 4052 [...]

-/+ buffers/cache: 50360 207316

Swap: 130748 256 130492
Have a look at the third line:

-/+ buffers/cache: 50360 207316
displaying again the actual amount of memory in use by applications (50 MB) and free (202 MB). The rest is used for caching and buffering, i.e. to make your system faster.

To estimate the resource consumption of a process, it's easiest to run 'free' before, during and after running the process. The figures will vary because of the already mentioned reasons, so you should do this several times to get an average.

Setting Resource Limits

PAM (Pluggable Authentication Modules, man 8 pam) offers a mechanism to set limits to resource usage, setting limits via shell mechanisms ('ulimit' in bash, 'limit' in csh etc) is deprecated.
You configure these limits as 'root' in '/etc/security/limits.conf'. Among other things you can set the maximum number of processes per user or group, process priorities, maximum CPU time and more.
Parameters and examples are supplied in the configuration file.

More information can be found in the appropriate chapter of the L-PAMSAG.
Dealing With Bad Processes

If a process behaves badly, the kernel sends it a certain signal (man 7 signal) to terminate it.
The most infamous signal is SIGNAL 11 (alias SIGSEGV, alias 'segmentation fault'). The process has tried to access a memory segment which hasn't been allocated to it.
Reasons for a segfault might be a programming error, a wrong library version or a hardware failure. The default action of a process when receiving a Signal 11, is to terminate itself and write the contents of the system memory to a 'core' file (in Unix slang, the process 'dumps the core'). This core file can be useful to a programmer for debugging. Notice that Mandrake Linux by default disables the creation of core files.

Things get a bit hairy however when the process is that bad that it ignores this signal and starts to hoard all the available processor time on the system, thus slowing down ('starving out') all the other processes. The kernel marks this process as 'uninterruptible' and its status in the process table will be switched from 'R' or 'S' to 'D'. If you see a process entry with a 'D' in its STATUS row, it's definitely time for you to do something.

Almost all signals can be handled by processes which means that they can also be ignored by them. There is however one signal which can't be ignored by any process and that's SIGNAL 9 (SIGKILL), the appropriately named 'kill signal'. If you send that signal to a process, you will quite literally kill it by taking away all its resources and removing it from the process table. You can then safely go on in your daily work. All unsaved data of that process will be lost, too, though.

Most system monitors offer you a possibility to kill a process via the right mouse click context menu (in console 'top', press the <k> key). There is one problem though: processes run with the permissions of the user who started them. A user can only kill processes he himself has started, only 'root' can kill all processes. Your system monitoring program will and should usually run under your user account which means you can't kill processes from other users or 'root' via it.

If a process started by root or another user misbehaves, you have to switch to the 'root' account on a console using the su command. You can then either kill the process by its process ID (PID) or by its name.
If you don't know the PID of the process yet, you can find out with

ps aux --sort %cpu
which lists the most CPU hungry process last, the PID being the leftmost number. You can then go on to actually kill the process with the 'kill' command:

kill -s 9 PID
You can also kill a process by name. Notice that this can be dangerous, since you either might accidentally kill processes you didn't intend to kill (or none at all). The command is

killall -s 9 name
If you ever happen to come across a non-Linux Unix system, make sure to read the man page for 'killall' on that system. Some Unixes take this command literally which can get very ugly ...

A rather harmless type of a bad process is the so-called 'Zombie' (STATUS: Z, 'defunct'). If you've read the previous page, you know that processes can have 'children', i.e. spawn new processes. If the parent process is terminated normally, it will send a termination signal to all its children signals, too. If however the parent is terminated abnormally, it might not have gotten around to send its children the termination signal. Without their parent process these processes turn into 'living dead': they still appear in the process table, but they don't use any resources and there is no way of 'reaching' these processes. Unlike their namesakes, process zombies don't do any harm. They will vanish from the process table upon the next reboot.
Mounting
Revision / Modified: Jan. 09, 2001
Author: Tom Berger

Original documents:
http://www.mandrakeuser.org/docs/admin/amount.html
http://www.mandrakeuser.org/docs/admin/amount2.html
http://www.mandrakeuser.org/docs/admin/amount3.html
http://www.mandrakeuser.org/docs/admin/amount3.html

Why Linux Handles Media Differently

If you are coming from a non-Unix operating system like MS Windows 9.x or the 'classic' Mac OS, one of the main obstacles of getting to grips with Linux is its different handling of partitions, removable media and network shares (from now on referred to as 'media').

In those operating systems, partitions play a more or less prominent role in tasks related to files and directories. You have several 'drives' in Windows (e.g. A:, C:, D: etc) or 'Volumes' in Mac OS. Applications install to a folder of their own, dropping off one or more files in the 'system directories' of these operating systems. New partitions, external media or network shares appear as new 'drives' or 'volumes'.

In Unix, and thus in Linux, things are handled almost entirely differently. This is because in contrast to the later Mac OS and Windows operating systems, Unix systems have been developed as multi-user operating systems: usually there were one or more central servers accessed by users via their terminals. Often directories were distributed: the users' home directories were on machine A, the executables and libraries on machine B etc. Users were usually not allowed to install their own applications, they'd rather have asked the system administrator to install an application for them on the main server.
Something like the file systems on Mac OS and Windows with their rather arbitrary 'volume' and 'drive' naming, their separate application directories and their non-continuous directory structure would have been an administrative nightmare.

Linux has inherited the characteristics of the Unix file system:

· All partitions, external media and network shares are regarded as internal part of the one system directory tree, starting at '/', the root directory.

· There are no 'application folders'. Files are installed according to their type (e.g. executable, documentation etc), not according to the application they belong to.
Default Mount Setup In Mandrake Linux

One of the very first ideas which started Mandrake Linux off from Red Hat was to make media easier to access for users. Back in the old days, you had to be 'root' to mount a medium and something as simple as installing an RPM from a CD was quite tedious: switch to 'root' account, insert CD, mount CD, install program, unmount CD, switch back to user account. Gets really old really fast.

Of course, this restriction makes perfectly sense in a multi-user environment with a system administrator where you don't want everyone to be able to muck around with the system but it is more or less ridiculous on single user machines.
Therefore are all removable media configured to be user (un)mountable in Mandrake Linux. With the introduction of 'supermount' in Mandrake Linux 7.2, to be discussed later, even mounting these media is done automatically (if you are using 8.1, read this hint on 'supermount'). Furthermore are all locally available Windows 9x partitions set up to be accessible (read-write) by users and are mounted automatically at boot time.

KDE and GNOME come with icons for removable drives. Mounting a medium via these icons is as simple as inserting the medium and clicking the icon. If you don't have 'supermount', you have to remember to unmount the medium via the right click content menu of the icon before removing it from the device.

Mandrake Linux also provides the DiskDrake tool which allows you to configure local and networked mounts as well as resize partitions. DiskDrake is available as a graphical module of the Mandrake Control Center (Hardware - Mount Points) but can also be run on the console.

If you want to know all the gory details, however, you're welcome to read on ;-).
Mounting In Detail

The idea behind 'mount' is pretty simple: we use a command to tell the system which media it should integrate into the tree or which it should remove. This way the system will always know which media are accessible and which are not.

A simple

$ mount
will provide you with a list of media currently mounted. If you have any Windows 9x partitions on your system, these will usually be already mounted, too (directories '/mnt/win_drive).

In order to mount a medium ('to make it part of the local directory tree'), you have to be 'root' and you have to provide it with some facts about the medium you want to mount: what the medium is and via which directory of the directory you want to access it:

mount device_name mount_point
To unmount, you use the 'umount' command:

umount mount_point
An example: to mount an MS-Windows partition ('vfat') which resides on the first partition of the first IDE-disk to '/mnt/disk', you'll type (as root):

mount /dev/hda1 /mnt/disk
To unmount:

umount /mnt/disk
Easy, isn't it? ;-) Take this step by step.
Device Naming

In Unix and thus in Linux, everything is regarded as a file. All file and input/output operations are handled via files. Devices (hard disks, keyboards, graphic cards, printers etc) are also handled via files. These device files are located in the '/dev' directory. All read and/or write operations to and from devices go via these files. If you print a document, the data is simply sent to the device file of your printer in '/dev', if you save a file, that data is sent to the device file of the partition you save it to.

Device names follow strict conventions, which means that on all Linux systems each specific device has always the same device file.
The allowed device file names are listed in '/usr/src/linux/Documentation/devices.txt' (online copy).
Common device names are:
/dev/hda-h 1-63

These are devices connected via IDE (hard disks and their partitions, CD-R, internal ZIP etc). The letter describes the position of the device on the bus (a=master on first IDE channel, b=slave on first IDE channel, c=master on second channel etc.).
The number describes the position of the partition. If the medium does not feature partitions (CD-Rs or DVDs for example), it simply doesn't require that number. A CD drive which is master on the second IDE channel has just '/dev/hdc' for its device file (or '/dev/cdrom' which in turns links to '/dev/hdc').

Everything that has partitions has their device names subdivided in names according to the partitions available (device name + partition number). The master hard disk on the first IDE channel has the device file '/dev/hda'. The first partition on that disk has the device name '/dev/hda1', the second '/dev/hda2' etc.

Things are a bit different, however, when Windows is installed on the same disk. Windows 9x is based on MS-DOS and thus can't handle more than one of the four 'primary' partitions available. Therefore further partitions ('drives') in Windows are created as so-called 'extended partitions' in one of the four 'primary partitions'. In Linux, the first 'extended' partition is always labeled as '5', even if one or more of the 'primary partitions' isn't used:

/dev/hda1 (...) b Win95 FAT32

/dev/hda2 (...) f Win95 Ext'd (LBA)

/dev/hda5 (...) b Win95 FAT32

/dev/hda6 (...) 83 Linux
As you can see, the first partition is used by Windows 9x, which must be installed on the first primary partition. The second provides the structure for the 'extended partitions' (it's of no use by itself). '/dev/hda5' is the second Windows partition ('D:'), and Linux lives on '/dev/hda6', despite the fact there are only three 'real' partitions on the disk.

Why it's done this way? Because this way there's no device name shift in case another primary partition gets created. This new partition would get the device name '/dev/hda3'.

As you can see, a maximum of 63 partitions per disk is allowed.

/dev/fd0-7

These are the floppy devices, with '0' being the first drive and '7' being the eight.

/dev/sda-p 0-15

SCSI disk devices. Numbering like IDE. Maximum of 15 partitions per disk. Notice that USB and IEEE1394 hard disks are also handled via these devices files.

/dev/sr0-15

SCSI CD-Rom devices, nowadays usually referred to as '/dev/scdx'. 0= first device, 1= second device etc. IDE CD-Roms are handled via '/dev/hd'. Notice that IDE CD burners as well as all USB and IEEE 1394 CD/DVD/CD-R are handled via these device files, too.

/dev/pda-d

Parallel port IDE devices. Partitions as with IDE. Maximum of 15 partitions.

/dev/pf0-3

Parallel port ATAPI disk devices.

To find out what partitions are available on a device, either use 'diskdrake' from the Mandrake Control Center (Hardware - Mount Points), or type

cfdisk -P s /dev/device_name
as 'root'. E.g. to find out about the first IDE hard disk in a system, you'd type cfdisk -P s /dev/hda.

Notice that upon installation Mandrake Linux configures a few mnemonic links like '/dev/cdrom' which points to the 'real' CD-R device file. You can create such links, too. If you have a ZIP which mounts to '/dev/sda4', you can - as 'root' - create a link like this one:

ln -s /dev/sda4 /dev/zip
Now you can use '/dev/zip' as an alternative device file name for that ZIP.
Optional: File System Type

Many explanations and tutorials on 'mount' mention the -t type option to specify the file system on the medium. You will find that for mounting local file systems, providing this option isn't necessary. 'mount' supports auto-detection for most of the supported local file systems.

mount /dev/hda1 -t vfat /mnt/disk
mounts the first partition on the first IDE hard disk to '/mnt/disk' and tells 'mount' which file system to expect ('vfat', the file system used by Windows 9x), instead of letting it figure it out on its own.

The -t option does have its use when mounting or unmounting multiple media at once:

umount -a -t vfat
for example unmounts all media with a Windows FAT file system on them.
Mount Point

This is a directory a medium is mounted to. If the medium is mounted, its content is accessible via this directory like with any other directory. If the medium isn't mounted, this directory is just an ordinary empty directory. You can even copy files into this empty directory. These files however will disappear when a medium gets mounted to this directory and reappear when the medium gets unmounted. From this it should also be clear that one directory can only be host to one mounted medium at any given time, you can however mount a medium to a directory on a mounted medium.
Notice that the access permissions on these directories do not have any influence on the permissions of mounted media.

If you have a look at the 'diskdrake' module or the file '/etc/fstab', you notice that two types of mounts can be distinguished by their mount points: one type is mounted to directories across the system ('/', '/home', '/usr', '/dev' etc), while the other type has their mount directories in the '/mnt' directory. The first type is integral part of the system, whereas the second is regarded as temporary (e.g. removable media, Windows partitions, network shares).

The reason for this distinction is easy to conceive: this makes it much easier to exclude temporary media from backups or system maintenance jobs, like for example the update of the database for the 'locate' command.

Optional: Options

Usually you won't need the -o options argument for the mount command. The default options are sensible, and for everything beyond you'd use the '/etc/fstab' file (to be discussed later).

'mount' basically has two sets of options for every 'mount' command: a set of general options applicable to all file systems (like -o ro for mounting a medium read-only, and a set of file system specific options (like -o codepage=850 to enable a special character conversion on a mounted Windows partition). Options are separated by a comma, no spaces. Read man mount for a complete listing.

Like the -t option, -O (capital O) can be used to (un)mount multiple media at once:

mount -a -O umask=0
for example mounts all media from '/etc/fstab' which have the 'umask=0' option in their entry. -t and -O can also be used together with -a:

umount -a -t vfat -O ro
unmounts all media with the Windows FAT file system on them which are mounted read-only.
Uses Of 'fstab'

The central configuration file for the 'mount' command is '/etc/fstab'. You can either use 'diskdrake' (Mandrake Control Center - Hardware - Mount Points) to make changes to that file, or edit the file directly as 'root'.

'/etc/fstab' has several uses:

· You can determine which media to mount automatically on boot.

· You can specify fixed mount options and mount points for every medium.

· The system uses it to mount several 'virtual' file systems.

Mounting Media On Boot

By default, all media listed in 'fstab' are mounted on boot. If a medium isn't available, 'mount' will print an error message and continue with the next entry. Notice that this also applies to networked media like NFS or SMB shares. To prevent 'mount' from trying to mount a medium on boot time, you have to supply the 'noauto' option to the entry of that medium in '/etc/fstab'.
Specifying Mount Options And Mount Points

If you've read the previous page, you already know that the 'mount' command has two sets of options: a set of general options and a set specific to each file system.

File system specific options are file system specific. Really ;-) If you supply an entry in 'fstab' with an option which is specific to a file system (for example umask=0, specific to the Windows FAT file system), only media with this file system can be mounted via this entry. If you need to mount media with different file systems on the same device, either refrain from using file system specific options or create an entry for every file system.

Specifying a mount point has the advantage that you don't have to supply the device file name to the (u)mount command any longer.

mount mount_point
will look up the entry with the respective mount point in '/etc/fstab' and access the listed device file.

Virtual File Systems

Depending on system configuration, 'fstab' contains a number of entries for 'virtual file systems'. These entries do not have corresponding device files listed. Whatever you do, don't mess with these entries!

· 'proc' mounts the 'process tree' under '/proc' which provides a slew of information on what's going on on your system.

· 'pts' enables 'pseudo terminal support', a Unix compatibility feature.

· 'shm' enables support for 'POSIX shared memory'. Only used by a few programs, but doesn't hurt.
fstab Entries Explained
Local Fixed System Partitions

You see that there are already entries in '/etc/fstab' for your system partitions like '/'. Have a look at one of them:

/dev/hda3 / ext2 defaults 1 1
The syntax is:

/dev/hda3 / ext2 defaults 1 1

device_name mount_point file_system options 'dumpe2fs' 'fsck'
So there's the device name of the medium (here the partition on a disk), the mount point ('/') and the file system ('ext2').
defaults collects a set of 'mount' options: rw allow read/write, suid allow set-user-identifier, exec allow execution of programs, auto mount on boot, nouser can only unmounted by root, and async allows delayed disk accesses (caching).

The last two options are flags for the file system utilities 'dumpe2fs' and 'fsck'.
The 'dump' field is either set to '1' (enable) or '0' (disable). Since 'dump' is used by backup programs for the ext2 / ext3 file system only, '1' is set just with entries for ext2 / ext3 media. All other media use '0'.
The 'fsck' field can either be set to '0' (disable file system check), '1' (check first) or '2' (check). '0' is set for all media with non-Linux file systems, removable and networked media, and virtual file systems. '1' is set for the '/' entry, since this partition has to be mounted (and thus checked) first and '2' for all other non-removable, local media with Linux file systems.
Removable Media

Removable data storage like CDs needs different options (if you are not using 'supermount'):

/dev/cdrom /mnt/cdrom auto user,noauto,exec,ro 0 0
user allows mounts and unmounts by users. Otherwise only 'root' is allowed to do that. Notice however, that this option will turn off exec. You have to specify exec after the user option to allow execution of programs on user-mountable drives, like it is done in this example. noauto means that the system shouldn't to mount the device at boot time, which is quite a sensible option for removable media ;-). ro specifies the media as 'read-only'. 'dump' and 'fsck' are disabled.

Although the CD isn't mounted automatically, the entry in '/etc/fstab' makes mounting much easier: Insert a CD into the drive and type

mount /mnt/cdrom
'mount' looks into '/etc/fstab' for an entry connected with this mount point and takes the options which are listed there, so you don't have to supply them anymore. In KDE, you just have to insert the CD and click on the CD icon. This will issue the correct 'mount' command automatically.
A mounted CD will lock the CD tray. To change or eject the CD, you have to unmount it first with umount /mnt/cdrom.

To configure additional removable media, you have to know the name of their device files. Either check devices.txt or read the article on removable storage devices.
Local Fixed Non-System Partitions

Now what would an entry for an MS-Windows partition look like? Assume it is the second partition on your first IDE drive and you want to have it mounted automatically. It's

/dev/hda2 /mnt/win_d vfat umask=0,quiet 0 0
The 'umask' option turns off the permissions check. Without that option, only 'root' can access files on this device. 'quiet' turns off those annoying and pointless error messages about not being able to set permissions when moving files to this medium.

If the file names on the Windows medium look funny, you might have to specify two more options, 'iocharset' and 'codepage'. By default, 'mount' uses the 'iso8859-1' charset and codepage 437. These enable character conversion. Available charsets are listed in man charsets, setting the codepage to 850 (codepage=850) should fix most problems.
Networked Shares

NFS and SMB shares can also be configured via 'fstab'. Please read the articles on Samba and NFS first, since options here are important and require some understanding on how these protocols work.

The basic syntax is not very different from that for local media. The entry for the 'device file' is just replaced by an entry for the remote server and share:

remote_server:share local_mount_point file_system options dump fsck
So, an entry for automatically read-write mounting an NFS share called '/share/nfs' from the server 'domain.com' to the local '/mnt/nfs' directory would basically look like this:

domain.com:/share/nfs /mnt/nfs nfs rw 0 0
For SMB shares, you'd basically just replace the 'nfs' file system type with 'smbfs'.
Using 'supermount'

If you are using 8.1, read this hint on 'supermount'.

'supermount' has been introduced in Mandrake Linux to make the handling of removable media much easier. It uses a nifty trick to automatically mount all inserted media: it mounts the (empty) devices by itself on boot and queries them regularly for newly inserted or removed media. The effect of which is that you don't have to mount or unmount external devices anymore: the system does it all by itself.

There just four instances left you have to worry about mounting: when adding a new device you want 'supermount' to handle, when you have to use a medium unmounted, when you use media with different file systems in the same device, or when you want to pass options to the 'mount' command via a 'supermount' entry.
Extending 'supermount' to new devices

supermount -i enable
enables 'supermount' on all removable devices listed in '/etc/fstab'. In order to have this take effect, you have to reboot. This command requires 'root' privileges.

If the system doesn't recognize your new external device and thus doesn't write an entry to '/etc/fstab', you'll have to do that by yourself, either by creating a standard fstab entry for that device and then running the 'supermount' command to enable it, or by writing an entry in the 'supermount' format right away.

A common 'supermount' entry for a CD drive looks like this:

/mnt/cdrom /mnt/cdrom supermount fs=iso9660,dev=/dev/cdrom 0 0

mount_point mount_point supermount fs=file_system,dev=device 0 0
All you need to know for adding a new device is: the mount point (create one yourself as 'root' with mkdir /mnt/name), the file system the inserted medium will have (read man mount for supported types and their codes) and the device name (Either check devices.txt or read the article on removable storage devices).

One tricky thing here can be finding out how the vendor formatted the medium. Usually, they do not use the first partition, but either the forth (like Iomega's ZIP) or the fifth (like Castlewood's ORB). Remember to keep this scheme if you reformat the medium for Windows / Mac compatibility.
Unmounted Media In 'supermount' Devices

Certain tasks like playing music CDs for example require the medium to be inserted but unmounted. There's currently no other solution then to unmount the device, thus making it possible to use the unmounted medium but also turning off 'supermount' for the remaining session.
Using 'supermount' with different file systems

That entry in '/etc/fstab' however will only work with media that are formatted with the MS-Windows file system (vfat). It will not mount media formatted with GNU/Linux' extfs2, for example. You can change this easily, though, by simply setting the entry for the file system type to 'auto'. Make sure that '/etc/filesystems' contains entries for all the file systems you use.

'supermount' will now look up this file when inserting a medium and mount it with the appropriate parameters.
Passing 'mount' options to 'supermount' in '/etc/fstab'

If you need or want to pass options to the 'mount' command when the device is handled by 'supermount', you will need to separate these options from those passed to 'supermount' itself with --,
Let's say you want to add the 'umask=0' option to a 'supermount' entry in '/etc/fstab':

/mnt/zip /mnt/zip supermount fs=vfat,dev=/dev/sda4,--,umask=0 0 0
would be the right way to do it.
Troubleshooting

"maximal mount count reached - check forced"

This is not an error, it's a feature ;-). After a specified number of reboots Linux checks the file system for consistency even if the box has been shutdown properly. This can take some time, especially on large partitions. You can set the interval with 'tune2fs'.

"device was not cleanly unmounted on shutdown - check forced"

You either haven't run 'shutdown' before turning the machine off or were forced to reboot the machine because of a system freeze. The Linux file system is very robust and usually you'll get away with a long file system check. If you are unlucky, however, vital system files may have been damaged. Keeping '/' on a small partition of its own minimizes this risk.
Mandrake Linux 8 and later offer you a variety of 'journalizing' file systems to replace extfs2. Journaling file systems keep track (a 'journal') of all read / write operations. So even in case of abrupt system failure, the status of the system will be preserved and no checks will be run at reboot.
"mount: only root can do that"

You have tried to mount a device that is not listed in '/etc/fstab' as being mountable by users (option 'user'). Do it as root. If you need to mount the device more often, it may be a good idea to change '/etc/fstab' accordingly.

CD-Rom Tray Is Blocked

The CD-Rom is still mounted. Unmount it and you'll be able to open the tray again. By the way, if you want to unmount a CD and have it ejected right away, use the 'eject' command ('eject' RPM): eject /dev/cdrom. This works for all kind of removable media.

'df' doesn't list external media anymore

The 'supermount' mechanism prevents 'df' from showing external media. To see them you have to supply the mount point as a parameter to 'df':

$ df /mnt/cdrom
File system Size Used Avail Use% Mounted on
- 641M 641M 0 100% /mnt/cdrom
"mount: can't find /mnt/[device] in /etc/fstab or /etc/mtab"

You have tried to mount a partition or device by supplying only its mount directory. This only works for mount points listed in '/etc/fstab'. Either add it there or use the full mount line, like mount /dev/device /mnt/mount_directory.

'[device] is not a valid blockdevice'

Either this means you have provided the wrong options to 'mount' on the command line or in '/etc/fstab', or the media hasn't been inserted or isn't formatted properly. This can also happen if the CD features an ISO9660 extension which isn't supported by your CD drive (CD Text, for example). This message refers to the so-called major and minor numbers of devices listed in '/dev'. For example:

$ ls -l /dev/sda
brw-rw---- 1 root disk 8, 0 [etc]
'8' is the major number of 'sda' and '0' its minor number (so 'sdb' has 8,1). Linux handles devices by these numbers, not by their names. A list of valid names can be found in 'devices.txt' in the kernel's documentation directory. Usually you don't have to create new device nodes in /dev. If you do, and you get this error afterward, check if you've chosen the correct major and minor number for this device.

Audio CDs Don't Play When Mounted

Audio CDs mustn't be mounted if you want to play them. If you mount them, Linux regards them as data CDs. This can lead to problems when 'supermount' is enabled. The solution is to unmount the CD (umount /mnt/cdrom) and to remount it when you want to insert a data CD. Unmounting a 'supermounted' device will disable 'supermount' for this device during the rest of the session. Or, having two CD-R drives, to disable 'supermount' on one of them at all.

"input/output error"

This error occurs when you try to access a medium which hasn't been mounted - or, in case of supermount, inserted - yet, but might also be caused by a media failure or - with 'supermount' - by a software error.

No Proper Unmounting ('Device Busy')

This annoying error is either due to you still being inside a directory on a medium you try to unmount (eg in an xterm) or due to some rampant or misguided process which refuses to have its contents flushed and written to the drive. Wrongly configured or malfunctioning sound daemons are justly infamous for this kind of behavior. To find out, try to unmount the partition (do this on the console, not in X) and then run (as 'root')

lsof /dev/device
where device is the system name of the partition which doesn't unmount properly (use df to find out). It should now show you the process(es) which are still have open files on the partition despite the unmount command.

As ML user Michael Javis knows, the reasons for this error may sometimes not be that obvious:

"I had reinstalled some RPMs from my Mandrake 7.2 CDs, and after installing I was unable to unmount the CDROM drive. Every time I would try to unmount /mnt/cdrom I would get a "device busy" error, even though I had no obvious files open on the device (such as viewing a README file with 'less' for example).

"If you are installing an RPM, directly from the CDROM, that affects the Apache web server (such as some of the PHP RPMs)...the RPM post-install script will do a restart of your web server. If your current working directory is on the /mnt/cdrom file system then the Apache web server will have open files on the device, preventing you from unmounting the CDROM.

"I changed to my home directory and restarted my web server and was finally able to unmount /mnt/cdrom."

No User Access To Files On Mounted Windows Partition

To allow users read access to files on a mounted Windows partition (FAT, FAT32 or NTFS), you have to add the 'mount' option

umask=0
to the according entry in '/etc/fstab' and then remount the partition. Without this option, only 'root' can access files on such partitions.

Trouble Mounting Removable Media With Different File Systems

Generally, you can run into two sorts of trouble when mounting removable media with different file systems on them to the same mount point.

Different partition setup.. Due the different handling of partitions in Unix, Windows and Mac OS, FAT-pre formatted removable media usually use either the fourth or the fifth partition to store data, but not the first. If you reformat these media using the Linux ext2 file system, however, the first partition will become the main data partition, thus rendering the according entry in '/etc/fstab' invalid for this medium.
You will either need to create a different entry for this medium in '/etc/fstab', or take care of formatting the medium according to its original partition layout. Best bet is to not reformat the medium at all.

File system specific mount options. 'mount' offers you the possibility to specify auto as the file system type. This option tells 'mount' to try all file systems listed in '/etc/filesystems' on any medium to be mounted. This mechanism however works only as long as no file system specific mount options (like umask or codepage) are provided. If such options are provided, mounting media with file systems which do not support these options will inevitably fail (bad option).

Either remove these options or create a separate fstab entry.

Although this list of possible errors may sound disconcerting, mounting usually just works. But it can be annoying, if it doesn't ;-).

Configure 'automount'

'automount' is an alternative mechanism to mount local and networked media automatically. In this contributed article, Mandrake Linux user Kevin McCormick describes a setup.

Preparations

This is based on my reading of the man pages for autofs and also the Automount mini-HOWTO, plus a few trial and error cycles. Your mileage may vary. I use Linux-Mandrake, and the "Supermount" method they have for accessing removable drives wasn't working for me.
I have found the method described below to be quite usable. Notice that 'automount' doesn't work with 'urpmi' or the 'Software Manager' when installing RPMs ('device is busy' error).

Anyone who has better ideas should feel free to add improvements.

1. Run urpmi autofs as 'root' to install the package (or use the Software Manager').

2. Enable the 'autofs' service via the Mandrake Control Center - System - Services. Alternatively, run (as 'root'): chkconfig autofs on to make sure the automounter is started automatically upon boot. (More on system services)

3. Disable 'supermount' by running (as 'root') supermount -i disable
Creating Mount Points

Create mount directories as 'root' with mkdir /mnt/dir_name (as 'root'). Directories such as '/mnt/cdrom', '/mnt/floppy', and '/mnt/zip' may have already been created, and you may just want to use these. (More on 'mounting')
These directories can be located anywhere in your tree but are usually placed under '/mnt', as in '/mnt/cdrom'.

A separate directory for each removable drive should be created because you will probably want to use different timeout (auto unmount) options for each removable drive. However, if the timeout option is the same, you can simply use a mount point for more than one removable drive. Here, I could use a single mount point for the cdrom and zip drives.

Configuring autofs Files In /etc

Next edit the '/etc/auto.master' file

For details of the format look at autofs(8).

mount point config file --options

my layout:

NFS link to server is under /net

removable drives are under /mnt/cd, mnt/fd, and mnt/zd

/net /etc/auto.net --timeout=30 #(this is a network nfs share)

/mnt/floppy /etc/auto.floppy --timeout=1

/mnt/cdrom /etc/auto.cdrom --timeout=3

/mnt/zd /etc/auto.zip --timeout=3

Next create an '/etc/auto.drivereference' file for each removable drive reference in '/etc/auto.master'.

Example file for /etc/auto.zip which mounts under '/mnt/zd'

$Id: auto.misc,v 1.2 1997/10/06 21:52:04 hpa Exp $

This is an automounter map and it has the following format

key [-mount-options-separated-by-comma] location

Details may be found in the autofs(5) man page

#==== /etc/auto.zip (has 3 second timeout)

zipd -fstype=vfat,users,rw,suid :/dev/hdd

zipl -fstype=ext2,users,rw,suid :/dev/hdd1

Note there are two zip drive directories, one for dos (vfat) formatted zip drives and one for linux (ext2) formatted drives. Since they mount to different partitions on the zip drive, it appears separate entries are necessary. See the mini HOWTO on zip drives.

Example file for /etc/auto.cdrom which mounts under '/mnt/cdrom'

#==== /etc/auto.cdrom (has 3 second timeout)

cdrom -fstype=iso9660,ro,nosuid,nodev :/dev/cdrom

Example file for /etc/auto.floppy which mounts under '/mnt/floppy'

#==== /etc/auto.floppy (has 1 second timeout)

floppy -users,suid,rw,exec,fstype=auto, :/dev/fd0

Example file for '/etc/auto.net' NFS network file share which mounts under '/net' (if you don't share NFS directories in your network, don't use this).

#==== /etc/auto.net

nfs1 -fstype=nfs,rsize=4096,wsize=4096,hard,intr server_name:/share_name
Desktop Icons For Easy Access

Next edit the desktop icons (if you use these) on your desktop which reference the removable drives. These icons are perhaps labeled "CD-ROM", "Floppy", and "Zip".

For KDE, just right-click the desktop icon and select "Properties" from the pop-up menu. This displays a small dialog and you should click on the "URL" tab to show the URL (uniform resource locater). Edit the URL to be the same as the '/etc/auto.master' mount point plus the 'auto.removabledrive' directory name. Following the examples, the URL for the cdrom drive would be: "/mnt/cdrom/cdrom", for the floppy drive: "/mnt/floppy/floppy", and for the zip drive: "/mnt/zd/zipl" or "/mnt/zd/zipd".

Now when you click on these icons, the Konqueror file manager will open and display the contents of the removable drive. If there is no disk in the drive when you click on the icon, you will get an harmless error message.

When you are done with the removable drive, close the Konqueror file manager so that there are no active programs with a reference to the directory. After the timeout has elapsed, the removable drive will be automatically unmounted and the removable disk can be taken out without having to worry about files that are not synced or other such annoying problems.

In order to access a removable drive directly from the Konqueror file manager, you will need to type the path (e.g. '/mnt/cdrom/cdrom') in the Location bar at the top. If you are using Konsole, xterm, or another terminal emulator, you also just type the path (e.g. $ cd /mnt/cdrom/cdrom).

'autofs' will automatically mount the removable drive when the path is given and when there are no programs referring to the drive, it will automatically unmount after the timeout period has elapsed.
Scheduling
Revision / Modified: Jan. 02, 2002
Author: Tom Berger

Original documents:
http://www.mandrakeuser.org/docs/admin/acron.html
http://www.mandrakeuser.org/docs/admin/acron2.html
http://www.mandrakeuser.org/docs/admin/acron3.html
What Scheduling Can Do

You are sitting at your new Linux machine, happily typing away (or grudgingly trying to solve some weird problem ;)), when all of a sudden your hard disk spins up and your system shows all signs of some lively activity going on. After a few minutes, the activity trails off and everything is as it was. You have just encountered your first scheduled 'job'. Job is Unix slang for a program running in the 'background', i.e. without requiring user intervention.

Mandrake Linux comes with several preconfigured schedules which take care of system maintenance: updating the data bank for the 'locate' command, moving the logging files in '/var/log' ('rotating' them), running security checks, removing unused modules from system memory etc. If you are curious, have a look at the directories '/etc/cron.d/' (minute scheduled jobs), '/etc/cron.hourly/' (hourly scheduled jobs), '/etc/cron.daily/' and '/etc/cron.monthly/' which contain the scripts executed by the (ana)cron daemon via '/etc/crontab'.

Of course you can also take advantage of this system, e.g. for

· running regular backups,

· letting the system dial-up and retrieve mail every hour,

· sending yourself reminder messages,

· sending out birthday emails to the right person at the right date,

· removing temporary or unused files,

· scheduling downloads, uploads, mirroring,

· logging off idle users etc. etc.

In short: everything you have to or want to do regularly or at a certain time on your computer and which requires no interaction, you can let your system do for you.
'sleep', 'at', 'cron' and 'anacron'

These four are responsible for delayed and scheduled command execution:

· sleep suspends a running job for a given period of time.

· at starts a job at a certain time.

· cron runs jobs in fixed intervals.

· anacron runs jobs in flexible intervals.

'sleep' is already installed, since it is often used in shell scripts. The 'at' package isn't installed by default. 'cron' and 'anacron' are included in a standard installation, although 'anacron' might not be started at boot time by default.
Use the Mandrake Control Center (System - Services) to check and configure this service, or go the short way via the command line (as 'root'):

chkconfig --list anacron
to check and

chkconfig anacron on
to enable the service. (More on system services)

Note that 'anacron' isn't meant as a replacement for 'cron', it's an add-on.

'sleep'

Unless you are writing your own scripts (or are editing existing ones), 'sleep' won't be of much use for you. In scripts, however, it plays a quite prominent role. Its syntax is

sleep number of seconds
If you've ever watched the boot messages on an Mandrake Linux system closely, you will have noted the message

Press 'I' to enter interactive startup.
Have you ever managed to press the 'I' key fast enough? Well, I didn't. So I opened the file '/etc/rc.d/rc.sysinit' as 'root' in an editor. I found

if ["$PROMPT" != "no"]; then

 gprintf "\t\tPress 'I' to enter interactive startup."

 echo -en "\r"

 echo

 sleep 1

fi
which says that you have one second (sleep 1) to press the 'I' key. I changed it to sleep 5, so now Mandrake Linux leaves me five seconds to find the 'I' key and press it.

'sleep' is also used in a number of scripts which start a lot of programs to reduce disk usage by adding a pause between the commands.

Example: Pop-up Reminder

You have ten minutes left before you have to leave your computer. You want your box to tell you when these ten minutes are over.
This either requires 'xmessage' (part of the 'X11R6-contrib' package) or 'gmessage' (part of the 'gtkdialogs' package).

Enter this command into a virtual terminal (or the pop up command line of your window manager):

(sleep 10m; xmessage Time to leave!) &
This will pop up a message box on your desktop in ten minutes.

'at'

'at' adds scheduled jobs to the persistent 'at queue', managed by 'atd', the 'at daemon'. 'atd' must run for 'at' to work properly. You can check that as 'root' with

service atd status
You can provide 'at' with absolute times, like 'April 30, 12.00' (at 1200 Apr 30), or with relative times like 'Tomorrow, 2.00 PM' (at 2pm tomorrow) or even 'In 5 hours, 25 minutes from now' (e.g. if it's 4 o'clock in the afternoon: at 0425pm + 5 hours). Valid time options are listed in '/usr/share/doc/at-[...]/timespec'.

Adding a job to the 'at queue' follows a somewhat peculiar scheme. You type in the time and - optionally - date first, hit <ENTER> and then add the command(s) to be executed (one per line). If you're finished, press <CTRL-d> on an empty line.

at [time] [date]<ENTER>
at>command 1<ENTER>
at>command 2<ENTER>
at> <CTRL-d>
warning: commands will be executed using /bin/sh
job number at full time and date
If the scheduled commands produce any output, 'at' will mail it to you.
To get a list of your queued 'at' jobs, run atq, to remove a job from the queue, use atrm job number.

Example: Sending yourself a scheduled reminder message

You have to make an important phone call in three days from now on at 4 pm. In order to be reminded of that, tell 'at' to send you a message half an hour before (your mail daemon must be configured properly for this to work):

at 0330pm today + 3 days
at> echo "remember call at 4!" | mail your username@localhost
at> <CTRL-d>
Notice the 'today' token. Strictly speaking it isn't necessary, but it makes sure that 'at' starts counting from today, regardless of the current time. If you would leave it out and it were past 3.30 pm already, 'at' would start counting from tomorrow at 3.30 pm and you would receive your reminder one day too late.
Administrativa

The 'batch' tool is part of the 'at' package. 'at' jobs invoked by 'batch' are only executed when the system load is below 0.8 (this value can be adjusted with the

atd -l value
command).
The default configuration allows all users to use 'at'. To exclude users, add their login names to '/etc/at.deny' (or add all privileged users to '/etc/at.allow').
Strictly speaking, there's no program called 'cron'. There is the 'cron daemon', crond, which is started automatically at boot, and the command 'crontab' to set up files to control 'crond', the 'crontabs'. Both 'Linuxconf' and 'Webmin' offer modules to configure 'cron' via a graphical interface.
The crontab system on Mandrake Linux is twofold: system wide crontabs are controlled by '/etc/crontab' and '/usr/bin/run-parts', which call scripts stored in '/etc/cron. d' (executed every minute), '/etc/cron.hourly', '/etc/cron.weekly' and '/etc/ cron.monthly'.
Crontabs for users (and 'root') however are stored in '/var/spool/cron/user_name'.
Specifying Execution Time

Have a look at '/etc/crontab', because it will tell you something about the 'crond' syntax. By default, the lower part of this file looks like this:

01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly
Each line starts with five fields denoting when the command (runparts directory) is to be executed:

1. The first field denotes the minute
2. the second the hour
3. the third the day of month
4. the fourth the month (by number or short name)

5. the fifth the day of the week (by number or short name)

An * (asterisk) marks an unrestricted field. This tells 'crond', "never mind what minute / hour / day / month / weekday it is, do it". Have a look at the last line. There you see: The command is executed at the 42th minute of the 4th hour (am) of the first day of a month. It doesn't matter which month (* in the fourth field) or which weekday (* in the fifth field).

A line like this:

* * * * * command
would execute command every minute, regardless of which hour / day / month it is. This should also explain how the first * in '/etc/crontab' works: 'execute the command in the first minute of every hour, on every day, in every month'.

* * * * mon command
would execute command every minute, but only on Mondays.

What does this?

44 14 * 11 wed command
Got it? It executes command on 2:44 pm every Wednesday in November.

Note that field three (day of month) and field five (day of week) are handled a bit differently, if they both list restrictions.
Assume you would change the last line of '/etc/crontab' to
42 4 1 * sun command
One might be inclined to think that this would restrict the execution of command to 4:42 am on the first day of every month, if that day happens to be a Sunday. However, if field three and field five both list restrictions, command is executed, when either field matches. So in this case on every first day of a month and on every Sunday.

You can also specify (multiple) ranges (x-y), lists (x,y,z) and step values (in conjunction with ranges, x-y/z):

05-15,30-40/3 8,12,16 * */2 7 command
Tough one, eh? ;-) Here's a hint: When you are trying to decipher more complicated 'crond' rules, read the fields from right to left:
The command is executed on Sundays (7), every second month (*/2, i.e. January, March, May etc), during the hours 8, 12 and 4pm. It is executed every minute between the fifth and fifteenth minute and every three minutes between the thirtieth and fortieth minute.
So in January 2003 the command would be executed at the 5th, 12th, 19th and 26th of January (Sunday), at every minute between 8:05am and 8:15am, and then at 8:30, 8:33, 8:36 and 8:39. Then at 12:05, 12:06, 12:07 etc.
Writing Your Own Crontab

To edit / create your crontab, issue

$ crontab -e
which opens a new file (or your existing crontab) in an editor.

Note that 'crontab' uses the (unjustly) infamous 'vi' editor by default. To make 'crontab' use your favorite editor, e.g. 'gedit', run this command before calling 'crontab':

$ export EDITOR=/usr/bin/gedit
There are also several graphical crontab editors available. KDE users may prefer KCron to the orphaned 'kcrontab', others Tct to the license-encumbered 'VCron' or the unstable 'GCrontab'.

The other options to 'crontab' are:

· crontab -l, which lists your crontab and

· crontab -r, which deletes it.

Commands that take two or more lines are not allowed. Put them into a script and call the script from the crontab instead.

If you want to execute commands which need the permissions of another user, e.g. 'root', use su to login into that account and run 'crontab' like this:

crontab -e -u root
If the commands run via 'crond' produce any output or if errors occur, a mail is sent to the owner of the crontab the command was started from, provided a mail daemon like 'Postfix' is installed and running. This might be inconvenient for 'root' cron jobs, if you are your own administrator and don't get 'root's' mail. This behavior can be changed with the MAILTO variable in your crontab. It defines who should get mail for which job(s), or that no one should get mail for a job at at all:

MAILTO=""
job1br /> MAILTO=jim
job2
For job1, no mail will be sent (even if the job fails), the mail concerning the second job will go to user 'jim'.

Example: Monthly Compression Of 'sent_mail' Folder
You want cron to compress your 'sent_mail' file or folder, store it somewhere else and then empty the file or folder. Create a script like this:

#!/bin/bash

#

tar czf $HOME/mail/sent_mail$(date +%b%Y).tar.gz /path to/sent_mail_folder_or_file
for mail file (mbox format) use this:

if $?=0; then

 echo > /path_to/sent_mail_file
else

 exit 1

fi

for mail folder (mh format) use this:

if $?=0; then

 rm -f /path_to/sent_mail_folder/*

else

 exit 1

fi

(The 'if' construction prevents the cleaning of the sent_mail folder/file if tar has failed to create an archive.)

Make the script executable with chmod +x file. Next edit your crontab with crontab -e and put these lines in it:

the next line catches all months with 31 days
59 23 31 1-7/2,8-12/2 * sh your_script_with_full_path
the next line all months with 30 days
59 23 30 4,6,9,11 * sh your_script_with_full_path
well, and February. Will be one day off in leap years
59 23 28 2 * sh your_script_with_full_path
If everything goes well, cron will call the script on the last minute of each month. The script will compress the 'sent_mail' folder/file, store it under '$HOME/mail/sent_mailMonthYear.tar.gz' and then empty the 'sent_mail' folder/file.
anacron

If you look at '/etc/crontab', the control file for the cron scheduling daemon, you will notice that by default all daily, weekly and monthly system tasks are run between 4 and 5 o'clock in the morning. If your computer isn't turned on during this time, the cron jobs won't be executed.
One solution to this problem would be changing the hour fields to a time when your system is most likely running (I used to change them to 2 pm.).
Another solution would be running the 'anacron' daemon.

'anacron', the 'anachronistic command scheduler', uses relative time scales ('once a day / week / month') instead of absolute time scales ('4:15am, Feb 15'). So, even if you 'miss' a particular time or date for which a job is scheduled, it will be executed shortly after you've booted the system. It works like this:

1. 'anacron' looks up the 'timestamps' for its jobs in '/var/spool/anacron'.

2. If according to a time stamp a job is due, 'anacron' will run it.

3. 'anacron' updates the time stamp for the job.

'anacron' is controlled by the file '/etc/anacrontab'. If you open it in a pager, you will see that the preconfigured Mandrake Linux cron jobs are already entered in there:

1 5 cron.daily run-parts /etc/cron.daily

7 10 cron.weekly run-parts /etc/cron.weekly

30 15 cron.monthly run-parts /etc/cron.monthly

1. The first field denotes the period in days: 1 is daily, 7 every 7 days (weekly) etc.

2. The second field denotes the delay for jobs to be executed after anacron has started in minutes. So, 5 says 'run scheduled jobs 5 minutes after start'. This mechanism prevents queued jobs from being run all at the same time.

3. The third field contains an identifier. 'anacron' uses this identifier for its timestamps and in messages.

4. The fourth field finally lists the command to execute.

Caveats And Limitations

'anacron' is just an add-on to 'cron', not a replacement. Due to its very nature, it can't execute minutely or hourly scheduled jobs. It doesn't provide a mechanism for running jobs under different users, i.e. all jobs are run as 'root'.
Example: Getting Your New Mail After Boot

You want your computer to get your new mail after having booted it in the morning. Since you boot your machine at different times, a cron job won't do.
You need a properly configured mail daemon, a mail retrieving utility like Fetchmail and a scripted dial-up connection.

Add this command (one line) to '/etc/anacrontab':

1 3 getmail pppd call ISP && fetchmail -s && killall pppd
Since 'anacron' executes all commands as 'root', the '.fetchmailrc' file must have the permissions -rw------- root root set and should ideally reside in 'root's' home directory. Another possibility would be putting the commands into a script and putting su user before the line which starts 'fetchmail'.
Interactive Schedulers

'at', 'cron' and 'anacron' do not allow to start programs which require user input, like X applications. This is because they don't have a shell to start a program from. 'sleep' can do that, but only within a session.

Surprisingly enough there seems to be only one program currently which saves schedules to a file and thus allows to launch arbitrary interactive programs at a given time. This program is called 'rclock' and is part of the 'rxvt' package. If you find others, you are invited to tell me ;).
System Services
Revision / Modified: Jan. 04, 2001
Author: Tom Berger

Original documents:
http://www.mandrakeuser.org/docs/admin/aservice.html
http://www.mandrakeuser.org/docs/admin/aservice2.html
http://www.mandrakeuser.org/docs/admin/aservice3.html
http://www.mandrakeuser.org/docs/admin/aservice4.html

Introducing System Services

If you happen to open 'System' - 'Services' in the Mandrake Control Center, you see a lot of columns, starting with a more or less cryptic name for the service. The second column reads either 'stopped' or 'running', the third is a button which reveals some basic information. Then there's a check box labelled 'On boot' followed by two buttons: 'Start' and 'Stop'.

This layout describes in essence what you can do with a service: you can start or stop it and you can configure it to be 'started' automatically at boot time.

But what is a service? In contrast to a program, services do not require user input (they 'run in the background') apart from starting or stopping them, and even this can be automated.
There are two kinds of services:

· Services which are started and keep running for the duration of a session (i.e. until the system gets shut down). In Unix slang these are also called daemons ('helpful spirit'). These are usually servers of some kind which are started and then wait for incoming requests, like a web server, a mail server, the printer service or a font server.

· Services which are started, run and terminated when finished. These are usually scripts for system maintenance or for enabling certain features, like the 'numlock' script whose sole purpose is to turn on the numlock feature - i.e. being able to use the right-hand number pad on most keyboards for number input - during boot.

Apart from the Mandrake Control Center, there's a slew of other graphical configuration utilities you can use to configure services. Webmin and Linuxconf both come with modules to do that. KDE and GNOME each offer there own brand of service configuration utility. Furthermore there's 'tksysv' and its console based parent 'ntsysv'.
But the MCC module does what needs to be done, but maybe you like one of the other applications better. You don't need to be afraid of causing inconsistencies when using different utilities since they all use the same (command line) commands, 'service' and 'chkconfig'.

'service' and 'chkconfig'

The 'service' command, a simple shell script in '/sbin', is used to display the status of a service, to start, stop or restart it. This command takes two arguments, the name of the service (i.e. the name of the file in '/etc/init.d') and what should be done in regard to this service:

service service_name start

service service_name stop

service service_name restart

service service_name status

'restart' and 'status' are not supported by all service scripts.

'chkconfig' lists, adds, removes and configures services permanently. To have a service started automatically at boot time, you would use:

chkconfig service_name on
To have it not started automatically:

chkconfig service_name off
To list all available services and their current configuration:

chkconfig --list
The output of this last command will become clearer to you when you've read the next section. More on this command can be found in man chkconfig.

Like their graphical counterparts, these commands require you to be 'root'. Nothing forces you to use them instead of MCC or the other utilities, I prefer them because I'm faster at typing a command than at clicking through a graphical interface ;-).

Advantages Of The Services Mechanism

Being able to control services has several advantages:

· Reducing system load:
Although daemons are 'sleeping' most of time they nevertheless use up a certain amount of system memory. The 'service' interface allows you to start services on demand, for example you can start the printer daemon right before printing and stop it when finished.

· Increasing system security:
Daemons are listening on certain ports for events. More daemons running mean more open ports which in turn provide more possible points of attack. On the other hand there are services which actively increase system security, like the 'bastille-firewall' service.

· Avoiding reboots:
If you change the configuration of a daemon, the daemon usually has to be started to let the change take effect. If you install a package which contains a service, the service usually won't start right away but will be configured to be started automatically at boot time.
By controlling services you can fulfill these tasks during runtime.

· Shortening boot time:
A good chunk of the time your Linux system needs to boot is taken up by starting or running daemons and other services. If you configure your system to start only those services on boot you need immediately or all the time, you can reduce the boot up time considerably.

How Services Work

This section is intended for people who not only want to know what to do but also why things are done this way. You can live on Linux without this, but in my opinion it's more fun when you get a grasp of the concept behind the scenes.

Service Scripts

If you are curious, you might want to know now how the system knows which services are available. The service scripts are located in '/etc/init.d' ('/etc/rc.d/init.d' on older releases).
Graphical utilities like the Mandrake Control Center just assume that every script in this directory controls a service, so if you put a script there, it will appear on the Services module of the Mandrake Control Center and in similar utilities, too, and can also be handled directly via the commands 'service' and 'chkconfig'.

A service script contains the commands to at least start or stop a service. Have a look at a basic template for a service script:

#!/bin/sh

chkconfig: runlevels order_number_start_link order_number_stop_link
description: short description of service
. /etc/rc.d/init.d/functions

case "$1" in

 start)

 echo -n "Starting service: "

 command(s) to start service
 echo

 ;;

 stop)

 echo -n "Shutting down service: "

 command(s) to stop service
 echo

 ;;

 status)

 status service_name
 ;;

 *)

 echo "*** Usage: service_name {start|stop|status}"

 exit 1

esac

exit 0

If you've already seen a shell script, it's pretty simple. 'chkconfig' and 'description' are explained in the next subsection. The 'functions' line is only needed here to have the 'status' command available. Then there's a 'case' fork which tells the script which commands to execute if the last argument to the 'service' command is either 'stop', 'start' or 'status'. The 'echo' lines provide some feedback, '*)' matches all cases in which the last argument isn't one of 'start', 'stop' or 'status' and thus invalid (prints a usage message and exits).
Of course you have to make sure that service_name really is the name of the script and that the script has the executable bit set.
Runlevel Links

Some services depend on other services. The 'httpd' service (Apache web server) for example won't start correctly if the 'network' script hasn't already set up the network interfaces. How is the order in which services are started on boot determined?

Have a look at the '/etc/rc.d' directory:

$ ls /etc/rc.d

init.d/ rc0.d/ rc2.d/ rc4.d/ rc6.d/ rc.local* rc.sysinit*

rc* rc1.d/ rc3.d/ rc5.d/ rc.firewall rc.modules*
You see the 'init.d' from '/etc' here again (in fact it's the same) and then several directories and files starting with 'rc' ('rc' is short for 'runcom[mand]').
In Mandrake Linux releases 8.0 and later, these files and directories are also accessible directly from the '/etc' directory.

If you now look into one of those 'rcnumber' subdirectories, you will find a bunch of files, some of them starting with 'S' and some of them with 'K' followed by a two-digit number. 'S' is short for 'start' and 'K' stands for 'kill'. The numbers imply the order in which starting and killing services takes place. In fact all those files are just links to their appropriate counterparts in '/etc/init.d'.
'S12syslog' for example is a link to '/etc/init.d/syslog' and gets started after 'S10network' which links to '/etc/init.d/internet' but before 'S20random'.

You don't have to create these links yourself when configuring a standard service with 'chkconfig' because most scripts already contain a 'chkconfig' line, like for example the 'network' service script:
#! /bin/bash

#

network Bring up/down networking

#

chkconfig: 2345 10 90

description: Activates/Deactivates all network interfaces configured to \

start at boot time.
The standard configuration for this script is to have it started in the runlevels 2, 3, 4 and 5 with a 'S10network' link in the directories '/etc/rc.d/rc.2' to '/etc/rc.d/rc.5' and stopped in runlevels 0, 1 and 6 with a 'K90network' in the directories '/etc/rc.d/rc.[0,1,6]'. This standard configuration is applied when using the 'reset' option:

chkconfig network reset
will create exactly these links, whereas

chkconfig service_name on
always defaults to starts on runlevels 3, 4 and 5 only.

What are runlevels then? Runlevels are listed in '/etc/inittab':

Default runlevel. The runlevels used by RHS are:

0 - halt (Do NOT set initdefault to this)
1 - Single user mode

2 - Multiuser, without NFS (The same as 3, if you do not have networking)
3 - Full multiuser mode

4 - unused

5 - X11

6 - reboot (Do NOT set initdefault to this)
During operation, the system always is in one of these runlevels, most of the time either in runlevel 3 (console) or runlevel 5 (X, i.e. the graphical interface).
Upon switching runlevels, e.g. by starting the graphical interface or stopping it, by booting the machine or rebooting it etc, the script '/etc/rc.d/rc' is executed. This script in turn looks up the start and kill links in the appropriate 'rcnumber' directory (where number matches the number of the runlevel the system is switching to) and executes them, i.e. starts or stops the services as configured for the runlevel the system is switching to. This explains why '/etc/rc.d/rc.0' and '/etc/rc.d/rc6' almost only contain 'kill' links since all services are stopped when halting or rebooting the machine.

This elaborate system is called the System V Init Process, because it has been introduced with version five of UNIX®. Apart from Slackware, all major Linux distributions use it. Slackware and *BSD operating systems use the BSD-style Init Process which more or less packs the whole initialization and service maintenance work into one file.
How To Put This System To Use

The 'chkconfig' program allows you a finely grained control on what services are started or stopped on which runlevels. Under certain circumstances it can be useful to reconfigure services.
Take the GPM service, for example. GPM is the 'General Purpose Mouse Daemon'. You will need to have it running when you want to use a mouse on runlevel 3 (console). On runlevel 5 (graphical interface), it is next to useless, it can even cause incompatibilities to occur. Using 'chkconfig' you can configure the gpm service only to be run on runlevel 3:

chkconfig --level 3 gpm on
chkconfig --level 5 gpm off
This will create a start link in 'rc3' and a kill link in 'rc5'.

The next pages of this article will provide you with an overview of all service scripts available in Mandrake Linux 8.1.

Annotated List of System Services (a-h)

This list tries to cover all the scripts in '/etc/init.d'.
It depends on your scale of installation how many of these services are available on your system.

In this list services are either 'optional', 'common' or 'essential'. 'Optional' means you can turn this service safely off without loosing vital functionality, 'common' means that this service isn't vital but usually enabled, and 'essential' means you should not turn it off, unless you know exactly what you are doing and why you are doing it.

acon

Needed for arabic languages to be displayed correctly.
Pertinence: Optional. Package: acon. Doc: Files in '/usr/share/doc/acon-[...]'

acpid

ACPI (Advanced Configuration Power Interface) is the successor to APM (Advanced Power Management). 'acpid' is maintained by the ACPI4Linux project. Since essential functions like 'suspend' and 'resume' haven't been implemented yet, 'apmd' is still used as the default power management service in Mandrake.
Pertinence: Optional. Package: acpid. Doc: Linux ACPI HOWTO
adsl

Control script for ADSL (Asyncronous Digital Subscriber Line) connections via PPPoE (Point-to-Point Protocol over Ethernet).
Pertinence: Optional. Package: rp-pppoe. Doc: man pppoe, man pppoe.conf
alsa

This starts and stops the ALSA (Advanced Linux Sound Architecture) sound driver. If you don't want sound (or your card uses an OSS driver), turn it off. Pertinence: Optional. Package: initscripts. Doc: http://www.alsa-project.org/documentation.php3
amd

The Automounter Daemon. Useful for automatically mounting (hey!) network file systems or removable media. Since removable media are handled by 'supermount' in Mandrake and 'amd' does have its handling quirks, you will possibly only need it for mounting network shares (NFS and the like). Do not run this if you don't need it as it poses a potential security hole.
Pertinence: Optional. Package: am-utils. Doc: MU on 'automount', man pages.

anacron

The cousin of the 'cron'-daemon. 'cron' runs tasks like system maintenance at certain times, but skips them if the system isn't running at that time. That's where 'anacron' comes in: it checks delayed 'cron'-tasks at boot-time and executes them. If your machine doesn't run all the time, you should leave it enabled.
Pertinence: Optional. Package: anacron. Doc: man anacron, MUO on using anacron
apcupsd

apcupsd manages UPS (Uninterruptable Power Supply) hardware manufactured by APC (American Power Conversion).
Pertinence: Optional. Package: apcupsd. Doc: The APCUPSD Users Manual
apmd

The Advanced Power Management BIOS Daemon. Usually you will only need it if your computer runs on battery, i.e. a laptop. Some laptop BIOSes do not take kindly to apmd, causing massive installation problems.
Pertinence: Optional. Package: apmd. Doc: man apmd
arpwatch

Keeps track of Ethernet/IP address pairings (no, I don't know what's that good for either).
Pertinence: Optional. Package: arpwatch. Doc: man arpsnmp.

atd

The At Daemon. Manages scheduled ('at a certain time') jobs. Related to 'crond'.
Pertinence: Optional. Package: at. Doc: man atd, man at, MUO article on 'at'.

auth2.init, codasrv.init, update.init, venus.init

These scripts are parts of the server package for the Coda File System, a distributed file system for networks, except for 'venus.init', which belongs to the client package.
Pertinence: Optional. Package: coda-debug-server (venus.init: coda-debug-client). Doc: The Coda HOWTO
autofs

Controls the automount daemon (amd). Usually not enabled. You might need it if you want to mount network-shares automatically.
Pertinence: Optional. Doc: man autofs, man automount.

bayonne

Bayonne provides a telephony application server.
Pertinence: Optional. Package: bayonne. Doc: Bayonne User Manual.

boa

Control script for the Boa Webserver, a lightweight alternative to Apache.
Pertinence: Optional. Package: boa. Doc: on home page.

bootparamd

Needed to provide boot-information to disk-less clients. Usually not enabled.
Pertinence: Optional. Package: bootparamd. Doc: man bootparamd.

cddbp

Control file for the cddb-proxy (CD-Database). Useful to allow clients behind a firewall making CDDB queries.
Pertinence: Optional. Package: cddb-proxy. Doc: 'readme' in '/usr/share/doc/cddb-proxy-[...]'.

cfengine

The Configuration Engine provides software agents and a language for central configuration and administration of large scale networks.
Pertinence: Optional. Package: cfengine. Doc: Example scripts in '/usr/share/doc/cfengine-[...]', info cfengine-Reference, info cfengine-Tutorial.

chronyd

chronyd can keep your system's time in step with the true time or keep a network of computers in time sync with each other.
Pertinence: Optional. Package: chrony. Doc: FAQ, info chrony
crond

The Cron Daemon. Manages repeated tasks ('chronological'). Related to 'atd'.
Pertinence: Essential. Package: vixie-cron. Doc: man crond, man cron, MUO article on 'cron'
cups

CUPS is the standard printing service on Mandrake Linux.
Pertinence: Optional. Package: cups. Doc: /usr/share/doc/cups/documentation.html, MUO on using CUPS
dhcp-relay

You will need if your DHCP (Dynamic Host Configuration Protocol) server is located in another subnet than its clients.
Pertinence: Optional. Package: dhcp-relay. Doc: man dhcrelay
dhcp-server

Needed on a machine which has to provide IP adresses to other machines.
Pertinence: Optional. Package: dhcp-server. Doc: man dhcpd.conf, man dhcpd
dhsd

DHSD is an IP updater for the free DHS.ORG dynamic DNS service.
Pertinence: Optional. Package: dhsd. Doc: Files in '/usr/share/doc/dhsd-[...]'

dnrd_rc

Control script for the gpppwrap multi-number/provider dialer.
Pertinence: Optional. Package: gpppwrap. Doc: man gpppwrap
fcron

Fcron is a replacement for 'cron' as well as 'anacron'. Notice that ML 8.1 comes with an outdated version which has security issues. Get 2.0 from the Fcron website.
Pertinence: Optional. Package: fcron. Doc: man fcron, man fcrontab
fetchmail

Daemon for the Fetchmail mail retriever.
Pertinence: Optional. Package: fetchmail-daemon. Doc: MUO on configuring fetchmail, man fetchmail
functions

Contains code blocks to be used by other service scripts.
Pertinence: Essential. Package: initscripts. Doc: Read the script ;-)

gated

GateD is a network routing daemon.
Pertinence: Optional. Package: gated. Doc: man gated
gdips

GnuDIP can be used by an Internet provider to assign static DNS names to its clients even if those clients have their IPs dynamically assigned.
Pertinence: Optional. Package: gnudip-server. Doc: Files in /usr/share/doc/gnudip-server-[...]

gpm

General Purpose Mouse Daemon. Necessary only if you want to use your mouse on the console (not xterms). If you only work within X, it's better to turn it off, since incompatibilities with X are known.
Pertinence: Common. Package: gpm. Doc: man gpm
halt

The script executed when the system gets halted or rebooted. This script is not meant to be executed directly from the commandline.
Pertinence: Essential. Package: initscripts. Doc: Read script.

harddrake

HardDrake is the standard hardware configuration recognition and configuration program. This script performs a hardware check on each boot ('kudzu mode'). You might want to turn this off if your hardware configuration does not change on a regular basis. This will save you some seconds on boot time.
Pertinence: Common. Package: harddrake. Doc: ML user manual.

heartbeat, ldirectord

heartbeat is part of the High-Availability Linux Project, used for clusters.
Pertinence: Optional. Package: heartbeat. Doc: In '/usr/share/doc/heartbeat-[...]/doc'

hpoj

Script for the CUPS HP OfficeJet printer / scanner driver.
Pertinence: optional. Package: hpoj. Doc: hpoj documentation index
httpd

The daemon necessary to run the Apache web-server. In ML, it runs as a standalone service and not via '(x)inetd'. If you do not intend to run a web-server, turn it off: it uses a considerable amount of system resources (more than 15 MB of system memory) and makes your box vulnerable to outside attacks if not configured properly (via '/etc/httpd/conf/httpd.conf').
Pertinence: Optional. Package: apache-conf. Doc: man httpd.

hylafax

Control script for the HylaFAX fax server.
Pertinence: Optional. Package: hylafax-server. Doc: The HylaFAX HOW-TO
Annotated List of System Services (i-n)

ibod

IBOD is the 'ISDN Bandwidth On Demand Daemon'. It supports opening or closing a second B-channel automatically upon a certain amount of traffic.
Pertinence: Optional. Package: ibod. Doc: man ibod
identd

Provides identification information about the host it is running on. Necessary to access some braindead IRC networks.
Pertinence: Optional. Package: pidentd. Doc: man identd
ifled

Daemon script for InterfaceLED. This program allows you to use the keyboard LEDs for displaying network traffic and more.
Pertinence: Optional. Package: ifled. Doc: '/usr/share/doc/ifled-0.6/README.init-script'

inet(d)

Obsolete since ML 7.2, replaced by xinetd.
The Internet 'Super-Server'. Handles dial-in services like ftp, pop3 and telnet (these three are enabled by default). If you only dial out (e.g. for connecting to the Internet), or just have Apache running, you can turn it off and thus close another potential security hole.
If you want to use it however, have a close look at '/etc/inetd.conf', '/etc/hosts.allow', '/etc/hosts.deny' and install the tcp-wrappers.rpm (which is usually installed by default).
Pertinence: Optional. Package: inetd. Doc: man inetd, man hosts_access and man tcpd.

innd

Control script for the InterNetNews Usenet server.
Pertinence: Optional. Package: inn. Doc: lots ;-) Some 30 man pages and an FAQ in '/usr/share/doc/inn-[...]/faq'

ipchains

'ipchains' is the standard firewalling method in Linux kernel 2.2 based systems, Linux kernel 2.4 (Mandrake Linux 8.x) uses 'iptables' instead. You'll need this if you want to keep on using your old (2.2) firewall rules and software.
Pertinence: Optional. Package: ipchains. Doc: man ipchains, IPCHAINS-HOWTO
iplog

iplog logs network traffic (who'da thunk it?).
Pertinence: Optional. Package: iplog. Doc: man iplog
ippl

ippl (IP Protocols Logger) logs incoming network traffic.
Pertinence: Optional. Package: ippl. Doc: man ippl
ipsec

Part of Linux FreeS/WAN, an implementation of the IPSEC (Internet Protocol SECurity) protocol. IPSEC allows you to connect trusted networks via untrusted ones using a technique called 'tunneling' (in short: all the traffic between the trusted networks gets encrypted and decrypted automatically).
Pertinence: Optional. Package: freeswan. Doc: lots
iptables

Part of the iptables/netfilter duo, which does the firewalling and IP masquerading on Linux kernel 2.4.x systems (successor to 'ipchains').
Pertinence: Common. Package: iptables. Doc: HOWTOs, man iptables
ip6tables

Same as above, but for the future IPv6 network protocol.
Pertinence: Optional. Package: iptables-ipv6. Doc: See above

iptoip

"iptoip is a program to maintain an ipvsadm [see next entry] table coherent."
Pertinence: Optional. Package: iptoip. Doc: man pages in newer version or CVS
ipvsadm

Used to administer a Linux Virtual Server. In short: cluster stuff.
Pertinence: Optional. Package: ipvsadm. Doc: man ipvsadm
ircd

ircd (Internet Relay Chat Daemon) is the original IRC server software.
Pertinence: Optional. Package: ircd. Doc: man ircd, files in /usr/share/doc/ircd-[...]

irda

Control script for IR (Infra-Red) connected devices, maintained by the Linux-IrDA Project.
Pertinence: Optional. Package: irda-utils. Doc: On project's documentation page
isdn4linux

For users of ISDN-cards (terminal-adapters are handled like modems). Notice that you might still have to configure this service, read '/usr/doc/isdn4net-[...]/doc/INSTALL.quick' for more. In ML 7.2 and later, use the 'draknet' utility.
Pertinence: Optional. Package: isdn4net. Doc: Files in '/usr/share/doc/isdn4net-[...]/', MUO on configuring ISDN
jabber, jabber-icq

Control scripts for the Open Source Instant Messaging server Jabber. You'll need jabber-icq if you want to allow clients to use the ICQ service.
Pertinence: Optional. Package: jabber, jabber-icq. Doc: docs.jabber.org
jail.init

jail is Just Another IP Logger. 'nuff said.
Pertinence: Optional. Package: jail. Doc: man icmplog, man tcplog
jserver

FreeWnn is needed to display Japanese characters correctly.
Pertinence: Optional. Package: FreeWnn. Doc: man jserver
junkbuster

Junkbuster is an ad-, cookie- and contentblocking proxy. The version included has been slightly modified by Stefan Waldherr. Notice that the included blocklist is really, really old.
Pertinence: Optional. Package: junkbuster. Doc: 'ijbfaq.html' and 'ijbman.html' in '/usr/share/doc/junkbuster-[...]'

kadmin, kprop, krb524, krb5kdc, krb5server

Control scripts for a Kerberos 5 server. Kerberos is a network authentication protocol. In order for clients to access a Kerberos server, they need special client software (like 'ftp-client-krb5').
Pertinence: Optional. Package: krb5-server. Doc: info krb5-admin
keytable

Not a service in the strict sense of the word. The 'keytable' script loads the selected console keyboard map as set in '/etc/sysconfig/keyboard' (variable KEYTABLE).
Pertinence: Common. Package: console-tools. Doc: man loadkeys
kheader

Not a service, but a startup script which generates the file '/boot/kernel.h' on each boot. This generated file is used during compiling source code.
Pertinence: Common. Package: initscripts. Doc: None

killall

Not a service, but a mere short helper script to stop renitent services.
Pertinence: Common. Package: initscripts. Doc: None

kudzu

Detects and configures new or changed hardware during boot. You can turn it off and your box will boot faster. You can also start kudzu during normal system operation to configure new hardware.
Pertinence: Common. Package: kudzu. Doc: man kudzu
ldap

LDAP is short for Lightweight Directory Access Protocol, a central network service for information stored in databases ('directories'). This script is part of the packages openldap1 and openldap-servers, which are maintained by the OpenLDAP project.
Pertinence: Optional. Package: openldap1, openldap-servers. Doc: man ldapd and lots of others

linuxconf

Startscript for the Linuxconf central administration system.
Pertinence: Common. Package: linuxconf. Doc: '/usr/lib/linuxconf/help.[language-code]', online help system.

lpd

Either part of the old 'lpr' printer spooler software or its (self-acclaimed) successor, LPRng (ng = next generation).
Pertinence: Optional. Package: lpr, LPRng. Doc: man lpd
mandrake_consmap

Not a service, but a helper script to set the correct console keymap.
Pertinence: Common. Package: initscripts. Doc: None

mandrake_everytime

Mandrake's version of an 'autoexec.bat' (no doubt I'll get myself killed with this comparison ;-)).
Pertinence: Common. Package: initscripts. Doc: Read comments in the script

mandrake_firsttime

Not a service. Determines which commands should be run the first time the system is booted.
Pertinence: Common. Package: initscripts. Doc: Read comments in the script

mcserv

'mc' (Midnight Commander) is a popular Linux console file manager. 'mc' can access machines running 'mcserv' just like the machine it is running on. Mandrake Linux comes with the 'secure-mcserv' version which offers more access control.
Pertinence: Optional. Package: mcserv. Doc: man secure-mcserv
medusa-init

Medusa is the search/indexing software for the GNOME desktop.
Pertinence: Optional. Package: medusa. Doc: man medusa-config
mon

mon is a resource monitor (from networking to room temperature).
Pertinence: Optional. Package: mon. Doc: Files in '/usr/share/doc/mon-[...]'

mosix

MOSIX extends the Linux kernel by support for scalable cluster computing.
Pertinence: Optional. Package: mosix-utils. Doc: man mosix
mysql

MySQL (SQL = Structured Query Language) provides a database.
Pertinence: Optional. Package: MySQL. Doc: 'manual.html' in '/usr/share/doc/MySQL-[...]'

named

Part of BIND (Berkeley Internet Name Domain), the standard Domain Name Server (DNS) software on Linux. A name server maps IP addresses to machine names.
Pertinence: Optional. Package: bind. Doc: Files in '/usr/share/doc/bind-[...], man named.conf and others

nessusd

Nessus provides software to remotely scan a network for security holes.
Pertinence: Optional. Package: nessus. Doc: Nessus documentation page, man nessusd
netfs

Not a service. Calling this script tries to mount all available network shares (NFS, NCP, SMB).
Pertinence: Common. Package: initscripts. Doc: man mount
network

Not a service. Activates all network interfaces at boot time (or whenever invoked by the 'service' command) by calling the scripts in '/etc/sysconfig/network-scripts'.
Pertinence: Common. Package: initscripts. Doc: man ifconfig and the appropriate documentation for the initiated interfaces

nfs

Control script for the Linux NFS server (Network File System), the standard file sharing protocol in Linux/Unix.
Pertinence: Optional. Package: nfs-utils. Doc: man nfsd, MUO article on NFS.

nfslock

Starts and stops the NFS file locking service. You will need this on NFS servers as well as clients.
Pertinence: Optional. Package: nfs-utils-clients. Doc: man nfsd, MUO article on NFS.

noflushd

The Linux write cache usually prevents disks from spinning down when not in use. noflushd works around this issue.
Pertinence: Optional. Package: noflushd. Doc: man noflushd
nscd

'nscd' is a Name Service Caching Daemon, usually used in combination with NIS+ (Network Information Service) or LDAP (Lightweight Directory Access Protocol).
Pertinence: Optional. Package: nscd. Doc: LDAP Implementation HOWTO
ntp

Control script for a Time Synchronization Server using the Network Time Protocol. Useful if you have to keep machines in a network in sync.
Pertinence: Optional. Package: ntp. Doc: Files in '/usr/share/doc/ntp-[...]'

numlock

No service. 'Locks' the NumLock key at boot, thus making it possible to use the number block on most keyboards to type in numbers. This can get pretty funny when enabled on laptops ...
Pertinence: Common. Package: numlock. Doc: man enable_X11_numlock
Annotated List of System Services (o-y)

oki4daemon

Needed to support printing from the OKI 4w and similar Windows only printers.
Pertinence: Optional. Package: printer-filters. Doc: Read comment in script

olympusd

Olympus allows you to administer a large network of machines from one place.
Pertinence: Optional. Package: olympus-server. Doc: See project hompage.

opennap

Control script for an OpenNap server using the Napster file sharing protocol. Presumably one of the best ways to get in trouble these days ;-). Notice that there's an administrator account with a default password you should change.
Pertinence: Optional. Package: opennap. Doc: 'manual.html' in '/usr/share/doc/opennap-[...]'

pcmcia

Part of the Card Services for Linux Project software which supports PCMCIA (PC-Memory Card International Association) cards frequently used in laptops.
Pertinence: Optional. Package: kernel-pcmcia-cs. Doc: man pcmcia, Linux PCMCIA HOWTO
portmap

Security tool needed for Remote Procedure Calls, especially in NIS and NFS connections.
Pertinence: Optional. Package: portmap. Doc: man portmap
portsentry

Starts or stops the Psionic PortSentry 'Port Scan Detection and Active Defense System' which monitors ports for scans and blocks scanning hosts immediately.
Pertinence: Optional. Package: portsentry. Doc: Files in '/usr/share/doc/portsentry-[...]'

postfix

The standard mail server software in Mandrake Linux, a replacement for sendmail. You will need it when your mail reader can't get or send its mail on its own or if you want to provide mail services for a network.
Pertinence: Optional. Package: postfix. Doc: man postfix, '/usr/doc/postfix-[version]/html/' MUO on configuring PostFix
postgresql

PostgreSQL provides a database server similar to MySQL.
Pertinence: Optional. Package: postgresql-server. Doc: In package postgresql-docs

powertweakd.init

Powertweak is a program to tune your kernel and hardware settings for optimal performance.
Pertinence: Optional. Package: powertweak. Doc: Files in '/usr/share/doc/powertweak-[...]/Documentation'

pptpd.conf

PoPToP is a free implementation of a PPTP (Point-to-Point Tunneling Protocol) server, needed to connect Virtual Private Networks (VPN).
Pertinence: Optional. Package: pptpd-server. Doc: man pptpd
prelude

Prelude is a sophisticated Intrusion Detection System (IDS).
Pertinence: Optional. Package: prelude. Doc: In package 'prelude-doc'

proftpd

Control script for the standard Mandrake Linux FTP server, ProFTPd.
Pertinence: Optional. Package: proftpd. Doc: on project home page
psacct

Allows monitoring process activities.
Pertinence: Optional. Package: psacct. Doc: info accounting
pure-ftpd

PureFTPd (cl)aims to be a compliant, secure, easy and then some FTP server.
Pertinence: Optional. Package: pure-ftpd. Doc: man pureftpd
pvmd

PVM (Parallel Virtual Machine) allows you to use a network of Unix and NT computers as a single virtual parallel machine.
Pertinence: Optional. Package: pvm. Doc: man pvm
radvd

Control script for the Linux IPv6 Router Advertisement Daemon. You'll need this to take advantage of the IPv6 stateless autoconfiguration feature (don't ask ...).
Pertinence: Optional. Package: radvd. Doc: man radvd
random

No service. Improves the generation of random numbers (needed for security).
Pertinence: Common. Package: initscripts. Doc: man 4 random
rawdevices

No service. "This scripts assigns raw devices to block devices (such as hard drive partitions)." Useful for databases (or so I'm told).
Pertinence: Common. Package: initscripts. Doc: Example in '/etc/sysconfig/rawdevices'

routed

'routed' is the Network Routing Daemon. You will need this if your machine acts as a router (obviously) for other machines in your network (e.g. as a gateway into another network like the Internet).
Pertinence: Optional. Package: routed. Doc: man routed
rstatd, rusersd, rwalld, rwhod

Provide access to information (status, users) or services (send messages) useful when maintaining a multiuser network.
Pertinence: Optional. Package: rusers, rwall, rwho. Doc: respective man pages

sendmail

The standard Internet mail server. In Mandrake Linux now replaced by PostFix (but still part of the distribution). If your mail client is capable of sending and receiving mail itself (e.g. Netscape Mail, kmail, Pine), you don't need it.
Pertinence: Optional. Package: sendmail. Doc: man sendmail
sensors

This skript starts or stops 'sensord', a hardware monitoring daemon and part of the lm_sensors hardware monitoring software.
Pertinence: Optional. Package: lm_utils. Doc: man sensors
shorewall

Shorewall is a firewall / masquerader to be used on single systems (i.e. a desktop firewall).
Pertinence: Optional. Package: shorewall. Doc: Files in '/usr/share/doc/shorewall-[...]/documentation'

single

No service. Executed when putting the system into runlevel 1 ('single user' or 'rescue' mode).
Pertinence: Common. Package: initscripts. Doc: None

smb

Needed for running SAMBA, the Server Message Block Protocol Server. It allows you to provide file and printer sharing services to MS-Windows clients and to access shares on those machines from your Linux box.
Pertinence: Optional. Package: samba. Doc: man samba, MUO article on SAMBA.

snortd

Control script for the Snort Intrusion Detection System.
Pertinence: Optional. Package: snort. Doc: Files in '/usr/share/doc/snort-[...]'

sound

No service. Starts / stops sound device and loads / saves mixer settings.
Pertinence: Common. Package: initscripts. Doc: None

squid

Squid is a web proxy caching server (and much more). Although configuration isn't trivial, it can speed up net access for clients considerably.
Pertinence: Optional. Package: squid. Doc: vast amount of files in '/usr/share/doc/squid-[...]'

sshd

Control script for an OpenSSH server, a terminal services server using strong encryption, bound to replace inherently insecure services such as telnet or ftp.
Pertinence: Optional. Package: openssh-server. Doc: MUO article on SSH
sympa

Control script for the Sympa mailing list management software (server end, not client end).
Pertinence: Optional. Package: sympa. Doc: man sympa, files in '/usr/share/doc/sympa-[...]'

syslog

System Message Logger, i.e. it writes system or service messages to so called log files ('/var/log/*').
Pertinence: Essential. Package: sysklogd. Doc: man sysklogd
syslog-ng

syslog-ng (ng = next generation) intends to replace sysklogd. It adds the possibility to filter based on message contents using regular expressions.
Pertinence: Optional. Package: syslog-ng. Doc: man syslog-ng
tux

Control script for the kernel based TUX web server.
Pertinence: Optional. Package: tux. Doc: 'tux.README' in '/usr/share/doc/tux-[...]'

snmpd

Control script for the project formerly known as 'ucd-snmp', now as NET-SNMP. It is an implementation of the Simple Network Management Protocol (nomen est omen). If you know more, you know more than me.
Pertinence: Optional. Package: ucd-snmp. Doc: man snmpd and lost more. Also check out the project homepage

ups

Part of the former 'smartupstools', now called NUT (Network UPS Tools). This package allows the control of Uninterruptable Power Supplies over a network (you might have guessed that).
Pertinence: Optional. Package: smartupstools. Doc: Files in '/usr/share/doc/smartupstools-[...]'

usb

No service. When called (usually during boot) this script starts or stops USB (Universal Serial Bus) devices by loading or unloading the appropriate drivers (kernel modules). You are advised not to run this script during system operation.
Pertinence: Common. Package: initscripts. Doc: Comments in script, also have a look at '/etc/sysconfig/usb'

vncserver

Part of the Virtual Network Computing software. VNC allows you to remotely display / view / manage the desktop of another machine. It is platform-independent.
Pertinence: Optional. Package: vnc-server. Doc: in package 'vnc-doc'

vrrpd

Control script for the Virtual Router Redundancy Protocol Daemon, used to elect a master server on a local network and provide fallback in case the master fails.
Pertinence: Optional. Package: vrrpd. Doc: man vrrpd
watchdog

'watchdog' monitors a machine and reboots it if a system freeze is detected (sounds funny, but works).
Pertinence: Optional. Package: watchdog. Doc: man watchdog
webmin

Webmin is a web based system administration suite (an alternative to Linuxconf).
Pertinence: Optional. Package: webmin. Doc: on project home page and inline

wine

WINE tries to build a Windows compatibility layer software (i.e. it intends to enable you to run Windows programs on Linux). This script enables users to run Windows applications by just clicking on them (well, in theory at least ...)
Pertinence: Optional. Package: wine. Doc: Files in '/usr/share/doc/wine-[...]/wine-doc'

xfs

X Font Server. In the standard X configuration of Mandrake Linux, X won't run without a working font server.
Pertinence: Common. Package: XFree86-xfs. Doc: man xfs
xinetd

xinetd controls, logs or redirects accesses to other servers running on the same machine. It replaces inetd.
Pertinence: Optional. Package: xinetd. Doc: MUO article on xinetd, man xinetd
ypbind

NIS Binder. Only needed if your computer is part of a NIS (Network Information Service) domain (yp for its old name 'yellow pages'). Pertinence: Optional. Package: ypbind. Doc: man ypbind
yppasswdd, ypserv

Scripts to control an NIS server.
Pertinence: Optional. Package: ypserv. Doc: man ypserv
