![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||
![]() |
||||||||||||||||||||||||||
![]() |
||||||||||||||||||||||||||
Ferman's Cosmos Model Mathematics |
||||||||||||||||||||||||||
RADIAL COORDINATES Development Page 8 | ||||||||||||||||||||||||||
![]() |
||||||||||||||||||||||||||
In the drawing we see as a spring is built when the values of the O coordinate and C-H displacement vector are similar. If we maintain the radius R constant we will get uniform springs as for their radio or width; when we give R a function or increment we will obtain springs with different shapes. |
||||||||||||||||||||||||||
![]() |
||||||||||||||||||||||||||
In the previous drawing we see as a lot of types of geometric figures can be built, so much curvilinear as rectilinear, using increments of the radius R by means of different type of functions and numeric successions. For it, the increments of R will take place in lower values of time that the spend time in a whole rotation of the O coordinate. That is to say, while in the lathe function the time of manipulation of R is superior to time of the O coordinate rotation, in the construction of geometric figures as those that we are studying in this chapter, the function of increment of R is developed with values of time inferior than the one necessary for alone one rotation of O coordinate. ---Other form to build these figures is using the radial oscillation way that is explain in the easy explanation below linked. |
||||||||||||||||||||||||||
To see easy explanation of Radial Coordinates, click here. | ||||||||||||||||||||||||||
Home | ||||||||||||||||||||||||||
Page 9 >>> | ||||||||||||||||||||||||||