
DATA vs DATA

One Input Variable Multiple Input Variables

Compare Variability Compare Proportions
F-ratio test (two levels) Chi-Square Test
Bartlett's test (multiple levels)
Cochran's test (multiple levels) Screening Experiments

Full Factorial
Compare Means Fractional Factorial
Student's T Test (two levels)
ANOVA (multiple levels) Analysis of Experiments
Nested ANOVA (multiple levels) ANOVA

Multiple Linear Regression
Compare Medians
Mann-Whitney (two levels) Response Surface Modeling
Kruskal-Wallis (multiple levels) Box-Behnken Designs

Central Composite Designs
Study Source of Variation Multiple Linear Regression
Y vs X plot Stepwise Regression
Correlation Coefficient Contour Plots
Linear Regression 3 D Mesh Plots

Compare Proportions Model Response Distribution
Proportion Test Monte Carlo Simulation
Chi-Square Test Generation of System Moments

Optimization
Optimization of Expected Value:
Linear Programming
Non Linear Programming
Yield Surface Modeling™



F =  S1
2

S2
2   or  S2

2

S1
2

(put larger sample
variance in numerator)

F R ATIO -
U S E D TO TE S T IF TW O  VARIANCE S ARE E Q UAL.



TEST  FO R EQ UAL VARIANCES - ICES EXAM PLE
open icesfratio.mpj



T E S T F E VO R Q U A L A R IA N C E S

Ices vs (Nano or 922 Etcher)





T HRE S HO LD V O LTAG E
N –C H A NN EL

Evaporated Metal Sputtered Metal

.707 .791

.645 .764

.682 .782

.692 .788



T E S T FO R E Q UAL V ARIANCE S
V T VERSUS M ETAL  D EPOSITION  EXAM PLE



TEST FO R EQ UAL VARIANCES - V T VS M ETAL D EPO SITIO N E XAM PLE



… was developed 

by W.S. Gosset (aka “Student”), 

as an approach for testing the 

quality of beer at a 

GUINNESS
brewery.

Student's t-test



t =
X1 – X2

S1
2 + S2

2

N

for N1 = N2 = N

D IFFE RE NCE B E TW E E N M E ANS
O F T W O P O P ULATIO NS

t =
(N1– 1)S1

2 + (N2– 1)S2
2

N1 + N2 – 2

df = N1 + N2 – 2
for N1 ° N 2

N1 N2

1 1
+( )

X1 – X2

O R





Two-Sample T -Test and CI: Ices, nano

Two-sample T for Ices

nano         N      Mean StDev   SE Mean
1           12      4.67      1.57      0.45
2           11     3.578     0.958      0.29

Difference = mu (1) - mu (2)
Estimate for difference:  1.088
95% CI for difference: (-0.040, 2.217)
T-Test of difference = 0 (vs not =): T-Value = 2.03

P-Value = 0.058  DF = 18



A N OVA





One Way Unstacked





Alternative to ANOVA - Kruskal-Wallis uses Medians rather than Means

Useful for non-normal distributions (although ANOVA is rather robust)



Kruskal-Wallis Test: Ices versus nano

Kruskal-Wallis Test on Ices

nano        N    Median    Ave Rank         Z
1          12     4.375        14.5      1.85
2          11     3.410         9.3     -1.85
Overall    23                  12.0

H = 3.41  DF = 1  P = 0.065
H = 3.41  DF = 1  P = 0.065 (adjusted for ties)



HO :   P1  =   P2

HA :   P1  ≠   P2

Z  =   
P1  -   P2

PT  (1 -  PT )  ( 1
N1

  +   1
N2

)

S IG NIFICANCE T E S T FO R C O M PARING
T W O P RO P O RTIO NS

(Use Z table for alpha risk)

P1  =   Proportion bad in group 1

P2  =   Proportion bad in group 2

PT  =   Proportion bad overall :    
Total bad

Total tested
N1  =   Total tested in group 1

N2  =   Total tested in group 2

Requirement :   Total bad ≥  5,  total good ≥  5



Is this year’s 3 ppm failure rate    ( 22 failures out of 6,950,300 ) better than 
last year’s 6 ppm failure rate?      ( 26 failures out of 4,230,250 )

Test and CI for Two Proportions

Sample      X      N  Sample p
1          22  7E+06  0.000003
2          26  4E+06  0.000006

Estimate for p(1) - p(2):  -0.00000298088
95% CI for p(1) - p(2):  (-0.00000568842, -0.000000273337)
Test for p(1) - p(2) = 0 (vs not = 0):  Z = -2.16  P-Value = 0.031
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C O RRE LATIO N C O E FFIC IE NTS





C R I V PTIC A L A LU E S O F TH E E A R S O N
Level of significance for one-tailed test

df .05 .025 .01 .005
(= N  - 2;  

N  =number of pairs)
Level of significance for two-tailed test

.10 .05 .02 .01

.9999.9995.997.9881
.990.980.950.9002
.959.934.878.8053
.917.882.811.7294
.874.833.754.6695

.834.789.707.6226

.798.750.666.5827

.765.716.632.5498

.735.685.602.5219

.708.658.576.49710

.684.634.553.47611

.661.612.532.45812

.641.592.514.44113

.623.574.497.42614

.606.558.482.41215



C RI V THE P E ARS O N (Cont’d)TICAL ALUE S O F
Level of significance for one-tailed test

df .05 .025 .01 .005
(= N  - 2;  

N  =number of pairs)
Level of significance for two-tailed test

.10 .05 .02 .01

16 .400 .468 .542 .590
17 .389 .456 .528 .575
18 .378 .444 .516 .561
19 .369 .433 .503 .549
20 .360 .423 .492 .537

21 .352 .413 .482 .526
22 .344 .404 .472 .515
23 .337 .396 .462 .505
24 .330 .388 .453 .496
25 .323 .381 .445 .487

26 .317 .374 .437 .479
27 .311 .367 .430 .471
28 .306 .361 .423 .463
29 .301 .355 .416 .456
30 .296 .349 .409 .449



C RI V THE P E ARS O N (Cont’d)TICAL ALUE S O F
Level of significance for one-tailed test

df .05 .025 .01 .005
(= N  - 2;  

N  =number of pairs)
Level of significance for two-tailed test

.10 .05 .02 .01

35 .275 .325 .381 .418
40 .257 .304 .358 .393
45 .243 .288 .338 .372
50 .231 .273 .322 .354
60 .211 .250 .295 .325

70 .195 .232 .274 .302
80 .183 .217 .256 .283
90 .173 .205 .242 .267

100 .164 .195 .230 .254



T E S T THE S IG NIFICANCE O F THE
C O E FFIC IE NT

ING
C O RRE LATIO N

r N – 2
t =

1 – r2

( )(N – 2) 1 – r2

r2

F = t2 =

Where N = number of pairs of scores



Linear Regression and Prediction



“L INE AR” C URV E F ITS
(BIVA R IATE)

Transform
In y = In (A) + BX
In y = In(A) + B in(X)
y = A + B (1/X)
1/y = A + BX
1/y = B + A (1/X)

y = AeBX

y = AXB

y = A + (B/X)
y = 1/(A + BX)
y = X/(A + BX)



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

115.6000
178.6900

58.5980
81.5360
82.1160
84.3430
58.5940
64.6080

178.7700
64.5610

111.1400
178.0600
174.3900
110.5400
64.4420

176.0000
82.6570

116.8800
110.4300
58.6120

116.6300
175.6700

83.9120
83.5590

23.0790
35.7390
11.8490
16.4930
16.2780
16.8500
11.6380
12.9390
35.7140
13.0080
22.2280
35.2110
34.8060
22.0900
12.7420
35.1840
16.3820
23.3500
22.0730
11.8420
23.2860
35.1070
16.8820
16.6640

OXIDE
THICKNESS CAP-100 CAP-250 CAP-1250 CAP-5000

X1 Y1 Y2 Y3

2500
1620
4887
3497
3472
3420
4880
4469
1624
4471
2611
1625
1640
2613
4472
1636
3486
2470
2610
4878
2473
1641
3424
3432

9.2880
14.3560

4.7830
6.4890
6.6840
6.8550
4.7730
5.2200

14.3720
5.2550
9.0290

14.3020
13.9830

8.8890
5.2440

14.1800
6.6570
9.4120
8.7850
4.7660
9.4520

14.1270
6.8440
6.2570

449.0700
691.9000
232.2700
264.6800
319.2200
327.9800
232.1900
256.0600
692.3900
255.8400
431.9700
688.0700
675.6900
430.0300
253.8700
681.8100
321.5200
454.5500
429.3700
232.3700
452.8400
680.8900
323.3900
324.8200



COXI EDE APACITANCE XAM PLE



Correlations: oxide thickness, Cap-100, cap-250, cap-1250, cap-5000

       oxide th  Cap-100  cap-250 cap-1250
Cap-100  -0.948
          0.000

cap-250  -0.950    0.999
          0.000    0.000

cap-1250 -0.950    1.000    1.000
          0.000    0.000    0.000

cap-5000 -0.943    0.998    0.998    0.998
          0.000    0.000    0.000    0.000









Regression Analysis: cap-250 versus oxide thickness

The regression equation is

cap-250 = 44.1 - 0.00727 oxide thickness

Predictor Coef     SE Coef          T        P

Constant       44.108       1.676      26.32    0.000

oxide th   -0.0072735   0.0005111     -14.23    0.000

S = 2.833       R-Sq = 90.2%     R-Sq(adj) = 89.8%

Analysis of Variance

Source            DF          SS          MS         F        P

Regression         1      1625.4      1625.4    202.52    0.000

Residual Error    22       176.6         8.0

Total             23      1802.0



Transform:

1 / oxide thickness







Regression Analysis: cap-250 versus 1 / oxide thickness

The regression equation is

cap-250 = - 0.0304 + 57639 1 / oxide thickness

Predictor Coef     SE Coef          T        P

Constant     -0.03036     0.08159      -0.37    0.713

1 / oxid      57639.3       200.8     287.02    0.000

S = 0.1479      R-Sq = 100.0%    R-Sq(adj) = 100.0%

Analysis of Variance

Source            DF          SS          MS







S TATIS TICS D E CIS IO N T RE E
Multiple Input Variables

Compare Proportions
Chi-Square Test

Screening Experiments
Full Factorial
Fractional Factorial

Analysis of Experiments
ANOVA
Multiple Linear Regression

Response Surface Modeling
Box-Behnken Designs
Central Composite Designs
Multiple Linear Regression
Stepwise Regression
Contour Plots
3 D Mesh Plots

Model Response Distribution
Monte Carlo Simulation
Generation of System Moments

Optimization
Optimization of Expected Value:
Linear Programming
Non Linear Programming



E X P E R D –EIM E NTAL E S IG N: C O UNTE R X AM P LE

Open the file “Simullab.xls”

New process involving
3 input variables

All 3 input variables (x1, x2, and x3) can vary between 0 and 100

RESPONSE (OUTPUT VARIABLE): YIELD

We do not know how any of these variables affect the yield, nor whether all
three of the variables affect the yield.

Your job is: to optimize the response, YIELD

The goal is to approach 100% yield by optimizing the values of the three
input variables.



S IM ULLA B R ESU LTS

Run Input X1 Input X2 Input X3 Yield
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20



S IM ULLA B R ESU LTS

Run Input X1 Input X2 Input X3 Yield
1 25 25 25
2 75 25 25
3 25 75 25
4 75 75 25
5 25 25 75
6 75 25 75
7 25 75 75
8 75 75 75
9 50 50 50

10
11
12
13
14
15
16
17
18
19
20



Open Minitab 
From the data screen,  name column 4 (C4) "Yield". 
Enter the yields for the 9 runs in column 4, in the order obtained

Pull down menu: Statistics,  DOE (Design of Experiments), Fractional Factorial.
For "number of factors", enter 3. 
For the "number of runs",enter 8. (This must be a power of 2]
Click into the box under "Store data matrix (blocks and factors) in:", 
and type: c1-c3. 

Click on the "Options" button; enter 1 in the box ,"Number of Center Points"
Click on the "OK" box.  Click on the "OK" box again on the other screen.

Pull down the "Window" menu, "Data". 
Low levels (25) are now represented with a (-1),
the high levels (75) with a (1), and the middle level (50) with a (0).   
(This is the conventional way to represent the levels; the fractional factorial screen 
allows the actual levels (25, 75, and 0) to be used instead)

Pull down the menu "Stats", "Regression", "Regression".
Click on c4 "Yield", and click on the "Select" button. 

Click on c1, hold down the button and move the mouse to highlight c1, c2, and c3 
Let go of the button, and click on the "Select" button.

Click on the "OK" button.



-  compare the mean Y for  X1↓Low vs X1↑
High

-  compare the mean Y for  X2↓Low vs X2↑
High

Low
(–1)

High
(+1)

X1 X2

1 -1 -1

2 -1 +1

3 +1 -1

4 +1 +1
X1

X2

(+1) High

22
# of factors or variables

# of levels (High, Low)

F U LL  F A C TO R IA L E X P E R IM E N TA L D E S IG N

1.  1 independent variable (X 1) , two levels:

   _______________________ “Geometric
Low      (X1)           High   representation”

-  compare Y for X1↓Low , X1↑
High

2.  2 independent variables  (X 1, X2) , each having two levels:



23

X1 X2 X3

1 -1 -1 -1

2 -1 -1 +1

3 -1 +1 -1

4 -1 +1 +1

5 +1 -1 -1

6 +1 -1 +1

7 +1 +1 -1

8 +1 +1 +1
–1 +1X1

X2

+1

+1

X3

FULL FACTO RIAL
3 IN D EPEN D EN T VA R IA BLES



X1 X2 X3

1 -1 -1 -1

2 -1 -1 +1

3 -1 +1 -1

4 -1 +1 +1

5 +1 -1 -1

6 +1 -1 +1

7 +1 +1 -1

8 +1 +1 +1

9 0 0 0
–1 +1X1

X2

+1

X3

23 + CP

+1

F U LL  F A C TO R IA L C E N TE R P O IN T
3  IN D EPEN D EN T V A R IA BLES



24

X1

X3
X2

X4

F U L L F A C T O R IA L
4  IN D E PE N D EN T V A R IA B LE S

“Tesseract”

x1 x2 x3 x4
+1 +1 +1 +1
+1 +1 +1 -1
+1 +1 -1 +1
+1 +1 -1 -1
+1 -1 +1 +1
+1 -1 +1 -1
+1 -1 -1 +1
+1 -1 -1 -1
-1 +1 +1 +1
-1 +1 +1 -1
-1 +1 -1 +1
-1 +1 -1 -1
-1 -1 +1 +1
-1 -1 +1 -1
-1 -1 -1 +1
-1 -1 -1 -1



FRACTIONAL FACTORIAL

X1 X2 X3 = X1 • X2

1 -1 -1

2 -1 +1

3 +1 -1

4 +1 +1

X1

X2 X3
X1 X2 X3 = - X 1• X2

1 -1 -1

2 -1 +1

3 +1 -1

4 +1 +1

23 - 1



FRACTIONAL FACTORIAL

X1

X3
X2

X4

X1 X2 X3 X4 = ±X1 •X2 • X3

1

2

3

4

5

6

7

8

24 - 1



Design Resolution

A design of resolution R is one in which no p-factor effect is confounded with any other effect

with less than R-p factors.  

The resolution of a design is denoted by a subscript of R as a Roman numeral

A design of resolution R = III does not confound main effects with one another, but

confounds main effects with two-factor interactions

A design of resolution R = IV does not confound main effects and two-factor interactions, but

confounds two-factor interactions with other two-factor interactions.

A design of resolution R = V does not confound main effects and two factor interactions with each other, but

confounds two-factor interactions with three-factor interactions, and so on.



Factorial designs 
Number of factors (variables)

2          3          4            5              6             7             8            9            10
Number 
of runs

4

8

16

32

22 23-1
III

x3=x1x2

23

24

25

24-1
IV

x4=x1x2x3

25-2

x4=x1x2
x5=x1x3

III 26-3
III

x4=x1x2
x5=x1x3
x6=x2x3

27-4
III

x4=x1x2
x5=x1x3
x6=x2x3
x7=x1x2x3

25-1

x5=x1x2x3x4

V 26-2
IV

x5=x1x2x3
x6=x2x3x4

27-3
IV

x5=x1x2x3
x6=x2x3x4
x7=x1x3x4

28-4
IV

x5=x2x3x4
x6=x1x3x4
x7=x1x2x3
x8=x1x2x4

29-5
III

x5=x1x2x3
x6=x2x3x4
x7=x1x3x4
x8=x1x2x4
x9=x1x2x3x4

210-6
III

x5=x1x2x3
x6=x2x3x4
x7=x1x3x4
x8=x1x2x4
x9=x1x2x3x4
x10=x1x2

210-5
IV

x6=x1x2x3x4
x7=x1x2x3x5
x8=x1x2x4x5
x9=x1x3x4x5
x10= x2x3x4x5

29-4
IV

x6=x2x3x4x5
x7=x1x3x4x5
x8=x1x2x4x5
x9=x1x2x3x5

x6=x1x2x3
x7=x1x2x4
x8=x2x3x4x5

28-3
IV27-2

IV
x6=x1x2x3x4
x7=x1x2x4x5

26-1
IV

x5=x1x2x3x4x5

*adapted from  Box, Hunter and Hunter, Statistics for Experimenters: An Introduction to Design, Data analysis, and Model Building, John Wiley and sons, 1978, p 410.



S CHO TTKY R E V E RS E V O LTAG E A T 100nA
(CO M B IN ED RESU LTS F R O M 3 F R A CTIO NA L F A C TO R IA L

(25-1) E XPE R IM EN TS)

0%Pre–OHMIC Over–Etch50%
100Å

500Å

18.25 V

18.25 V

2.78 V

11.59 V

13.29 V 16.91 V

15.31 V

14.28





S TATIS TICS D E CIS IO N T RE E
Multiple Input Variables

Compare Proportions
Chi-Square Test

Screening Experiments
Full Factorial
Fractional Factorial

Analysis of Experiments
ANOVA
Multiple Linear Regression

Response Surface Modeling
Box-Behnken Designs
Central Composite Designs
Multiple Linear Regression
Stepwise Regression
Contour Plots
3 D Mesh Plots

Model Response Distribution
Monte Carlo Simulation
Generation of System Moments

Optimization
Optimization of Expected Value:
Linear Programming
Non Linear Programming





– Each factor varies over five levels

– Used for fitting 2nd order response surface models

– Typically smaller than Box-Behnken designs

– Built upon two-level fractional factorials

– Rotatable

C E NTRAL C O M P O SITE D E S IG NS



C E NTRAL C O M P O SITE D E S IG NS

G EN ER A L S TR U CTU R E:
2n-k  Fractional Factorial

+
Star points

+
Centerpoints



CENTRAL COMPOSITE DESIGNS

α o  o
–α  o  o
o  α o

o  -α o

α

where α4 = m and m = number of runs , 2n-k in the fractional factorial design.
α = √(2n-k)4 for 4 runs in 2n-k, α = 1.414

for 8 runs, α = 1.68;

for 16 runs, α = 2 

Construction for n factors
– Select a resolution V two-level fractional factorial for n factors
– Generate 2 x n star points

........... o

........... o

........... o

........... o
.
.
.

o  o  o ........... α

o  o  o .......... -

- Add one or more centerpoints; for example: o,  o,  o



C E NTRAL C O M P O SITE D E S IG NS
F O R T W O F ACT O RS

N   =   9

RUN

1
2

3
4
5
6
7
8
9

X1

–
+

–
+

 1.414
-1.414

0
0
0

X2

–
–

+
+
0
0

1.414
-1.414

0



RUN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

X2

–
–
+
+
–
–
+
+
0
0

  1.682
 -1.682

0
0
0

X1

–
+
–
+
–
+
–
+

1.682
 -1.682

0
0
0
0
0

X3

–
–
–
–
+
+
+
+
0
0
0
0

  1.682
 -1.682

0

C E NTRAL C O M P O SITE D E S IG NS
F O R T HRE E F ACTO RS

N   =   15



C ENTRAL C O M P O SITE D E S IG NS
F O R F O UR F ACTO RS

N   =   25

RUN X1 X2 X4X3

1
2
3
4
5
6
7
8
9

10
11
12

–
+
–
+
–
+
–
+
–
+
–
+

–
–
+
+
–
–
+
+
–
–
+
+

–
–
–
–
+
+
+
+
–
–
–
–

–
–
–
–
–
–
–
–
+
+
+
+

RUN X1 X2 X4X3

13
14
15
16
17
18
19
20
21
22
23
24
25

–
+
–
+
2

 -2
0
0
0
0
0
0
0

–
–
+
+
0
0
2
-2
0
0
0
0
0

+
+
+
+
0
0
0
0
2

 -2
0
0
0

+
+
+
+
0
0
0
0
0
0
2

 -2
0



C E NTRAL C O M P O SITE D E S IG NS
F O R F IV E F ACT O RS

N   =   27

RUN X1 X2 X3 X4 X5

+
+
+
0
0
0
0
2

 -2
0
0
0
0
0

+
+
+
0
0
0
0
0
0
2

 -2
0
0
0

14
15
16
17
18
19
20
21
22
23
24
25
26
27

+
–
+
2

 -2
0
0
0
0
0
0
0
0
0

–
+
+
0
0
2
-2
0
0
0
0
0
0
0

–
–
+
0
0
0
0
0
0
0
0
2

 -2
0

RUN X1 X2 X3 X4 X5

–
–
–
–
+
+
+
+
–
–
–
–
+

–
–
–
–
–
–
–
–
+
+
+
+
+

1
2
3
4
5
6
7
8
9

10
11
12
13

–
+
–
+
–
+
–
+
–
+
–
+
–

–
–
+
+
–
–
+
+
–
–
+
+
–

+
–
–
+
–
+
+
–
–
+
+
–
+





B O X–B E HNKE N
3 L E V E L, 2  F ACTO R

N   =   9

CELL

1
2

3
4
5
6
7
8
9

X1

–
0

+
–
0
+
–
0
+

X2

–
–

–
0
0
0
+
+
+



B O X-B E HNKE N D E S IG N F O R 3 F ACTO RS
N   =   15

RUN
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

X2

–
–
+
+
0
0
0
0
–
+
–
+
0
0
0

X1

–
+
–
+
–
+
–
+
0
0
0
0
0
0
0

X3

0
0
0
0
–
–
+
+
–
–
+
+
0
0
0



B O X-B E HNKE N D E S IG N F O R 4 F ACTO RS
N   =   27

RUN X1

–
+
–
+
0
0
0
0
0
–
+
–
+

–
–
+
+
0
0
0
0
0
0
0
0
0

0
0
0
0
–
+
–
+
0
0
0
0
0

0
0
0
0
–
–
+
+
0
–
–
+
+

X2 X3 X4

1
2
3
4
5
6
7
8
9

10
11
12
13

RUN X1

0
0
0
0
0
–
+
–
+
0
0
0
0
0

–
+
–
+
0
–
–
+
+
0
0
0
0
0

–
–
+
+
0
–
–
+
+
0
0
0
0
0

0
0
0
0
0
0
0
0
0
–
 –
+
+
0

X2 X3 X4

14
15
16
17
18
19
20
21
22
23
24
25
26
27



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

RUN X1

-
+
-
+
0
0
0
0
0
0
0
0
-
+
-
+
0
0
0
0
0
0
0

-
-
+
+
0
0
0
0
-
+
-
+
0
0
0
0
0
0
0
0
0
0
0

X2 X4

0
0
0
0
-
+
-
+
0
0
0
0
-
-
+
+
0
0
0
0
0
0
0

X3 X5 RUN X1

-
+
-
+
0
0
0
0
0
0
0
0
0
0
0
0
-
+
-
+
0
0
0

X2

0
0
0
0
-
-
+
+
0
0
0
0
0
0
0
0
-
-
+
+
0
0
0

X4

-
-
+
+
0
0
0
0
-
+
-
+
0
0
0
0
0
0
0
0
0
0
0

X3

0
0
0
0
0
0
0
0
-
-
+
+
-
-
+
+
0
0
0
0
0
0
0

X5

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0
0
0
0
-
+
-
+
0
0
0
0
-
+
-
+
0
0
0
0
0
0
0

0
0
0
0
-
-
+
+
0
0
0
0
0
0
0
0
-
+
-
+
0
0
0

0
0
0
0
0
0
0
0
-
-
+
+
0
0
0
0
-
-
+
+
0
0
0

B O X–B E HNKE N D E S IG N F O R 5 F ACTO RS
N   =   46



B O X–B E HNKE N D E S IG N F O R 6 F ACTO RS
N   =   54

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

RUN X1

-
+
-
+
-
+
-
+
0
0
0
0
0
0
0
0
0
0
0
0

RUN
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

-
-
+
+
-
-
+
+
-
+
-
+
-
+
-
+
0
0
0
0

X2

0
0
0
0
0
0
0
0
-
-
+
+
-
-
+
+
-
+
-
+

X3

-
-
-
-
+
+
+
+
0
0
0
0
0
0
0
0
-
-
+
+

X4

0
0
0
0
0
0
0
0
-
-
-
-
+
+
+
+
0
0
0
0

X5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-

X6 X1

0
0
0
0
0
0
0
-
+
-
+
-
+
-
+
-
+
-
+
-

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

X2

-
+
-
+
0
0
0
0
0
0
0
0
0
0
0
-
-
+
+
-

X3

-
-
+
+
0
0
0
-
-
+
+
-
-
+
+
0
0
0
0
0

X4

0
0
0
0
0
0
0
-
-
-
-
+
+
+
+
0
0
0
0
0

X5

+
+
+
+
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
+

X6



B O X–B E HNKE N D E S IG N F O R 6 F ACTO RS   (Cont’d)
N   =   54

RUN
41
42
43
44
45
46
47
48
49
50
51
52
53
54

X1

+
-
+
0
0
0
0
0
0
0
0
0
0
0

0
0
0
-
+
-
+
-
+
-
+
0
0
0

X2

-
+
+
0
0
0
0
0
0
0
0
0
0
0

X3

0
0
0
0
0
0
0
0
0
0
0
0
0
0

X4

0
0
0
-
-
+
+
-
-
+
+
0
0
0

X5

+
+
+
-
-
-
-
+
+
+
+
0
0
0

X6



B O X–B E HN KE N D E S IG N F O R 7 F ACTO RS
N   =   62

RUN
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

-
+
-
+
-
-
+
+
0
0
0
-
-
+
+
0
0
0
0
0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

RUN X1

0
0
0
0
0
0
0
0
-
+
-
+
-
+
-
+
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
+
-
+

X2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

X3

-
+
-
+
-
+
-
+
0
0
0
0
0
0
0
0
0
0
0
0

X4

-
-
+
+
-
-
+
+
0
0
0
0
0
0
0
0
-
-
+
+

X5

-
-
-
-
+
+
+
+
-
-
+
+
-
-
+
+
0
0
0
0

X6

0
0
0
0
0
0
0
0
-
-
-
-
+
+
+
+
-
-
-
-

X7

+
+
+
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

X7X1

0
0
0
0
-
+
-
+
0
0
0
-
+
-
+
-
+
-
+
-

X2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
+
+
-

X3

0
0
0
0
-
-
-
-
0
0
0
+
+
+
+
0
0
0
0
0

X4

-
-
+
+
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
+

X5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

X6



RUN
52
53
54
55
56
57
58
59
60
61
62

-
+
-
+
-
+
-
+
0
0
0

41
42
43
44
45
46
47
48
49
50
51

RUN X1

+
-
+
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

X2

-
+
+
-
+
-
+
-
+
-
+

X3

0
0
0
-
-
+
+
-
-
+
+

X4

+
+
+
0
0
0
0
0
0
0
0

X5

0
0
0
0
0
0
0
0
0
0
0

X6

0
0
0
-
-
-
-
+
+
+
+

X7

0
0
0
0
0
0
0
0
0
0
0

X7X1

0
0
0
0
0
0
0
0
0
0
0

X2

-
-
+
+
-
-
+
+
0
0
0

X3

0
0
0
0
0
0
0
0
0
0
0

X4

0
0
0
0
0
0
0
0
0
0
0

X5

-
-
-
-
+
+
+
+
0
0
0

X6

B O X–B E HNKE N D E S IG N F O R 7 F ACTO RS   (Cont’d)
N   =   62



B O X–B E HNKE N D E S IG N F O R 9 F ACTO RS
N   =   130

1–8
9–16

17–24
25
26

27–34
35–42
43–50

51
52

53–60
61–68
69–76

77
78

X1

±1
0
0
0
0

±1
0
0
0
0

±1
0
0
0
0

0
±1
0
0
0

±1
0
0
0
0
0
0

±1
0
0

X2

0
0
±1
0
0
±1
0
0
0
0
0
±1
0
0
0

X3

±1
0
0
0
0
0

±1
0
0
0
0

±1
0
0
0

X4

0
±1
0
0
0
0

±1
0
0
0

±1
0
0
0
0

X5

0
0
±1
0
0
0
±1
0
0
0
0
0
±1
0
0

X6

±1
0
0
0
0
0
0

±1
0
0
0
0

±1
0
0

X7

0
±1
0
0
0
0
0

±1
0
0
0

±1
0
0
0

X8

0
0

±1
0
0
0
0

±1
0
0

±1
0
0
0
0

X9RUN



B O X–B E HNKE N D E S IG N F O R 9 F ACTO RS   (Cont’d)
N   =   130

79–86
87–94

95–102
103
104

105–112
113–120
121–128

129
130

X1

±1
0
0
0
0

±1
0
0
0
0

0
±1
0
0
0
0

±1
0
0
0

X2

0
0
±1
0
0
0
0
±1
0
0

X3

0
±1
0
0
0

±1
0
0
0
0

X4

0
0

±1
0
0
0

±1
0
0
0

X5

±1
0
0
0
0
0
0
±1
0
0

X6

0
0

±1
0
0

±1
0
0
0
0

X7

±1
0
0
0
0
0

±1
0
0
0

X8

0
±1
0
0
0
0
0

±1
0
0

X9RUN



NO. OF
INDEPENDENT
VARIABLES
(FACTORS)

2

3

4

5

6

7

NO. OF
COEFFICIENTS

IN FULL
QUADRATIC

6

10

15

21

28

36

NO. OF TRIALS
IN FULL THREE-

LEVEL
FACTORIAL

9

27

81

243

729

2187

NO. RUNS IN
BOX-BEHNKEN

DESIGN

9

15

27

46

54

62

CENTRAL
COMPOSITE

9

15

25

27

46

80

N UM BE R O F R UNS R E Q UIRE D T O F IT A F ULL
Q UADRATIC  M O DE L



S M ALL C O M P O SITE D E S IG NS

Composite designs for fitting second-order models in k factors all contain cube
portions of resolution at least V, plus axial points, plus center points.

There must be at least one point for each coefficient --> 1/2(k + 1)(k + 2) points.

Hartley (1959) showed that the cube portion of the composite design doesn't
need to be resolution V - it can be as low as resolution  III if two-factor
interactions aren't aliased with two-factor interactions.
Two-factor interactions can be aliased with main effects, because the star portion
provides additional information on the main effects.

This allows much Composite Designs.  Westlake (1965) took this idea further by
finding even smaller cubes for the k  =  5, 7, and 9 cases.

The following table shows the numbers of points in various suggested designs.

*

*Box and Draper, Empirical Model-Building and Response Surfaces, John Wiley and sons, 1987, page 521.





R SM  P RO CE DURE – S HO RT E X P LANATIO N

1.  Design Experimental Matrix

Possibilities: Factorial with centerpoint
Box-Behnken
Central composite design

2.  Run experimental matrix; collect data

3.  Analyze data using Multiple Linear Regression, with second order equation:

Main Effects Second Order Effects Interactions
X1     X1*X1       X1*X2
X2     X2*X2       X2*X3
X3     X3*X3       X1*X3

Response  =    A  +  B*X1  +  C*X2  +  D*X3
+  E*X1^2  +  F*X2^2  +  G*X3^2
+  I*X1*X2  +  J*X2*X3  +  K*X1*K3

4.  Generate Response Surfaces, using model from multiple linear regression

-  Contour plots
-  Mesh plots



T W O–L E V E L C E NTRAL C O M P O SITE D E S IG N
E XA M PLE: P  C H A NN EL V T VS  I2  DO SES

INPUT VARIABLES RESPONSE

Subs Implant Dose (E11) Blanket Implant Dose (E11) Vt–p (mV)

2.71 1.84 – 1088

16.2 1.84 – 1282

2.71 7.44 – 577

16.2 7.44 – 881

23.6 3.70 – 1257

1.87 3.70 – 913

6.64 9.94 – 402

6.64 1.38 – 1187

6.64 3.70 – 1012





Saddle / MinimaxDome / Simple maximum



Stationary Ridge Rising Ridge



“...The [ 32 factorial] design generates four pockets of high information which seemingly have little to do 
with the needs of an experimenter. 

... it is possible to choose designs of second and higher orders for which the information contours are 
spherical.  Equivalently, these rotatable designs have the property that the variances and covariances of the 
effects remain unaffected by rotation.”

22 Design - Rotatable 32 Design - Not Rotatable

*Box and Draper, Empirical Model-Building and Response Surfaces, John Wiley and sons, 1987, page 484.



Variances and correlations between, second-order coefficients estimated from a 
32 factorial design rotated through various angles



C E NTRAL C O M P O SITE D E S IG NS
F O R T W O F ACT O RS

N   =   9

RUN

1

2

3

4

5

6

7

8

9

X1
EMITTER DOSE

6.3E15

1E16

6.3E15

1E16

1.2E16

5E15

7.9E15

7.9E15

7.9E15

X2
EMITTER ANNEAL TIME

21

21

34

34

27

27

42

15

27

EMITTER RS

31.45

28.47

26.96

23.62

25.07

31.79

23.2

33.52

27.0



RUN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Subs Dose

(–)
(+)
(–)
(+)
(–)
(+)
(–)
(+)

(+1.682)
(–1.682)

(0)
(0)
(0)
(0)
(0)

P–well Dose

(–)
(–)
(+)
(+)
(–)
(–)
(+)
(+)
(0)
(0)

(+1.682)
(–1.682)

(0)
(0)
(0)

Blkt Dose

(–)
(–)
(–)
(–)
(+)
(+)
(+)
(+)
(0)
(0)
(0)
(0)

(+1.682)
(–1.682)

(0)

Vtn (mV)

429
342
833
776
609
537
962
910
523
669

1037
369
860
569
644

T HRE E F ACTO R C E NTRAL C O M P O SITE D E S IG N
E X P E RIM E NT FO R N ch T HRE S HO LD .



C EN TR A L CO M PO SITE  D ESIG N S FO R FO U R F A C TO RS

N   =   17
Level -2 -1 0 +1 +2
Base Dose 9.10 9.9 11 12.1 12.8
Base Energy 123 130 140 150 167
Base anneal 13 20 30 40 47
SI Etched 50 100 150 200 250

RUN
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

X1
BASE DOSE

-
+
-
+
-
+
-
+
2
-2
0
0
0
0
0
0
0

X2
BASE ENERGY

-
-
+
+
-
-
+
+
0
0
2

 -2
0
0
0
0
0

X3
BASE FOR

ANNEAL TIME
-
-
-
-
+
+
+
+
0
0
0
0
2

 -2
0
0
0

X4 = X1 • X2 • X3
SI ETCHED

 -
+
+
-
+
-
-
+
0
0
0
0
0
0
2

 -2
0

Hfe
114
106

71
52

129
86
63
56
64
96
42

138
76
78
86
69
77



S TATIS T IC S D E C IS IO N T R E E
Multiple Input Variables

Compare Proportions
Chi-Square Test

Screening Experiments
Full Factorial
Fractional Factorial

Analysis of Experiments
ANOVA
Multiple Linear Regression

Response Surface Modeling
Box-Behnken Designs
Central Composite Designs
Multiple Linear Regression
Stepwise Regression
Contour Plots
3 D Mesh Plots

Model Response Distribution
Monte Carlo Simulation
Generation of System Moments

Optimization
Optimization of Expected Value:
Linear Programming
Non Linear Programming
Yield Surface Modeling™



K NO W LE DG E O F A  S Y S TEM

Input
Variables
that
COULD
BE
Significant

Input 
Variables
that 
actually 
ARE
Significant

Distributions of
Significant
Input Variables

Significant
Input 
Variables
vary over
time
(Control
Chart)

Relationships
between
Responses
and Significant
Input Variables

Responses
that
COULD
BE
Important

Responses
that 
ARE 
Important
to the 
CUSTOMERS

Distributions
of
Responses
that ARE
Important to
Customers



F LO W C HART O F
M O NTE C ARLO  S IM ULATIO N  M E THO D .

INPUT 1 
Statistical distribution for 
each component variable.

Select a random value from 
each of these distributions.

Calculate the value of system 
performance for a system 
composed of components 
with the values obtained in the 
previous step.

Repeat 
many 
times.

  OUTPUT: 
Summarize and plot resulting 
values of system performance. 
This provides an approximation 
of the distribution of system 
performance.

INPUT 2: 
Relationship between 

component variables and 
system performance.



MTB >  Name C1  ‘RS’
MTB >  Random 1000 C1;
SUBC >  Normal 196  3.55.
MTB >  Name C2  ‘CD’
MTB >  Random 1000 C2;
SUBC >  Normal 7.492  .371.
MTB >  Name C3  ‘R’
MTB >  Let C3 = C1*50/C2
MTB >  DESC  C3

MTB >  Histo C3

Histogram of R   N  =  1000
Each * represents 10 obs

Midpoint Count

  1100 1 *
  1150 8 *
  1200 82 ********
  1250 200 ********************
  1300 299 ******************************
  1350 234 ************************
  1400 124 *************
  1450 39 ****
  1500 10 *
  1550 3 *



MTB >
MTB >  Desc  C1 - C3

N Mean Median TRMean StDev SeMean
1000 195.87 195.67 195.87 3.55 0.11
1000 7.4738 7.4643 7.4721 0.3628 0.0115
1000 1313.4 1311.2 1312.4 67.3 2.1

Min Max Q1 Q3
184.43 206.66 193.35 198.42
6.4271 8.5193 7.2322 7.7163
1117.8 1546.2 1268.1 1355.7

Generation of system moments method:

Mean of R:

R-bar  =  RS-bar * L / CD-bar  =  196*50 / 7.492  =  1308.1



C O M PARIS O N O F M E THO DS

Monte Carlo simulation has more intuitive appeal than does the generation of system
moments and consequently is easier to understand.  The desired precision can be
obtained by conducting sufficient trials.  Also, the Monte Carlo method is very flexible
and can be applied to many highly complex situations for which the method of generation of
system moments becomes too difficult.  This is especially true when there are
interrelationships between the component variables.

A major drawback of the Monte Carlo method is that there is frequently no way of
determining whether any of the variables are dominant or more important than
others.  Furthermore, if a change is made in one variable, the entire simulation must be
redone.  Also, the method generally requires developing a complex computer
program; and if a large number of trials are required, a great deal of computer time may
be needed to obtain the necessary answers.

Consequently, the generation of system moments, in conjunction with a Pearson or
Johnson distribution approximation, is sometimes the most economical approach.
Although the precision of the answers usually cannot be easily assessed for this method,
the results of the study  suggest that this approach often does provide an adequate
approximation.  In addition, the generation of system moments allows us to analyze the
relative importance of each component variable by examining the magnitude of its
partial derivative.



ADDITIVITY OF VARIANCES

STANDARD DEVIATIONS  COMBINE

Total Standard deviation = 
Std dev
due to x2 (stddev due to x1)^2 + (stddev due to x2)^2

    Std dev due to x1

0

20

40

60

80

100

Total
Variance

Var due
to x1

Var due
to x2

Var due
to x3

Var due
to x4

0
2
4
6
8

10

Total
StdDev

S due
to x1

S due
to x2

S due
to x3

S due
to x4

A DDITIV ITY  O F V ARIANCE S

S TA N DA RD D EVIATIO N S C O M B IN E



% of Total Variance vs "% of Total SD"

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Since Variances add,

the larger standard deviation's

impact is MAGNIFIED.

This is the theoretical basis for
the concept of the   RED   X



G E N O S ME RATIO N F Y S TE M O M E NTS/
Propagation of Errors

S(P)[ ]2   =   
i = 1

n
∑  ∂P

∂Xi
 ⋅  S(Xi )

 

  
 

  

2

  +   
i = 1

n
∑  ∂P

∂Xi

 

 
  

 
 ∂2P

∂Xi
2

 

 
  

 
  µ3 (X i)

- Derived from a multivariate Taylor series expansion of P = f(X1, X2, . . . . . . Xn)

- Retaining the terms up to third order, and assuming that the component variables 
(process factors) are uncorrelated:

Where: S(P)   =  Standard deviation of device parameter P
S(Xi)  =  Standard deviation of process factor Xi
µ3(Xi)  =  Third central moment of process factor Xi

Neglecting the last term, the variance of device parameter P can be partitioned into the variance 
due to each process factor:

S(Pi )[ ]2
= ∂P

∂Xi
⋅ S(Xi )

 

  
 

  

2



G EN ER ATIO N S O F S YST EM M O M EN TS M ETH O D:
SD  O F R ESISTO R V A LU E

dr/dRs  =  L / CD  =  50 / 7.492  =  6.674

Variance of R due to Rs  =  [(dR/dRs)*Srs]^2  =  (6.674*3.55)^2  =  561.3

dR/dCD  =  - Rs * L / (CD)^2  =  - (196)*(50) / (7.492)^2  =  -174.6

Variance of R due to CD  =  [(dR/dCD)*Scd]^2  =  (-174.6*.371)^2  =  4195.7

Variance of R  =  561.3  +  4195.7  =  4757;

Stdev of R  =  Sqrt (4757)  =  69.0

Relative importance of input parameters for resistor variability:

4195.7 / 4757  ⇒  88%  of resistor variance is due to CD variability



r=-1

r=-0.5

r=0

r=0.5

r=1
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rT=0

.2
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Propagation of Errors assumes that the process factors are uncorrelated.

If the process factors are correlated, the impact on the system variance can vary from offsetting 
the uncorrelated variance to doubling it depending on the positive or negative correlation
between the process factors and the amount of variance contributed by each process factor.
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T HRE S HO LD V O LTAG E (V t) V ARIANC E
E X AM P LE  -  A C AS E S TUDY

Model:

Where:

=  The metal-semiconductor work function difference

=  The Fermi potential

=  The charge per unit area in the surface depletion region at inversion

=  The gate oxide capacitance per unit area

Process Factors:

Nd  =  The doping concentration in the channel,

tox  =  The gate oxide thickness, and

Qi  =  The oxide/interface charge per unit area

•  Distributions obtained from CV plots of test pattern capacitors

Vt  =   φ ms (Nd)  +   2 φ f (Nd)  -   Qb (Nd)
Co (tox)   -   Qi

Co (tox)

φ ms (Nd)

φ f (Nd)

Qb (Nd)

Co (tox)



Normalized threshold voltage as a function of the normalized processing
variables:

Gate oxide thickness - - - - - - - - - -
__________Oxide/interface charge density

Concentration of doping in the channel region • • • • • • • • • •
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BVCEO =   V ∞ C2

4 β +  1
 2WE
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BVceo Variance Example  -
Second Case Study

Model:

Where: =  Collector-emitter brackdown voltage

C   =  A semi-empirical two dimensional correction factor, between 0 and 1

Process Factors:

=  The doping concentration of the epitaxial layer 
=  Intrinsic thickness of epitaxial layer (base to subcollector)
= NPN current gain

BVCEO

WCEO  =   W ∞ / 8 β +  1

W∞  =   3.60  ×   103  V ∞
ND

 

 
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 
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1 / 2

V∞  =   60  ND

1016
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 
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 

−3 / 4
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DATA vs DATA

One Input Variable Multiple Input Variables

Compare Variability Compare Proportions
F-ratio test (two levels) Chi-Square Test
Bartlett's test (multiple levels)
Cochran's test (multiple levels) Screening Experiments

Full Factorial
Compare Means Fractional Factorial
Student's T Test (two levels)
ANOVA (multiple levels) Analysis of Experiments
Nested ANOVA (multiple levels) ANOVA

Multiple Linear Regression
Compare Medians
Mann-Whitney (two levels) Response Surface Modeling
Kruskal-Wallis (multiple levels) Box-Behnken Designs

Central Composite Designs
Study Source of Variation Multiple Linear Regression
Y vs X plot Stepwise Regression
Correlation Coefficient Contour Plots
Linear Regression 3 D Mesh Plots

Compare Proportions Model Response Distribution
Proportion Test Monte Carlo Simulation
Chi-Square Test Generation of System Moments

Optimization
Optimization of Expected Value:
Linear Programming
Non Linear Programming
Yield Surface Modeling™
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Yield Surface Modeling™  - Overview of Method



Statistics Decision Tree
DATA DATA vs TIME DATA vs DATA

Look at Distribution Look at Trend versus Time One Input Variable Multiple Input Variables
Histogram Trend Chart

Stem-and-Leaf Compare Variability Compare Proportions
F-ratio test (two levels) Chi-Square Test

Describe Distribution-Moments Model Distribution vs Time Bartlett's test (multiple levels)
Mean Time Series Modeling Cochran's test (multiple levels) Screening Experiments

Standard Deviation/Variance Autocorrelation Full Factorial
Skewness Partial Autocorrelation Compare Means Fractional Factorial
Kurtosis Moving Average Student's T Test (two levels)

EWMA ANOVA (multiple levels) Analysis of Experiments
Determine Type of Distribution AR Nested ANOVA (multiple levels) ANOVA

Normal MA Multiple Linear Regression
Beta ARIMA Compare Medians

Gamma Mann-Whitney (two levels) Response Surface Modeling
Exponential Study Sources -Time Variation Kruskal-Wallis (multiple levels) Box-Behnken Designs
Log Normal Gauge Capability Central Composite Designs

General: Pearson Distributions Variance Components Analysis Study Source of Variation Multiple Linear Regression
Y vs X plot Stepwise Regression

Test - Type of Distribution Compare Trend to  Limits Correlation Coefficient Contour Plots
Normal Probability Plot Control Charts Linear Regression 3 D Mesh Plots

Correlation Test for Normality X-Bar
Chi Square Test for Distribution R, S Compare Proportions Model Response Distribution

Individuals Proportion Test Monte Carlo Simulation
Compare Distribution to Limits Moving R Chi-Square Test Generation of System Moments

Cp EWMA
Cpk Optimization

Variance from Target Optimization of Expected Value:
Linear Programming
Non Linear Programming
Yield Surface Modeling™


