
Structured Information Retrieval in XML documents

Evangelos Kotsakis
Joint Research Center (CCR), TP261,

I-21020 Ispra (VA), Italy

kotsakis@acm.org

ABSTRACT
Query languages that take advantage of the XML document
structure already exist. However, the systems that have
been developed to query XML data explore the XML sources
from a database perspective. This paper examines an XML
collection from the viewpoint of Information Retrieval (IR).
As such, we view the XML documents as a collection of text
documents with additional tags and we attempt to adapt ex-
isting IR techniques to achieve more sophisticated search on
XML documents. We employ a class of queries that support
path expressions and suggest an efficient index, which ex-
tends the inverted file structure to search XML documents.
This is accomplished by integrating the XML structure in
the inverted file by combining the inverted file with a path
index. The proposed structure is a lexicographical index,
which may be used for the evaluation of queries that involve
path expressions. Moreover, this paper discusses a ranking
scheme based on both the term distribution and document
structure. Some performance remarks are also presented.

Keywords
XML information retrieval, Web data indexing, semistruc-
tured data indexing, full text searching

1. INTRODUCTION
The eXtensible Markup Language (XML)[2] is a universal

format for data exchange on the Web and in the near future
we will find large XML document collections on the Web.
As a result, it has become crucial to address the question
of how we can efficiently query and search large corpora of
XML documents.
To date, most research on storing, indexing and query-

ing XML documents has been based on the work on semi-
structured data [13]. Models for representing XML data
have been proposed from a database perspective and they
have been tailored to facilitate querying processing on semi-
structured data [8]. XML databases, which are based on
such models, merge diverse XML elements from distinct

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for prof it or commercial advantage and that copies
bear this notice and the full citation on the f irst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specif ic
permission and/or a fee.
SAC 2002, Madrid, Spain
c© 2002 ACM 1-58113-445-2/02/03 ...$5.00.

XML sources into a single hierarchy and then use this in-
ternal representation to query XML data. Such approaches
overlook the notion of text document and view an XML
corpus as a collection of distinct XML elements. While this
approach is sufficient for a variety of applications that re-
quire assembling different semi-structured sources into a sin-
gle database, it may cause difficulties in answering Boolean
and ranked queries. Such queries have been extensively used
in information retrieval systems and they consist of a list of
terms or sample of text. A simplified form of such queries is
the following: “find all documents in the collection that best
match a given description”. In the context of XML docu-
ments, Boolean queries may be also enriched by path expres-
sions so that the “description” clause may be a conjunctive
or disjunctive sequence of terms or path expressions. If such
queries are to be evaluated on an XML corpus, an alternative
approach is required that views the corpus as a collection
of text documents with additional tags. Such an approach
might also support the necessary indexing mechanism that
facilitates fast response.
Existing XML data processing systems explore the XML

sources from the database viewpoint. The result set of such
queries consists of XML elements that precisely satisfy the
query conditions. In an XML information retrieval system,
answering such a query is not sufficient for finding relevant
documents. Extra support is needed in both ranking and
indexing to achieve this goal.
The proposed index structure combines an inverted file

index with a path index in order to facilitate the evaluation
of Boolean queries. This enables more sophisticated search
on the structure as well as the content of the XML doc-
uments, while similarity and ranking may be employed to
leverage keyword search. In particular, ranking is relied on
the structure of the XML documents.
The rest of this paper is organized as follows: Section 2

discusses related work. Section 3 discusses the index orga-
nization. Query evaluation is discussed in section 4. Sec-
tion 5 presents the ranking scheme and section 6 discusses
some performance aspects of the system. Section 7 summa-
rizes the contributions and concludes the paper by providing
some directions for future work.

2. RELATED WORK
In this section we briefly review previous approaches to

the problem of indexing structured and semistructured data.
Many approaches, which have been mainly proposed by the
database community, are close to the research done on semi-
structured databases [8, 13, 14, 4]. In this case, the main

663

objective is to build semistructured management systems
that facilitate query processing. Several query languages
have been proposed for this purpose. For an overview, the
reader may refer to [6, 1]. Other approaches are stemmed by
the work done on structured documents from the perspective
of information retrieval [12, 19, 11, 16, 17].
Among the database approaches is the Lore system [13].

Lore accomplishes the uploading of new documents by adding
the elements of the documents in a tree like structure and
updating several indexes (value index, text index, link index
and path index [14]). From that point on, any data access is
performed by considering the whole database as a huge tree
that contains XML elements. Lore approach seems to view
an XML document as a database and a set of documents
as a single large database where all documents are mixed
together into a tree like structure.
In our approach a set of XML documents is handled as is

(set of documents) and the index facilitates the retrieval of
XML documents that match better the query terms. The
output of the query evaluation is a set of XML documents.
The proposed approach is closer to the Information retrieval
end and the objective is to retrieve the XML documents
that match the user preferences expressed by way of Boolean
query terms.
Indexing structures for documents are discussed in [7] and

for structured documents in [12]. Inverted files and signa-
ture files have been used only for searching literal terms. If
queries contain structured elements (paths) an additional in-
dex that captures the structure of the documents is needed.
In [12], complete trees are used for this purpose. While this
approach works for exact matching, it does not for partial
matching.
A query evaluation scheme called BUS and an indexing

structure for retrieving structured documents has been pro-
posed in [19]. In this approach indexing is performed at the
leaf element and the query evaluation computes the similar-
ity by accumulating the weights in a bottom up way. Index
organized tables are proposed in [11], which actually imple-
ments posting information by using the BUS strategy.

3. INDEX ORGANIZATION
The first processing step in organizing the index structure

is the term recognition shown in figure 1. On this step, we
need to specify what terms must be indexed in the XML doc-
ument. This is accomplished by using some normalization
algorithm that removes unimportant terms (stop words) [7,
15]. This may involve checking each word against a stop-list
of common words. If the word is not a common one, it may
be additionally passed through a stemming algorithm. The
resultant stems are recorded together with the associated
path. The last processing phase of this step involves the es-
timation of the distribution (“within document frequency”)
of all terms (literals and tags). Any path and term dupli-
cation is removed so that the resulting XML summary tree
contains each path at most once. In principle, the summary
tree is smaller than the original XML document and it con-
tains only those literal terms and tags that are important as
far as indexing is concerned. Moreover, the summary tree
keeps the structure of the original XML document facilitat-
ing in that way advanced search within the content of the
tags. The term distribution may be in addition used to gen-
erate weights for each term in the summary tree in order to
facilitate ranking. Summary trees constitute the input to

Literal
terms

tags

XML
doc

stopper

stemmer

statistics

XML
Summary

Tree

Figure 1: XML document normalization process

<article>

</article>

<author> </author>
<title> </title>
<abstract> </abstract>
<pages> </pages>

aspects of architecture
Nick Hoffman

geometrical figures ...
324 - 333

<article>

</article>

<author>
<title> </title>
<abstract> </abstract>
<pages> </pages>

modern architecture
Paul Fisher

many classes create ...
122 - 128

</author>

(a)

class

article

titl abstractauthor

Nick Hoffman aspect
architect

geometr
figurePaul Fisher

create
modern

(b)

...

...

Figure 2: (a) An XML document and (b) its Sum-
mary tree

the index structure.
Figure 2(a)shows an XML document and figure 2(b)shows

the resulting XML summary tree. Note, that each path
appears once in the summary tree and each literal term and
tag has been replaced by its stem. Terms or tags that have
no indexing value (i.e. the <pages> tag) are not present in
the summary tree.
The second processing step deals with the loading of the

summary trees into the index structure. This involves the
separation of content data from path data (figure 3). Con-
tent data is raw text aimed to be stored in the inverted file
and path data is structured text aimed to be stored in the
path index. The path index is a hierarchy of tags, which
records every single path in the collection. A list of doc-
uments (posting list) is also stored alongside each entry of
the inverted file. Each entry of the posting list usually con-
tains the document id and a reference to a node (tag) of the
path index. This node is the last node in the path that con-

664

L
oa

de
r XML

Summary
Tree

Path Index

Inverted File

Content
data

Structure

Figure 3: Loading an XML summary tree into the
index structure

tains the term. Other data may be also stored in a posting
list entry for facilitating ranking. Such data may include a
manually or automatically assigned term weight, which may
be used to estimate the document relevance to a given path
query.
Deletions and Insertions of summary trees may reduce or

expand the index structure respectively, reflecting in this
way the removal and insertion of XML documents. When a
document is added to the collection, its associated summary
tree is inserted to the index structure. When a document
is removed form the collection, the corresponding summary
tree is also removed from the index structure. A document
update may be realized through a sequence of remove and
insert operations. Initially (before any document insertion)
the index structure is empty. Algorithm 1 inserts a new
summary tree in the index structure by storing the struc-
tured part of the summary tree into the path index and the
literal part of the element content into the inverted file.

Algorithm 1. Insert (T, P, I)

Input: T is a pointer to the root node of the summary tree
to be inserted in the index structure. The index con-
sists of a list of literal terms (inverted file) referenced
by I, and a path index whose root is referenced by P.

Output: The index structure containing the new summary
tree.

Method: Inserts the new summary tree T

I1 If the index structure is empty (no summary tree
has ever been inserted) a new root is created, ref-
erenced by P. The function tag(N) returns the tag
of the node pointed to by N. Then the recursive
function in step I2 is invoked by AddSummary-
Tree(T,P).

I2 AddSummaryTree(t, p)
/* t and p are pointers to nodes in trees T and P
respectively */
if there is no child c of p such that tag(c) = tag(t)
then {

make a new child node c of p such that
tag(c) = tag(t)

UpdateInvertedF ile(I, t, c) }
for each child x of t do AddSummaryTree(x, c)

UpdateInvertedF ile(I, t, c) invokes a procedure that stores
the literal content (not sub-elements) of the node t into the

inverted file I by adding all the terms to the vocabulary
of the inverted file and updating all the necessary entries in
the inverted lists. Moreover, this procedure makes a link be-
tween the node c of the path tree, for which tag(c)=tag(t),
and each newly inserted literal term of the inverted file. This
particular reference associates a term with the path in the
document where the term is located. The inverted file up-
date is not discussed here. This is fully presented in [10],
which also includes a few modifications that facilitate the
creation of very large inverted files . The UpdateInvertedF ile

procedure is used as an interface for updating the inverted
file and creating the necessary links to the path index. This
is as follows:

UpdateInvertedFile(I, t, c)

Comments: content(t) is the literal content of the tag t

in the summary tree. I is the inverted file where the
terms of content(t) will be stored. c is the node in the
path index to which all the terms in content(t) will be
linked.

Method: Updates the inverted file.
For each term x in the content(t) do {

If x is not in the vocabulary of I then
add x to I.

Update accordingly the inverted list of the term x.
Make a reference from c to the entry x}

The deletion of a document from the index is performed by
deleting the entries from the inverted lists. If the document
entry is the last in the inverted list, the term is also removed
from the vocabulary. If after removing the document entries
there are nodes in the path index without any link to an
inverted list entry, these nodes are also removed from the
path index.

Algorithm 2. Delete(docID)

Input: The docID of the document that will be removed
from the index.

Output: index after removing the document

Method: Deletes the document from the index.
For each term x in the vocabulary of the inverted file
that can be identified as being a term of the document
with ID docID do{

Delete the contribution of x in the inverted file.
Update the path index to the root by removing any

link to x. }

4. QUERY EVALUATION
A search in the index consists of two steps:

1. A search for identifying the XML documents contain-
ing the path of the query term.

2. A search for identifying the XML documents contain-
ing the raw text of the query term.

Upon receiving a query, the query evaluation process decom-
poses the query into its constituent conjunctive and disjunc-
tive terms. Each query term consists of a path and raw text
(literal part). The path is checked against the path index of
the index structure. If there is a match, all the inverted lists

665

are identified by generating a candidate list A of documents
and a candidate list T of vocabulary terms that happens to
be at the end of this path. The literal part is then checked
against the candidate terms in T and for those terms that
there is a match the document entries are retrieved from the
inverted lists and a second candidate set of documents B is
generated. A ranking algorithm is also applied at this point
to rank the documents in B based on frequency information
held in the entries of the inverted lists. The answer is the
intersection of A and B.
The following Algorithm 3 shows how to evaluate a con-

junctive Boolean path query.

Algorithm 3. Query evaluation (Q)

Input: The query Q with x1, x2, . . . , xn conjunctive terms.

Output: A set S of documents.

Method: Normalize the query terms x1, . . . , xn and set S =
∅. Decompose the query into several conjunctive terms
For each term xi, (1 ≤ i ≤ n) of the query do {
Let Ti be the set containing the inverted lists that match
the path of the term xi. Let Ai be the set containing
the document entries that match the path of the term
xi. Extract from Ti the list of documents pointed to by
the literal part of xi and store this list to the set Bi.}
The result set S is given by

S =
n⋂

i=1

(Ai ∩Bi) (1)

In the case of a disjunctive query, S is given by

S =

n⋃

i=1

(Ai ∩Bi) (2)

5. RANKING
This section describes the ranking approach to term weight-

ing. The proposed approach is simple and involves no com-
plexity in implementation. Ranking does not only rely on
the term weight based on the term distribution both within
the XML document and the entire XML collection, but also
on the structural position of the term.
As such, the ranking scheme is divided into two compo-

nents. The first one defines the term weight in terms of its
distribution and the second one in terms of its structural
position. The final weight of a term is composed by mul-
tiplying the two estimates. The first component evaluates
the weight as if the term was from an unstructured docu-
ment. It has been shown that the most important measure
is the Inverse Document Frequency (IDF) [20, 9]. We have
adopted the IDF definition in [5], which for a given term i

is as follows:

IDFi = log2

N − ni

ni

(3)

Where N is the number of XML documents in the collection
and ni is the number of occurrences of the term i in the
collection. Based on the above measure, the weight of the
term i in the XML document j is given by

wij = freqij × IDFi (4)

where freqij is the within document frequency of term i in
the document j.We refer to the measure wij as statistical
weight.

The second component evaluates the term weight accord-
ing to its position in the XML document by introducing
a coefficient for each single path in the collection. This is
accomplished by assigning such a coefficient to each node
in the path index tree. The coefficient specifies the impor-
tance of the path context from the root to the tag where
a term might appear. For example, any literal term at
the end of the path ‘journal/issue/article/title’ may have
larger coefficient than a term at the end of the path ‘jour-
nal/issue/article/abstract’. This is to show that a term that
appears in titles is more important than a term in abstracts.
Let fp be the coefficient assigned to the path p at the end

of which the term i is found and wij is the statistical weight
of the term i in the document j . The final weight of a term
i in document j is given by fp ∗ wij .

6. PERFORMANCE
As experimental data, we used the Cystic Fibrosis (CF)

document collection, which represents a subset of MED-
LINE data [18]. The original CF collection has been trans-
formed into an XML document collection consisting of 1239
XML documents, which share the same Document Type
Definition (DTD). The size of the CF XML collection is
6MB. This collection comes with 100 queries bundled with
their correct answers. All the tests were accomplished on
a Pentium III personal computer with 256MB RAM. The
index overhead in size is 2.5MB and the index can be built
in less than a minute. During retrieval, the accuracy of
the responses to the given queries is very high. The ranking
given by the proposed system matches the score of the given
results for every query. The response time for each query
depends on the number of terms and on the length of the
posting list of the term. However for the given queries, the
response time is between 0.10 and 0.25 sec. The average
response time of the 100 queries is 0.135 sec.

7. CONCLUSIONS AND FUTURE WORK
The indexing process generates an inverted file index and

a path index containing all possible paths in the collection.
The novelty and advantages of the proposed index are sum-
marized as follows:

1. It combines seamlessly two indexes; an inverted file
and a path index

2. The path index contains normalized tags. This feature
may facilitate similarity search by content and struc-
ture.

3. Both the path index and inverted file are expanded and
reduced dynamically by adding and removing XML
documents.

The proposed indexing structure is powerful, easy to imple-
ment and maintain. The use of an index structure that com-
bines an inverted index and a path index improves search
efficiency for large collections of XML documents.
The presence of markup tags in XML documents suggests

that indexing the tags, or a normalized form of it, might
be an effective approach to capturing document structure.
However, there are several problems with this approach. Dif-
ferent XML documents may use different tags to describe
the same piece of information. It is really difficult, if not

666

impossible, to form a standard description for every single
piece of data. XML has been actually introduced to describe
irregular data and as such the problem of having different
tags to describe the same piece of information is quite in-
herent to the XML language. It is then desirable to provide
lists of equivalent tags. Tags with a high degree of seman-
tic proximity must be handled as if they were the same.
Synonymous tags (like “journal” and “periodical”) must be
indexed as if they were the same. Tag transformation might
be useful in order to handle variant words using sound-like
methods. Eliminating suffixes and prefixes from the tags
may further facilitate the content regularity. Devising tech-
niques for handling proximity measures between tags can
further increase the accuracy of XML information retrieval.
Further research is planed towards tag similarity searching
in order to address the problem of proximity searching and
achieve more effective XML document ranking.

8. REFERENCES
[1] Angela Bonifati, Stefano Ceri. Comparative Analysis
of Five XML Query Languages, ACM SIGMOD
Record, 29(1): 68-79 (2000).

[2] Tim Bray, Jean Paoli and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0, W3C
Recommendation, available at
http://www.w3.org/TR/1998/REC-xml-19980210.

[3] C. Buckley and A. F. Lewit. Optimization of inverted
vector searches. In proceedings of the ACM-SIGIR
International Conference on Research and
Development in Information Retrieval, Montreal,
Canada, pp. 97-110, (June 1985).

[4] Stefano Ceri, Piero Fraternali, and Stefano
Paraboschi. XML: Current Developments and Future
Challenges for the Database Community. In Proc. of
the 7th International Conference on Extending
Database Technology (EDBT 2000), pp 3-17,
Konstanz, Germany (2000).

[5] W. B. Croft and D. J. Harper. Using Probabilistic
Models of Document Retrieval without Relevance
Information. Journal of Documentation,
35(4):285-295, (1979).

[6] Alin Deutsch, Mary F. Fernandez, Daniela Florescu,
Alon Y. Levy, David Maier, Dan Suciu. Querying
XML Data. IEEE Data Engineering Bulletin,
22(3):10-18 (1999).

[7] W. Frakes and R. Baeza-Yates (eds). Information
Retrieval: Algorithms and Data Structures.
Prentice-Hall (1992).

[8] Roy Goldman and Jennifer Widom. DataGuides:
Enabling Query Formulation and Optimazation in
Semistructured Databases, In Proceedings of the 23rd
VLDB Conference, pp. 436-445, Athens, Greece,
August 25-29, (1997).

[9] D. K. Harman. Ranking Algorithms. In Information
Retrieval: Data Structures and Algorithms, W. B
Frakes and R. Baeza-Yates (Eds) Prentice-Hall,
Englewood Cliffs, N.J. pp. 363-392 (1992)

[10] D. K. Harman, E. A. Fox, R. Baeza-Yates and W. C.
Lee. Inverted files. In Information Retrieval: Data
Structures and Algorithms, W. B Frakes and R.
Baeza-Yates (Eds). Prentice-Hall, Englewood Cliffs,
N.J. pp. 28-43 (1992)

[11] Hyunchi Jang, Youngil Kim and Dongwook Shin. An
effective mechanism for index update in structured
documents. In Proceedings of the eighth international
conference on Information knowledge
management(CIKM’99), pp. 383 - 390 (1999).

[12] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon and
P. Bruce Berra. Index structures for structured
documents. In Proceedings of the 1st ACM
international conference on Digital libraries (DL’96),
pp. 91 - 99 (1996)

[13] Jason McHugh, Serge Abiteboul, Roy Goldman,
Dallan Quass, Jennifer Widom. Lore: A Database
Management System for Semistructured Data. ACM
SIGMOD Record 26(3): 54-66 (1997).

[14] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A.
Rajaraman. Indexing Semistructured Data. Technical
Report, Computer Science Dept., Stanford University
(1998)

[15] Andrei Mikheev. Document Centered Approach to
Text Normalization. In Proceedings of the Annual
ACM Conference on Research and Development in
Information Retrieval (SIGIR’00), pp. 136-143
Athens, Greece (2000).

[16] Alistair Moffat and Justin Zobel. Self-indexing
inverted files for fast text retrieval. ACM Trans. Inf.
Syst. 14(4):349 - 379 (Oct. 1996).

[17] Gonzalo Navarro and Ricardo Baeza-Yates. Proximal
nodes: a model to query document databases by
content and structure. ACM Transactions on
Information Systems, 15(4): 400 - 435 (Oct. 1997)

[18] W. M. Shaw, J.B. Wood, R.E. Wood and H.R. Tibbo.
The Cystic Fibrosis Database: Content and Research
Opportunities. Library and Information Science
Research (LISR), 13: 347-366 (1991).

[19] Dongwook Shin, Hyuncheol Jang, Honglan J. BUS:
An Effective Indexing and Retrieval Scheme in
Structured Documents . In proceedings of the third
ACM Conference on Digital libraries (DL’98) pp.
235-243 (1998).

[20] Jones K. Sparck. A Statistical Interpretation of Term
Specificity and its Application in Retrieval. Journal of
Documentation 28:11-21, (1972).

About the author
Evangelos Kotsakis received his B.Sc. degree in com-
puter science from the University of Athens, Greece in 1993,
his M.Sc. and Ph.D degrees in engineering from the Uni-
versity of Salford, England in 1994 and 1998 respectively.
From 1998 to 1999, he worked on space applications in the
Joint Research Center, Ispra, Italy. From 1999 to 2000, he
held visiting posts in the Federal Institute of Technology
(ETH), Zurich, Switzerland and VTT Information Technol-
ogy, Helsinki, Finland. He is currently a research associate
in the Joint Research Center at Ispra, Italy. His research
interests include Web data management, XML data pro-
cessing, semistructured databases, data warehousing, data
mining and mobile data management.

667

