
Aspect Mining meets Rule-based Refactoring

Santiago A. Vidal, Esteban S. Abait, Claudia
Marcos

ISISTAN Research Institute, Faculty of Sciences,
UNICEN University

Campus Universitario, Pje. Arroyo Seco
(B7001BBO) Tandil, Buenos Aires, Argentina

{svidal, cmarcos}@exa.unicen.edu.ar

eabait@alumnos.exa.unicen.edu.ar

Sandra Casas
UNPA University

Lis. De la Torre 1060
(CP 9400) Río Gallegos,
Santa Cruz, Argentina

lis@uarg.unpa.edu.ar

J. Andrés Díaz Pace

Software Engineering
Institute, Carnegie Mellon

University
4500 Fifth Ave.,

Pittsburgh PA, 15232,
USA

adiaz@sei.cmu.edu

ABSTRACT

Aspect-oriented software development allows the encapsulation

of crosscutting concerns, achieving a better system

modularization and, therefore, improving its maintenance. One

important challenge is how to evolve an object-oriented system

into an aspect-oriented one in such a way the system structure

gets gradually improved. This paper describes a process to assist

developers in the refactoring of object-oriented systems to

aspects. To do so, we propose a tool approach that combines

aspect mining techniques with a rule-base engine to apply

refactorings.

1. INTRODUCTION
Aspect-oriented software development (AOSD) [13] is a

paradigm that supports the encapsulation of the concerns that

orthogonally crosscut the components of a system by means of

aspects. These concerns are called crosscutting concerns (CCCs).

CCCs cannot be easily modularized using traditional software

engineering approaches (e.g., the object-oriented paradigm) to

deal with the complexity and evolution of systems. Typical

examples of CCCs are exception handling, logging and

concurrency control.

For existing object-oriented systems to incorporate the benefits of

AOSD, those systems are usually re-modularized into aspect-

oriented systems. This leads to a need for techniques and tools

that can help developers with the identification of crosscutting

concerns, called aspect mining [12], and then with the refactoring

of those concerns into aspects, called aspect refactoring [12].

Aspect mining enables the discovery of crosscutting concerns in

the source code that can potentially become aspects (also known

as candidate aspects). Aspect refactoring is the technique that

accomplishes the necessary transformations in the code to turn the

candidate aspects into aspectual code.

In this paper, we propose a comprehensive approach to perform

the gradual evolution of an object-oriented system to an aspect-

oriented one. This approach aims at assisting the developer in:

performing the evolution process, automating many tasks

involved in this process, taking advantage of precise aspect

mining techniques, and applying different types of aspect

refactorings.

We think that the migration from an OO system to an AO one

improves the structure and quality of the software, and thus eases

software evolution. Along this line, we believe that the provision

of semi-automated support to help the developer to discover

crosscutting concerns and to encapsulate them into aspects is

really beneficial. A novelty of our approach is the use of dynamic

analysis together with data mining techniques for identifying

candidate aspects. Also, we present an aspect refactoring process

based on existing types of refactorings which automates the major

steps of the migration.

The rest of the paper is structured as follows. Section 2 describes

the evolution process. Section 3 explains the details of the aspect

mining approach. Section 4 describes the aspect refactoring

support, and also how it is integrated with aspect mining. Finally,

Section 5 presents some lessons learned and discussion.

2. THE APPROACH
The proposed approach consists of two main phases (see Figure

1): (i) aspect mining, and (ii) aspect refactoring. The first phase

receives an object-oriented system (to be evolved) as input, and

produces a number of candidate aspects as output. These aspects

are identified by making a dynamic analysis of the system and

applying association rules. The information of candidate aspects

and the initial system’s source code are then passed to the aspect

refactoring phase. In this phase, different refactorings are

evaluated and eventually applied to the code. As output, this

second phase generates a new version of the system that contains

aspect-oriented final code.

The whole approach is supported by an Eclipse-based prototype

tool called AspectRT (Aspect Refactoring Tool). This tool helps

developers to carry out the evolution process by automating parts

of the tasks involved in each phase.

3. ASPECT MINING PHASE
Our aspect mining approach is based on the fact that it is possible

to get the most relevant method associations from the system’s

execution traces obtained using dynamic analysis [1]. This kind

of associations gives developers valuable information about the

behavior of the system and allows them to identify scattering

symptoms.

The basic idea behind dynamic analysis algorithms is to observe

run-time behaviors of software systems and extract information

from the execution of the programs [4]. The approach described

here is based on association rules [2]. It takes two pieces of

information as input: execution traces and execution relations.

The execution traces and relations are obtained by running the

program under given scenarios. Each scenario can be seen as a

instance of a use case [3]. The program trace is the sequence of

method invocations during the execution of the program, and the

execution relations registers the invocations from one method to

another.

As an example, Figure 2 shows the use of the Observer design

pattern [7] in a simple GUI application. The intent of the

Observer pattern is to "define a one-to-many dependency between

objects so that when one object changes state, all its dependents

are notified and updated automatically" [7]. In this Observer

implementation (initially presented in [10]), the Point class plays

the subject role and the Screen plays the roles of both subject and

observer (of Point and of itself). Here, we can run the scenario

“the point changes its color” and obtain the trace and execution

relations shown in Figure 3. The resulting trace contains the

sequence of method invocations shown by the table atop of Figure

3. The execution relations for this trace are represented by the two

columns at the bottom of that figure.

The box at the top of Figure 1 depicts the steps of the proposed

mining technique. The first and second steps (System

instrumentation and System executions) correspond to the

collection of runtime information about the system. The third step

(Association rule mining) takes the set of traces as input and uses

an association rule algorithm to find interesting associations

among methods. The fourth step (Association rule post-

processing) classifies rules in terms of scattering indicators, and

removes redundant rules as well as rules with utility methods such

as 'main' or 'run' [1]. Rules that cannot be classified are discarded.

3.1 Use of Association Rules
If each trace of the system under analysis is considered as a

transaction T and the methods contained in all the traces as the set

of items I, it is possible to get a dataset D from which a set of

association rules can be generated. For example, the rules for the

example shown in Table 1 will have the following form:

Point.notifyObservers ⇒ Screen.refresh (support: 1.0, confidence:

1.0). The support value of the rule indicates the number of traces

(transactions) in which both methods are present. In our example,

the support value indicates that the two methods are present

together in all the traces. On the other hand, the confidence value

points out the stability of the method relation. Then, a confidence

value of 1.0 means that each time the 'notifyObservers' method is

called so is the 'refresh' method. For the proposed technique, the

generated rules have only one item in its antecedent and one item

on its consequent. We believe that these kinds of rules can be

easily generated and even understood by developers.

In order to characterize the kind of rules that are interesting for

the aspect mining process, let’s briefly show how the association

rule algorithm works on the Observer example (Figure 2). Two

scenarios are used to exercise the implementation: a) "a point

changes its color", b) "a point changes its position". The

AspectRT tool permits to obtain the execution traces and relations

by means of a tracing aspect that registers all the method

invocations and its relations.

Figure 2. UML class diagram for the program under analysis

Figure 1. Integration of aspect mining with aspect

refactoring

Figure 3. Trace (atop) and execution relations (bottom).

When running the Apriori algorithm [2] over the traces with

support value of 0.1 and confidence value of 0.1, it generated 70

rules. The resulting set of rules demonstrates the importance of

the post-processing step, and furthermore, the need for

classification filters that can provide more information for each

rule. For example, rules that include methods like 'main' (rules 1

and 2), 'toString', 'hashCode' are not interesting for aspect mining

purposes. Thus, a filter must remove rules that include those

irrelevant methods. Redundant rules also must be removed from

the final list of rules. For example, rules 5 and 6 show the same

association between methods and have the same support and

confidence value. Hence, another filter must remove the

redundant rules.

3.2 Classification Filters
In AspectRT, the classification of the association rules is done by

two filters. The first filter, called Naming Filter, looks for

methods that have the same name and are called together whereas

the second one, called Recurrent Consequent Filter, looks for

rules that share the same consequent. The two filters are described

below.

Naming Filter: Rules like Screen.addObserver ⇒

Point.addObserver (support: 1.0, confidence:1.0) could be

indicators of a concern that is scattered over two different

methods. This is not only because they share the same name

(addObserver), but because they are present together in more than

one execution trace (high confidence and support values). This

means that both methods were called during the system execution

for more than one scenario, thus both methods could correspond

to the implementation of the same concern. This latter condition

avoids many false positive that could arise if we only consider the

syntactic nature of the method names. For this kind of filter, the

confidence value says how semantically related both methods are,

since the confidence indicates how many times the antecedent

method is executed in conjunction with the consequent method.

High confidence means a strong semantic relation between the

involved methods.

The naming filter is simply defined as follows: given an

association rule A ⇒ B, where A and B are methods, the name of

A must be equal to the name of B.

Recurrent Consequent Filter: When two or more rules share the

same consequent (for example, rules 3 and 4 of Table 1), the

immediate assumption is that the method of the consequent is

consistently invoked from the methods included in the

antecedents of the rules. The method of the consequent could be

implementing functionality that is required from various places of

the system (like a 'log' method). Therefore, the existence of such

method is an indicator of scattering symptom on the system.

The recurrent consequent filter is defined as follows: given an

association rule A ⇒ B, where A and B are methods, the

following conditions must hold:

 A and B must be in a execution relation where A is the invoker

and B is the invoked method,

 B must be included as a consequent in another association rule

C ⇒ B that also is in a execution relation where C is the

invoker and B is the invoked method.

The application of these two filters along with the redundant rules

and the irrelevant methods filters yield the rules shown in Table 1.

The concern column of the table must be completed by the

developer of the technique after manual investigation of each rule

on the source code.

4. ASPECT REFACTORING PHASE
A variety of aspect refactorings have been proposed over the last

years [7]. In this context, and in order to facilitate the evolution

process, it is desirable to have tools able to support current and

future refactorings. Our aspect refactoring approach is based on

different kinds of aspect refactorings. Specifically, we use the

following classification [9]:

 Aspect-Aware OO Refactorings: This includes those object-

oriented refactorings which were extended and adapted to be

used in the aspect-oriented paradigm. That is, this type of

refactoring ensures that the OO refactorings correctly update

the references to the AOP constructions. The Aspect-Aware

OO refactorings have been discussed in [8] [11].

 Refactorings for AOP constructs: The refactorings grouped

under this type have the property of being specifically oriented

to elements of the aspect-oriented programming. Its objective is

basically to improve the internal structure of aspects so that

they are more legible and modifiable ([11] [15] [16]).

 Refactorings of CCCs (Crosscutting concerns): The objective

of this third group is to transform the crosscutting concerns in

aspects. Regarding the elemental idea of the aspect-oriented

paradigm, these refactorings group the different concerns that

are dispersed throughout the code when modularizing them into

an aspect ([14] [15]).

The proposed approach follows an iterative process that starts

with an object-oriented code and evidences of “aspectizable”

code. This evidence is actually provided by the candidate aspects

resulting from the aspect mining approach presented in Section 3.

Each cycle of the process produces a code refactoring by adding

aspect-oriented code in AspectJ. For each piece of evidence that

suggests aspectizable code in the system, we have to evaluate the

application of one or more aspect refactorings that transform parts

of the code into an aspect.

The main steps of the refactoring approach, as shown at the

bottom of the Figure 1, are the following:

Table 1. Final set of rules for the Observer pattern example.

1. Get evidences of aspectizable code: This step recovers the

code that has been identified as aspectizable by the aspect

mining phase. That is, there is a description of OO code

attributes, methods, classes, etc. that should be refactorized to

encapsulate the crosscutting concerns into aspects. The

connection with the aspect mining process is achieved through

a XML file, which contains a list of candidate aspects with

relevant data about those aspects.

2. Analyze possible refactorings of CCCs: This step examines the

possibility of applying one refactoring of CCCs (or a group of

them) to the target code. That is, a set of viable refactorings is

selected. The reason for using CCC refactorings in this step is

because the fragments of aspectizable code identified in the

previous step contain crosscutting concerns that must be

encapsulated into an aspect.

3. Apply refactoring of CCCs: The refactorings selected

previously are executed, so that every crosscutting concern is

extracted from the object-oriented code and inserted as an

aspect. The code refactorings are applied automatically by the

AspectRT tool. Eventually, the developer’s intervention is

necessary for some decisions, such as: the choice of an aspect

in which a fragment of code will be encapsulated, the name of

a new pointcut, etc.

4. Apply OO refactorings or Aspect-Aware OO: If it is not

possible to apply any refactoring of CCCs, this step seeks to

apply object-oriented refactorings and/or aspect-aware OO

ones on the target code in order to restructure it and retry step

2. Sometimes, the identified code cannot be encapsulated

directly into an aspect, and a previous OO refactoring is

needed for the OO code to be adapted to the aspect refactoring

pattern. For example, if the aspect refactoring Move Method

from Class to Inter-type [15] is needed and the selected

method contains logic that should stay in the class, the

refactoring Extract Method [6] must be applied to the fragment

of code that contains that logic.

5. Apply refactoring for AOP constructs: At last, this step tries to

apply refactorings for AOP constructs to the aspect that has

been modified in the application of refactorings of CCCs.

Sometimes, when extracting a crosscutting concern, multiples

refactorings are applied. So, the internal structure of the aspect

that encapsulates the aspectizable code can need refactoring to

improve its legibility and modularity, remove duplicate code,

etc. For example, this situation may happen after repeatedly

applying the aspect refactoring Extract Fragment into Advice

[15]. The goal of Extract Fragment into Advice is to

encapsulate a fragment of objective code into an aspect

creating a new advice and a pointcut. Because of this

refactoring, repeated points may appear in the new aspect. If

so, the duplicate pointcuts are removed and the advice

references are updated accordingly. This way, the approach

ensures that not only the crosscutting concerns selected by the

developer are encapsulated into an aspect, but also the internal

structure of aspects is improved.

4.1 Identification of Refactorings
In order to identify the refactorings that can be applied to

aspectizable code (AR1), we are currently using a rule-based

paradigm [5]. The inference engine can identify code smells [16]

from a class or structural patterns, and then infer a set of possible

refactorings for the current context. When a set of aspect

refactorings is identified, the tool informs the developer about it.

The developer is responsible for accepting or refusing the

refactoring of this code smell. The code smells supported by our

tool have been grouped in three categories: tangling and scattering

code, abstract class and inner class.

The structural patterns serve to delimit a subset of refactorings to

be applied in an aspectizable code. These patterns use the

information of the aspectizable code of the iteration, that is, they

look whether the code is a method, a field, code inside a method,

an inner class, etc. Based on this information, the engine can

infer possible aspect refactorings to apply on the code.

The code smell and structural patterns are implemented in terms

of simple rules like:

If (the aspectizable code is a method)

then (try these possible refactorings:

Move Method from Class to Inter-type

Extract Feature into Aspect)

For example, the first rule in Table 1 presents the method

addObserver. During the iterations, the tool can identify a set of

aspect refactorings to be applied. In this case, given that the

aspectizable code is a method, it is possible to apply aspect

refactorings like Move Method from Class to Inter-type and

Extract Feature into Aspect [15]. Then, the developer must choose

one of the refactorings. The Extract Feature into Aspect

refactoring is appropriate, because a complete crosscutting

concern needs to be encapsulated. When the developer chooses

the aspect refactoring, the tool executes the changes on the source

code. In the example of addObserver method, a new aspect called

Figure 4. Wizard for applying Extract Feature Into Aspect refactoring.

ObserverPointAspect is created, and the variable observers and

this method are encapsulated in the aspect. This situation is

described in Figure 4.

Later, the process tries to execute the step 5. As the code related

to this step is the target code, no automatic AOP refactoring

identification is provided. For this reason, the analysis of

fragments of code in which the refactoring can be applied is left

to the developer. The tool assists the developer indicating which

AOP refactorings are applicable to the selected fragment of code,

and applying it automatically. In the example, such a refactoring

is not necessary because the aspect’s structure is very simple.

Finally, the process goes back to step 1, in order to analyze the

next candidate aspect.

5. DISCUSSION
This paper presents a proposal for a refactoring process that

assists the evolution of an object-oriented system into an aspect-

oriented system. We have developed a tool approach that

combines an aspect mining technique and an aspect refactoring

technique. On one hand, the aspect mining technique is based on

dynamic analysis and association rules. The main advantages of

the technique are: the automatic identification of scattering

symptoms, and the generation of expressive rules describing the

crosscutting. On the other hand, the aspect refactoring technique

relies on a rule-based paradigm. The main advantages of this

technique are: the integration of different kinds of refactorings,

and the automation of the transformations.

At this moment, the process has been tested with three small case

studies (one of them is the Observer pattern used in the paper) of

about 100 lines of code (LoC) each one. The results have

demonstrated the potentialities of the approach, reducing the

coupling between object classes and the LoC of the involved

classes (in about 40%), and increasing the modularity. However,

some problems and open issues still remain. For instance, how to

include automated identification of aspect code to be refactorized

(Step 5 of AR) and how to give assistance to the developer for

deciding which aspect refactoring should be selected (Step 2 of

AR).

Also, we have started to investigate the use of 3D visualization

techniques in AspectRT, when performing code explorations for

refactorings. The goal of this feature is that of showing more

effective visualizations to the developer about relations between

packages, classes, aspects, methods and crosscutting concerns.

This way, the developer has a high-level vision of the current

system architecture and possible evolution paths for it. The

developer can then decide which aspects should be created,

resolve encapsulation issues for these aspects, and check the

effects of possible refactorings on the system.

As future work, we will compare the proposed aspect mining

technique with others dynamic approaches, in order to improve

the existing knowledge on this kind of techniques. We also plan

to define strategies and mechanisms to support a dynamic

identification of AOP refactorings.

6. REFERENCES
[1] E.S. Abait, S.A. Vidal and C.A. Marcos. Dynamic Analysis

and Association Rules for Aspects Identification. II Latin

American Workshop on Aspect-Oriented Software Development

(LA-WASP 2008), Campinas, Brasil, 2008.

[2] R. Agrawal and R. Srikant. Fast Algorithms for Mining

Association Rules. In Readings in Database Systems (3rd Ed.),

pages 580-592, San Francisco, CA. Morgan Kaufmann Series In

Data Management Systems. Morgan Kaufmann Publishers, 1998.

[3] G. Booch, J. Rumbaugh and I. Jacobson. The Unified

Modeling Language User Guide. Addison Wesley, 1998.

[4] S. Breu and J. Krinke. Aspect Mining Using Event Traces. In

Proceedings of the 19th IEEE international Conference on

Automated Software Engineering. Automated Software

Engineering. IEEE Computer Society, 2004.

[5] S. Casas and C.A. Marcos. Exploración de Reglas de

Inferencia para Automatizar la Refactorización Aspectual. II

Latin American Workshop on Aspect-Oriented Software

Development (LA-WASP 2008), Campinas, Brasil, 2008.

[6] M. Fowler. Refactoring: Improving the Design of Existing

Code. Addison Wesley, 1999.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design

patterns - Elements of reusable object-oriented software.

Professional Computing Series. Addison Wesley, 1995.

[8] S. Hanenberg, C. Oberschulte and R. Unland. Refactoring of

aspect-oriented software. In 4th International Conf. on Object-

Oriented and Internet-based Technologies, Concepts, and

Applications for a Networked World, pages 19-35, Erfurt,

Germany, 2003.

[9] J. Hannemann. Aspect-Oriented Refactoring: Classification

and Challenges. Workshop on Linking Aspect Technology and

Evolution (LATE'06). 5th International Conference on Aspect-

Oriented Software Development (AOSD’06), Bonn, Germany,

2006.

[10] J. Hannemann and G. Kiczales. Design Pattern

Implementation in Java and AspectJ. In Proceedings of the 17th

ACM conference on Object-oriented programming, systems,

languages, and applications, pages 161-173. ACM Press, 2002.

[11] M. Iwamoto and J. Zhao. Refactoring aspect-oriented

programs. In Proc. of 4th AOSD Modeling With UML Workshop,

UML'2003, San Francisco, USA, 2003.

[12] A. Kellens and K. Mens. A survey of aspect mining tools and

techniques. Technical Report 2005-08, INGI, UCL, Belgium,

2005.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J.M. Loingtier and J. Irwin. Aspect-Oriented

Programming. In Proceedings of the 11th European Conference

on Object-Oriented Programming, pages 220-242, 1997.

[14] M. Marin, L. Moonen and A. Van Deursen. An approach to

aspect refactoring based on crosscutting concern types. In

Proceedings of the 2005 workshop on Modeling and analysis of

concerns in software, pages 1-5, St. Louis, Missouri. ACM Press,

2005.

[15] M.P. Monteiro. Catalogue of refactorings for AspectJ.

Technical Report UM-DI-GECSD-200401, Universidade do

Minho, 2004.

[16] M.P. Monteiro and J.M. Fernandes. Towards a catalog of

aspect-oriented refactorings. In Proceedings of the 4th

international conference on Aspect-oriented software

development, pages 111–122, Chicago, Illinois. ACM Press,

2005.

