
 
 
Gen-I-Sys: a basic framework for a generalized intelligent system 

 
 

Gaurav Gupta 
Institute for the Study of Accelerating Change 

 
gandalf_gaurav@yahoo.com 

gandalf_gaurav@accelerating.org 
 
 



 
 
Abstract 
 
What may be the fundamental flaws behind early stage AI research that has led to 
widespread disappointment in terms of the achievement of AGI? What may be an 
appropriate framework to follow in order to design good AGI systems? This paper 
discusses the nature and interpretations of "intelligence" and "learning" with 
regard to the human brain and neural system. It also presents an analysis of the 
perceived differences between computer processing and that of the human brain. 
Gen-I-Sys is an independently initiated project that has been underway for 
almost two years. Gen-I-Sys utilizes the concepts of integration of sensory 
modalities, integration of technologies to cohesively process the sensory 
inputs, and the gradual abstraction of the input data over several layers where 
the highest or most abstract layers hold the assimilated information to which 
humans may most closely relate. The basis of this project is presented as a 
viable framework following which good AGI systems may be designed. Preliminary 
evidence strongly suggests that the framework is a powerful one for the purposes 
of AGI. 
 
 



 
 
1: Artificial Intelligence and certain Philosophical Issues 
 
For the purposes of AGI, the computer should be used as a tool to facilitate the 
recursive and autonomous handling and processing of vast amounts of individual 
input data, not as an embodiment of preprogrammed rules and logic constrained by 
the amount of effort put by programmers into entering the rules making up its 
basis for reasoning. That is, the computer should be viewed as an empty databank 
waiting for internal knowledge to be built by the integrated entering of 
individual sensory data.  
 
 
1.1: Humans and Computers 
 
The argument of whether truly generalized AI is at all a possibility or not is 
one that has been raging for ages, and one which is yet to be resolved. Those 
arguing for AI ultimately being within our reach believe that the biological 
brain functions on the basis of rules determined by its physical construct and 
properties, and that these rules may be simulated on a computer given sufficient 
knowledge regarding the brain. Those arguing against the possibility of AI say 
that there is more to human functioning than just the brain. They introduce as a 
separate concept the 'mind' - which they vaguely define to be some sort of a 
paranormal entity or phenomenon. According to them, this 'mind' is something 
that would take godly powers to create, being of course beyond the reach of 
human designs. The 'mind' gives us our intelligence, our emotions, lets us 
communicate easily through natural language, and enables us to be self-aware. 
Without it, they say, no machine will ever be truly intelligent. 
 
But are humans and computers indeed so disparate? Humans are said to go beyond 
logic and scientific explanation (and into the realms of emotion, spirituality, 
and feeling) in their actions. Computers indeed follow nothing but logic. Do 
humans not seem to surpass logic only because of the complexity of millions of 
individual logical 'transactions' or transformations occurring in the brain? 
Might it not be that humans, being unable to comprehend the exact series of 
logical mental events (by which behavior results) due to the sheer size and 
complex nature of the whole process, attribute the result to something 
surpassing rational scientific explanation? And might not a similarly 
overwhelming series of logical events occurring in a computer, in the form of 
electrical instructions sent to the processor (analogous to neurons firing down 
axons and synapses in the biological brain), seem equally unexplainable? One of 
the reasons for the inconsistencies between the interpretations of the actions 
of humans and computers is that the basis for a computer's functioning is known 
to an extent by most, while little about the brain's exact functioning is known. 
It could also be that relative temporal scale differences create misperceptions 
regarding the nature of biological data and information processing as compared 
to the nature of such processing in a computational device. Even modern 
computers are unable to get close to the awesome power and speed of the brain 
(for that immensely complicated sets of parallel processors would be required). 
In the functional timescale of the computer, the brain is able to achieve at 
least several million times the cycle speed of the modern computer. By the term 
‘functional timescale’ I mean the total amount of data transferred per second 
between different processing elements. While desktop computers reach speeds of 2 
Gigahertz or more via a single transmission channel connected to a single 
processor, the human brain reaches much greater speeds simply by having millions 
of neurons transmitting simultaneously. Although modern technology can easily 
outperform a single neuron’s transfer rate, the combined throughput of many 



massive arrays of neurons is incredibly difficult to achieve without having a 
similarly large number of processors working in parallel. The fact that this 
performance gap is due to the massively-parallel processing nature of the brain 
most often goes unperceived by the human consciousness. The complicated series 
of steps involved in a single human action or thought commonly appears to humans 
to be one large illogical input to output transformation. During the same time, 
a computer running software executes a number of instructions that, although 
still numbering maybe in the millions, is comprehensible to humans through the 
abstraction of sets of instructions into functional modules. Thus, humans are 
popularly known to be unbound to logic, exercising it often but not always. What 
is not considered is the possibility that our inability to fully comprehend the 
brain's functional complexity may be clouding our judgment of the logic of its 
input-output transformational processes. 
 
In many respects, humans and computers are actually quite similar. Just as 
computers are programmed with instructions to open, save, and close files as 
well as to preserve the integrity of its file system by guarding important 
system files, humans are programmed with such things like the undesirable nature 
of pain and the need to reproduce. For instance, humans try to avoid painful 
encounters such as being burnt not because of the pain in itself. Rather, "pain" 
is the term humans have allocated to those sets of values, provided by gauges of 
internal state, that indicate an undesirable environmental situation in terms of 
physical structural integrity. Humans are genetically programmed to avoid such 
situations. We 'do not want' physical discomfort because the behavior is 
programmed into us, just like a computer's file-system preservation behavior is 
programmed into it; it too executes certain safety checks and displays warnings 
whether or not the end user tells it to. Unless its programming is altered 
(analogous to modifying the neural systems of humans), it will do what its 
designed to do. For the sake of comparison, we can describe the processes of 
avoiding pain (by humans) and preserving integrity (by computers) to be very 
similar. Humans 'do not want' pain; the computer can be said to 'not want' 
logical or structural damage. For the computer, deletion of an important core-
system file by a user is its mechanical equivalent of biological pain, and sure 
enough, it will display a warning message to try to stop the user from causing 
damage.  
 
 
1.2: Processing Power Vs. Intelligence Engineering Skills & Knowledge 
 
There are reasons, for systems not performing successfully as AGI systems, which 
have nothing to do with the lack of processing power. Our computers are getting 
faster and more powerful by the day and, at this moment, it would be 
technologically feasible for a major organization to pool in funds towards the 
creation of a massively powerful parallel computer much like the human brain. 
Once we derive a method that shows us how to go about building good AGI systems, 
the necessary research and development funding will follow relatively easily. 
Our knowledge base in electronics and computer engineering is advanced enough to 
give us what we want in terms of AGI provided our technology methodology or 
Intelligence Engineering methodology is appropriate. 
 
While it is hard to say exactly what is lacking in systems that fail to perform 
at levels comparable to the biological brain, it may be possible to hazard a few 
informed guesses at some of the possible reasons for their failure. For one 
thing, few AI systems in the past have attempted to work with integrated 
multiple sensory inputs. Any processing or analysis was carried out on one 
specific type of input at a time. Once these inputs had been individually 
processed, only then was thought given to integrating the information from 



various sources in order to produce a more complete picture. Furthermore, the 
nature of the processing itself may be too predetermined and limited in terms of 
scope. It is common to encounter AI programs that apply pattern recognition 
techniques such as edge detection in order to create a meaningful internal 
representation of the visual circumstances. Similarly, many programs apply 
relevant pattern recognition techniques to auditory data in attempts to filter 
out useful information from the jumble of input data. The dependency on the 
application of these very techniques themselves, whether to visual, auditory or 
other data, may be what is restricting the potential of such systems for 
intelligence. 
 
Specific techniques have a specific range of possible inputs that can be 
processed as well as a range of specific outputs that can be arrived at, 
especially when they are applied to one type of sensory input at a time. In 
order to clarify this argument, let us consider an AI system that uses elements 
of image analysis and processing as its basis of functioning. The system accepts 
pictures of its surroundings, upon which it applies line and edge detection, 
amongst other such techniques, to the images in order to try to isolate 
meaningful elements of the picture such as squares, rectangles, lines, edges and 
so on. If the system is successful in its image analysis endeavors, then the 
result is a collection of individual shapes and object elements, the total set 
of which correspond to the instance (at which the picture was taken). However, 
what is to do with this collection? It has no other environmental information to 
which it may correlate this information. It is only able to carry out the 
assignment of the gathered and processed information to symbols (or other 
representatives) that its programmers have preprogrammed into it. That is, it is 
only able to restrictedly enrich its predefined metadictionary, which in this 
case consists of pattern to symbol mappings. In addition, it is not that this is 
enrichment in the true sense and can go on indefinitely. It assigns patterns to 
symbols that are then used to create a form of internal representation of the 
instance. Here the system hits a sort of dead end. Its programming is based 
almost entirely on the predefined symbols. There is only so much that a system 
may be able to accomplish if given a limited set of parameters from which to 
work. The system is unable to increase its basic knowledge (for example, by 
adding symbols or symbolic representations) and thus is restricted in the 
versatility of action. Besides, while the system's programmers would have known 
what to do in response to the occurrence of any particular symbol, the system 
itself has no such real world knowledge to help it formulate actions, and 
therefore is not expected to be able to make profitable use of anything it 
itself adds to its basic knowledge set. 
 
Although some advanced AI systems, such as intelligent surveillance and security 
systems, do indeed deal with complex sets of varied inputs and calculate an 
appropriate output for them, even these do not use wide enough range of sensory 
modalities as compared to humans and do not integrate generally enough the ones 
that they do use. For instance, the integration of sight and sound often 
involves preprogramming such as "IF input_image == image1 AND sound1 == food 
THEN move_forward". The system is not given a way to discover for itself that 
moving forward is a smart thing given a particular image that correlates 
temporally the sound of the word "food". If that were to be the case then system 
might have learnt that for an input instance where both the image "image1" and 
the sound "food" are present, then moving forward leads to increased energy 
levels. Although it may have taken the system a few rounds of trial and error in 
order to figure out that moving forward is the best option given image1 and 
food, it would eventually itself have generated the code "IF input_image == 
image1 AND sound1 == food THEN move_forward". 
 



 
1.3: The need for the senses 
 
Intelligence is very obviously dependent on the integration of multiple sensory 
inputs. It is unreasonable expect to hear a blind and deaf person critically 
discussing the latest movie! The lack of sight would imply the absence of the 
concepts of color, shade, hue, and depth. The lack of hearing would similarly 
imply the absence of concepts such as loudness and melody. The lack of these 
concepts would in turn result in reduced intelligence arising from the 
deprivation of many aspects of 'common sense'. Our common sense arises from our 
ability to attribute cause and effect to instances and phenomena. For example, 
we know that 'seeing' (visual sensory input) the shape and color of a flame 
means that getting too close to it could lead to feeling pain (touch sensory 
input). Thus, the correlation of different sensory inputs is the basis of 
intelligence as we know it. AI systems that do not involve the integrated use of 
multiple inputs should not be expected to exhibit any level of intelligence 
beyond the rules and logic preprogrammed into them. 
 
 
1.4: Learning and Understanding – sensory correlations 
 
Both learning and understanding are phenomena that involve processes of 
correlating different sensory inputs [see 6]. It does not seem possible that a 
system processing in isolation any individual sensory input (whether auditory, 
visual or other) will be able to learn, understand and evaluate much from its 
environment. The human experience of life is arguably a series of linkages and 
correlations between input data at discrete instances. Knowledge exists through 
association. To 'know' what a dog is, for instance, is to have an internal 
correlation between the sound of the word 'dog', the image of a dog (an 
approximate human brain equivalent of a pixel pattern of certain colors), and 
maybe the sounds and images associated with a dog's barking or nature of 
movement. Any isolated sensory pattern would have no meaning. Consider a strange 
sounding and completely unfamiliar word. Unless associated with another sensory 
input, the word would make no sense whatsoever (other than just to be a strange 
sounding word). With no other information about it, it could potentially be a 
noun, a verb, an adjective, or some other concept. To understand what it means, 
there would have to be a corresponding set of visual or other sensory data. If 
associated with visuals of movement, it would imply an action. If associated 
with an object, it would imply a noun. Even explaining its meaning with the use 
of another word would in the end cause information associations to form. In this 
case, the corresponding other sensory data for the word being used for 
explanation would be assigned to the new word. If considering understanding or 
learning as the formation of new information correlations, then the association 
of different types of inputs is something that cannot be escaped. Developments 
in Embedded Sensor Networks (ESNs) show high dependency on multi-modal sensor 
fusion [13] for better information mapping. 
 
 
1.5: Reasoning 
 
The term "reasoning" can have many interpretations. In some cases, it involves 
the identification of links or relationships between two objects or phenomena. 
If we see a man or a woman walking the same dog every evening in the local park 
then we assume, or reason, that the man/woman is the owner/guardian of the dog. 
In other cases, reasoning involves the logical linking of sequences of actions 
towards the formulation of plans - such as planning to use a window as an escape 
route in the case of a fire. Thus, we have associative reasoning (linking, via 



causal or non-causal relationships, static images, entities, etc.) and 
deliberate reasoning (forming logical sequences of actions that will lead from a 
given state to a goal state – or planning). Deliberate reasoning almost always 
involves associative reasoning. In the second instance given above, the 
development of the reasoning of using the window as an escape route is preceded 
by the associative reasoning which associates fire with burns and bodily injury 
as well as by another associative reasoning which associates the window with a 
suitable escape path. Associative reasoning is thus the foundation for 
successful deliberate reasoning because (with reference to the example) 
associating a solid wall with an exit would be disastrous. Both (associative and 
deliberate) however involve links or relationships between somewhat abstracted 
concepts, ideas such as the objects: "window" and "fire", and the actions: 
"escape", and "getting burnt". Therefore, in the case of an AGIS, reasoning as a 
process cannot work on inputs taken directly from the environment, but must 
utilize refined information fed out from more advanced levels that carry out the 
information abstraction from raw input data. 
 
 
1.6: The basis for the computer's functioning and use that may be getting in the 
way of machine intelligence 
 
The authors of the book 'Mind over Machine' (Dreyfus, Dreyfus) [4] stress the 
importance of intuition in intelligence. They argue that computers that are used 
purely as traditional logic machines may never be able to demonstrate 
intelligence as we know it. This is something that has probably been learnt the 
hard way by many developers of expert systems who have found that it is near 
impossible to program in enough rules for a system to react and adapt flexibly 
to a changing environment. The world is too broad and diverse. Unless a system 
has provisions to assimilate any situation, not just those foreseen by its 
developers, and to update and enrich its basic knowledge set unfettered by 
programmed symbolic definition sets, it will never be truly intelligent. There 
are ways for a system to be able to stretch the bounds of such predefined data 
dictionaries, but this is finite. If run for long enough, a time will come when 
a particular situation will not match anything the system has been given to 
know, and there it will get stuck. Hence, if machines are ever to be truly 
intelligent, they cannot have strictly preprogrammed instruction sets.  
 
However, certain neuronal reactions to inputs are indeed in a way preprogrammed. 
It is known that, in the brain, certain neurons fire given certain 
circumstances. The physics, biology and chemistry of the system (the brain) 
decide the behavior of the neurons. The complex interactions between neurons, 
which in essence function with the strictest logic (considering the physical 
dynamics of the system), in turn produce the complex reactionary behavior of the 
brain. Thus, the programming of the brain exists at the micro level. Although 
reactions to entire real world instances and phenomena are not predefined, the 
reactions of neurons to individual bits of sensory input data indeed are. The 
combined characteristics of micro level behavioral predefinition and the complex 
interaction of those behaviors within a super system gives the brain the 
necessary versatility to deal with almost any kind of input data in some 
coherent manner.  
 
The brain deals with the full range of input values for the senses and these 
probably number in the billions if not more. The study of artificial 
intelligence has so far largely attempted to program in reactions to 
permutations and combinations of a (still massive) subset of those billions of 
pieces of information. A preprogrammed description of an object is a combination 
of several bits of individual data. A description of another similar object is a 



different permutation of the same combination of individual data. An entirely 
different object requires a combination of almost entirely different data. If 
trying to account for most or all of the possible permutations and combinations 
of the full range of sensory values, we end up with figures the size of which 
cannot even be accommodated in the memory of the world's most expensive and most 
advanced computer. It is no wonder then that developers of expert systems, or 
indeed of any type of AI system using a predefined knowledge base, have failed 
miserably in their efforts at achieving generalized artificial intelligence. 
Maybe the predefinition of responses to compound instances or circumstances 
should not be attempted; instead, we might attempt to deal with the autonomous 
generation of the rules themselves that govern the outputs with respect to the 
input data and experience. A good approach indicated for synthesizing an AGIS 
appears to be the design of an engine which is intended for recursive self 
reprogramming, not in terms of altering its base commands but in the sense of 
creating new "functions" or "operations" out of the existing library of base 
commands. Efficient engineering of such a machine would involve the use of a 
concise but powerful library of base commands, each of the components of which 
lends itself naturally to the process of recombination with others for the 
synthesis of newer and complicated operation strings. The Gen-I-Sys engine, 
discussed later, in fact does this in a subtle way. 
 
 



 
 
2: The likely nature and structure of a good AGI System and the Gen-I-Sys 
machine 
 
Before starting to design or build an AGI system, we must build up a description 
of the system's intended capabilities (functional requirements). In all 
engineering applications, the intended capabilities lie in the purpose of the 
system to be constructed. The problem here is the fact that we want the system 
to demonstrate general intelligence, a term that has produced much disagreement 
and argument amongst concerned researchers. What hope then have we to establish 
clearly the requirements of the system? 
 
 
2.1: The intended capabilities of a good AGI system 
 
Let us approach this issue from a less abstract perspective than that taken by 
most earlier researchers. Instead of trying to lay down constituents or 
ingredients of general intelligence itself, let us identify the broad categories 
of actions or activities of which humans are capable. Then we may initiate the 
attempt to create these capabilities in our AGI system. 
 
Humans can (and thus the AGI system should be able to)*: 
1. Move body parts about physically 
2. Hear 
3. See 
4. Smell 
5. Feel (here I refer to the feel of touch and not emotional feelings) 
6. Vocalize or Speak (in the sense of making noises via the vocal chords and not 
linguistic speech) 
 
This much at least is what we can firmly establish by simply observing the 
external interface that humans present to the world. If we consider the entire 
human system to be a black box, then these characteristics we may conclude to be 
the basic constituents of human behavior. The attributes of "understanding", 
"learning", and "emotion" are not considered here, as they are internal to the 
human system. These do not constitute behavior - they contribute to it. Taking 
behavior to be "a regularity observed in the interaction dynamics between the 
characteristics and processes of a system and the characteristics and processes 
of an environment" (Luc Steels quoted by Aron Malkine [1]), the behavioral 
constitutive elements correspond to what is being done while the behavioral 
contributive elements correspond to how the behavior arises. 
 
The "internally coded, inheritable information" [7], or Genotype, carried by all 
living organisms, holds the critical instructions that are used and interpreted 
by the cellular machinery to produce the "outward, physical manifestation", or 
Phenotype of the organism. 
 
The set of behavioral constitutive elements for a system then clearly comprises 
its basic phenotype. A basic phenotype may be differentiated from an advanced 
phenotype in the sense that, while the basic phenotype defines the simplest 
actions available to the system, the advanced phenotype defines the behavioral 
responses of the system that are produced, via complex internal processes, 
through its interaction with its environment. Thus movement, hearing, sight, 
smell, feel and vocalization, all correspond to the basic phenotype while 
characteristics such as recognition of objects and faces, display of emotion, 
and learnt skills (e.g. walking, talking, etc.) correspond to the advanced 



phenotype. In this context, I take the genotype to be the processes that control 
and decide learning, understanding and reacting with respect to the advanced 
phenotype, with the genotype accepting raw data inputs via elements of the basic 
phenotype and expressing itself to the environment via the same. That is, the 
genotype describes the rules that govern the behavioral reaction of a system to 
its environment.  
 
In the list given before*, we have established the behavioral constitutive 
elements (i.e. the basic phenotype) for our intended AGI system. Extrapolation 
of the basic phenotype with regard to certain facts about general human behavior 
would help us to draw up a (perhaps incomplete) description of the behavioral 
contributive elements (i.e. advanced phenotype) that the AGIS would have to 
demonstrate. Then we have to figure out a suitable equivalent representing 
something of a genotype. 
 
In order to arrive at the required advanced phenotype for the AGIS let us again 
approach via broad categories of human abilities. 
Humans can (and thus the AGI system should be able to): 
1.Recognize objects and faces 
2.Understand spoken language 
3.Generate linguistic speech 
4.Modulate efforts and display moods according to some internal metrics of state 
or well-being 
 
To correctly arrive at the genotype for the AGIS, we must first ascertain the 
nature of the correlation between the input elements of the basic phenotype, the 
elements of the advanced phenotype, and the output elements of the basic 
phenotype. 
 
Input elements of the basic phenotype:  
1.Hearing  
2.Sight  
3.Smell  
4.Feel 
 
Elements of the advanced phenotype:  
1.Recognition of objects and faces (broad pattern recognition)  
2.Understanding spoken language (speech recognition) 
3.Generation of linguistic speech (speech synthesis) 
4.Modulation of efforts and the display of moods according to some internal 
metrics of state or well-being (awareness of internal state and reflective 
behavior)  
 
Output elements of the basic phenotype:  
1.Physical Movement of system parts  
2.Vocalization (generation of sound) 
 
Note that the six elements comprising the basic phenotype are split up between 
the two categories of input elements and output elements. The correlations shown 
in the diagram below represent the conceptual structural requirements for the 
genotype of the AGIS. 
 



 
Diagram 1 

 
 
i >> Inputs to the system from the environment 
1 >> Input elements of the basic phenotype must be registered as images, sounds 

other sensory data in data files and are sent into the genotype area  and 
2 >> The genotype area must filter or do some preliminary processing of the raw 
input data and then send the filtered information to the advanced phenotype area  
3 >> The advanced phenotype area must extract abstract data from the information 
and, based on certain preprogrammed guidelines, send a high-level description of 
the actions now required to be executed by the system to the genotype area  
4 >> The genotype area must translate the high-level information into low-level 
output data and then send the appropriate instructions to the output elements of 
the basic phenotype, which in turn must trigger the appropriate physical events 
o >> Outputs from the system to the environment 
 
Under this framework, the system has the capacity to take in input data, process 
it, and output either movement or sounds. However, what is to be the nature of 
the processing that will contextually enable the system to respond to speech 
with speech, learn simple and complex actions, and build up internal maps of 
physical space for navigation? That is, what is to be the composition and 
structure of the genotype of the AGIS? 
 
While we may not know exactly what comprises intelligence, knowledge or 
understanding, we do know of three basic ways by which a human being possesses 
these. Knowledge is clearly the basis of both intelligence and understanding, 
and humans either 1. have knowledge already built into their systems, or 2. 
discover the knowledge by imitating actions of others, or 3. discover the 
knowledge by trying out random actions. Amongst the several types of learning 
that are described in popular taxonomies [10], the two categories of learning 
that shall be considered relevant here are 1) inductive learning and learning 
from analogy, and 2) learning by experimentation and discovery. 
 
How much knowledge is prewired into us and in what way are questions to which we 
have few answers given the current developmental stage of the sciences. Thus, 
the options left to us for the design of the AGIS are to enable the system to 
learn by imitating and to enable the system to learn by executing random actions 
and then checking the outcome of those actions. This means that we must program 
into our AGIS the means of imitating observed inputs (actions and sounds) in 
order for it to check the results of imitating particular inputs (in terms of 
system power levels or similar metrics). In addition, we must program into our 
AGIS the means of executing random actions and again checking relevant metrics 
to determine the usefulness of that action. It is required that these checks of 



internal indicators of well-being return contextual results. That is, if the 
system moves backwards (whether by copying or by initiating random actions) when 
there is a red box in its field of vision and this produces increased levels of 
energy, then both the visual data as well as the action must be remembered. 
Storing both pieces of information as a record would allow the system to 
autonomously move back again the next time it sees a red box. Simply searching 
through its records of past successful actions in the context of a red box 
visual would lead it to the right (desirable) action. It is also a requirement 
that the system be able to overlap outputs that are separately identified as 
being desirable by its internal processes. For instance, given a particular 
situation, one search process might return the action of moving forward and 
another search process might return another action of generating a particular 
sound. In this case, the system must initiate both as soon as they are 
identified. Therefore, the effect may be such that the system moves forward and 
'says' something at the same time. 
 
The integration of multiple sensory inputs and the gradual abstraction of the 
input data over several processing layers are also important requirements. See 
the "Learning and Understanding – sensory correlations" section presented 
earlier for a discussion of the importance of the integration of multiple 
sensory modalities. Regarding data abstraction, no system that even pretends to 
be generally intelligent may operate exclusively on its raw input data in a 
single step transformational process in order to get screened outputs. Our 
system here must thus have several layers or levels that involve themselves in 
various orders of data abstraction (in synchronicity with Paul Bush 1996 [3]). 
 
This simple model of incorporating 'learning' into the AGIS is more versatile 
than it first seems. The AGIS is able to do a lot more than just learn to 
respond to simple sensory data with simple physical outputs, as will be 
described in a later section. 
 
 
2.2: Design features required for the achievement of the intended capabilities 
of a good AGI system (AGIS) as employed in the Gen-I-Sys machine 
 
The requirements established in the previous section are simple enough on their 
own, but may be problematic where the exact means of implementation are unclear. 
The design of the system as discussed here provides a description of the 
implementation. 
 
The genotype is represented and implemented by a Primary Control Module (PCM). 
The input elements of the basic genotype are represented and implemented by an 
Input Control Module (ICM) while the output elements of the basic genotype are 
represented and implemented by an Output Control Module (OCM). The PCM accepts 
raw data files from the ICM carries out some preliminary processing on them. 
This data is sent as Input Blocks (IBs) to the Advanced Analysis Module (AAM), 
which represents and implements the elements of the advanced phenotype. The AAM 
uses preprogrammed guidelines to store categorically/hierarchically the IBs and 
to derive system outputs as high-level descriptions in the form of Output Blocks 
(OBs) that are then sent back to the PCM. The PCM translates the OBs into raw 
output data files and sends them to the OCM. The OCM converts these output data 
files into the appropriate signals and sends them to the concerned 
software/hardware, thus making the system move, generate sound, etc. All of 
these modules are intended to operate in parallel - the sequential interaction 
between them, as just described, identifies the prerequisites for a module 
before it can carry out any new useful operation. 
 



It has been established that the inputs and outputs all correspond to 
combinations of the basic phenotype elements. That is, if the system registers a 
visual image of a red ball then it is seeing it; if the system registers a sonic 
waveform corresponding to the word "danger" then it is hearing the word; etc. If 
the system's central control sends electronic signals to say wheels, making them 
turn clockwise, then it is moving forward; if the system's central control sends 
electronic signals to a sound synthesizer device then it is (perhaps 
nonsensically) talking. 
 
The system has several sensory inputs (clearly the more there are the more 
'intelligent' the system will be). The processing of those inputs is carried out 
by an algorithm. The algorithm will run continuously, taking in data from the 
physical input hardware, assimilating it, and, when necessary, passing data to 
the physical output hardware. Some assimilated data will be chosen for grouping 
and storage in memory as objects or as abstracted concepts.  
 
The system has several layers or levels that involve themselves in various 
orders of data abstraction. The lowest level (Level 0), takes in all available 
sensory input data directly from its environment through its hardware, as well 
as directly from its internal sensors (of internal state). Here the data is 
processed into some form of useful abstracted information which is passed on to 
the next level, Level 1, as objects (sets of input data of a particular nature). 
Level 1 then takes this information, processes it further to get information of 
further abstracted nature, and passes it on to Level 2 as concepts (a concept 
being a collection of objects connected by relationships that are defined by the 
characteristics of variation or stability of the external environment). Ideally 
there would be a significant number of levels, at each of which screened and 
processed information would enable the formation of more concepts of varying 
levels of abstraction. Abstraction here would mean the definition of concepts in 
terms of objects or in terms of other concepts as determined by the system in 
other (lower) levels. In principle, this type of architecture would allow the 
system to extract simple information sets from the environment, and then to use 
those to form more complex or abstracted information sets. 
 
 
Inputs to each Level:  
 
The model functions with respect to discrete environmental instances. Depending 
on the hardware sampling rates the system will accept environmental data a 
certain number of times every second, each set of instantial data (an instance) 
being somewhat similar to a single frame in a movie. There would however be 
different sampling rates for different sensory inputs. While video could be 
sampled at 20 frames per second, audio would have to be sampled at a much higher 
rate, say 10kHz or 10,000 sample slices per second. This would mean that for 
each frame of video captured, 500 audio samples would have to be buffered. Thus, 
where one instance of visual data would correspond to one frame, one instance of 
audio (corresponding to that visual instance) would comprise 500 audio samples. 
 
Level 0: At the top level, or level 0, the system takes in input data directly 
from its sensor hardware (both internal and external). The processing carried 
out here identifies those elements of the input data that correspond to some 
variance or invariance (from the last set of input data). Sets of the data 
elements identified in this manner are passed on as “property sets” to the next 
level (level 1) for storage, with the property sets of all the input types 
grouped together to represent one specific object (which does not necessarily 
need to correspond to an object in the real world). Each object will consist of 
property sets that are simply the categorization and clubbing together of the 



data from the full range of different inputs available (e.g. visual, audio, 
etc.). 
 
If any particular property set (or even a specific object) is encountered more 
than once, their existing definition will not be overwritten with the new data, 
but a new record will simply be added on. This should allow the system to have 
multiple views on any situation, thus increasing its diversity.  
 
Level 1: The inputs to this level are the objects that are passed to it by level 
0. Whenever a property set persists consecutively over more than one instance, 
that particular property set along with all other property sets occurring over 
those instances will be registered in order of occurrence and sent to the next 
level (level 2) for storage as concepts. 
 
Level 2: This level will primarily hold the individual concepts. Those concepts 
that occur simultaneously over one or more instances will be linked with each 
other. Combinations of linked concepts can be passed to the next level (level 3) 
to form higher order concepts (hyper-concepts). 
 
 
The nature of data storage:  
 
In order for the system to maintain maximum flexibility, any input data that is 
to be stored must be converted into a relative representation form before 
storage. This means that it is the pattern of the data that is mostly stored 
rather than the absolute data itself. For visual data, this would be the set of 
pixel information taken relative (relative position and color) to the first 
(which may be assigned to be the left topmost pixel), while for auditory data 
the frequency ratios relative to the first could be taken (as human hearing 
operates on the basis of logarithmic intervals). 
 
 
The nature of information processing in the model:  
 
In order to explain how the outputs are expected to result, first must come an 
explanation of how the information that is to reside at the various levels is 
determined by the system.  
 
At level 0, elements of the input data in the present instance that are changed 
from the last instance as well as those that remain the same are determined. 
 
An Attention Focusing Module (AFM) would be required as the whole range of input 
data available to the system would be too much for it to assimilate (although it 
may need to do something like this at times). The torrent of data would delay 
its processing significantly and would also probably exhaust its total memory 
capacity quite rapidly. That is, of course, provided that the system is able to 
make sense of the data. Given such a huge jumble of data, the system would find 
it almost impossible to extract any information of sense. The Attention Focusing 
Module would allow it to identify anything of importance. The module would also 
ensure the selectivity of data to be processed.  
 
The Attention Focusing Module: This module identifies those elements of specific 
sensory inputs that the system should concentrate on out of the massive amount 
of input data. 
 
 
An explanation of the processing and storage with an example:  



 
Suppose that three images are sequentially presented for assimilation to the 
system. The first image is completely black, the second has a red square 
somewhere to the right, and the third has the red square somewhere to the left. 
Suppose also that the sound "square" is produced by some external entity during 
the time in which the first image is presented and then substituted for the 
second, and that the sound "move" is produced during the time in which the 
second image is presented and then substituted for the third.  
 
Having nothing to compare against, the Attention Focusing Module sets the focus 
to nothing and the system ignores the first image, simply storing in full the 
complete set sensory input values corresponding to that instance. In the second 
image, the Module identifies those pixels belonging to the red square as points 
of focus because these pixels are changed in value from the previous instance. 
The system then saves absolute information regarding those pixels as a property 
set. It also saves another property set - this one just comprising information 
about the shape that the identified pixels make up (relative position). That is, 
only the positions (relative to the first red pixel) of the red pixels will be 
stored.  
 
The Attention Focusing Module also enables the system to track an object that 
was present in the previous instance by searching for and adding the pixel 
positions and shape of that object to the set of input data elements to be 
focused on. This is especially useful when an object persists over several 
instances but does not move at all. Without this “persistence” feature the 
object would have been completely ignored because over the static instances 
there would have been no pixel changes of the color of the object (assuming 
there are no other unrelated pixel changes of the same color). Here however, 
there were no objects detected in the first instance and therefore no additional 
focus is created for the second. 
 
Other property sets arrived at will be with respect to those pixels that are not 
declared to be the focus of attention, although the processing of these will 
have a lower priority than the processing of those property sets derived from 
the focus of attention. Here, these will describe the black background. In fact, 
in all cases those data from input sensors that are not concentrated upon will 
be treated as the background (although even the background will have property 
sets and may contain objects). The system will also arrive at property sets 
corresponding to the auditory data of the sounds "square" and "move". For as 
many different sensory inputs there are, the Attention Focusing Module will do 
its job and direct the system to produce property sets. 
 
When the third image is presented to the system, certain property sets that 
already exist in the system are encountered. Records that describe any 
transformation between the two occurrences of the repeated property set are 
newly created and are saved as "concepts". These are apart from the standard 
property set determination processes that are described before.  
 
 
The data manipulation involved in the presented example: 
 
We take the images to be a 6x6 ones, with all pixels in the first image set to 
the color black.  
 
At Instance 1 >> The system is “born”. The visual is blank and the audio buffer 
is empty. None of the “video instance 1” records V1.x or the “audio instance 1” 



records A1.x exist (where x is a whole number representing the number of unique 
property sets registered for instance ‘1’).   
 
At Instance 2 >>  
 
The second image (Figure 2.1) and the sound “square” (Figure 2.2) are presented 
to the system as shown in Diagram 2 below.  
 

 

 

 
 

Diagram 2: Figure 2.1 – Visual Instance 2       Figure 2.2 – Audio Buffer for Instance 2    
 
(I have used just numbers, not any specific units, to represent the magnitudes of the frequency on 

the y scale and the time on the x scale) 
 
 
The Attention Focusing Module sets the focus on those pixels comprising both the 
red square as well as the black background, as pixel changes from the last image 
involve both the colors red and black (some pixels that were black before are 
red now). Since the entire screen is made up of either black or red pixels, the 
Module directs that the colors be focused on separately. This allows the square 
to be distinguished from the background. The visual property sets thus 
identified by level 0 will be:  
 
V2.1 The exact square: {(16,4), (17,4), (22,4), (23,4)}. If the number '4' 
represents the color red and if the first pixel, relative to which all other 
pixels are assimilated, is the left topmost pixel of the video display, then 
this is the resulting property set that is saved. The first number in every set 
of round braces indicates the pixel position while the second indicates the 
pixel color. The pixels are numbered sequentially row-by-row. Thus the first 
contains the pixels 1 through 6, the second row contains the pixels 7 through 
12, and so on. In the diagram above, the first red pixel appears at position 16, 
followed by the ones at positions 17, 22, and 23.  
 
V2.2 The shape of the square: {(0, 1, 6, 7)}. Here, just the relative positions 
are considered, color being immaterial to the shape. Relative position = 
Absolute position - Absolute position of first red pixel. Thus, relative to the 
first one, the red pixel positions are (16-16=) "0", (17-16=) "1", (22-16=) "6", 
and (23-16=) "7". 
 
V2.3 The exact background: {(1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), 
(8,0), (9,0), (10,0), (11,0), (12,0), (13,0), (14,0), (15,0), (18,0), (19,0), 
(20,0), (21,0), (24,0), (25,0), (26,0), (27,0), (28,0), (29,0), (30,0), (31,0), 



(32,0), (33,0), (34,0), (35,0), (36,0)}. The number 0 represents the color 
black. The pixels 16,17, 22, and 23 are taken by the red square. 
 
V2.4 The shape of the background: {(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)}. 
The first pixel in the background is pixel number '1' and all the pixels 
(including the first) are taken relative to it such as: (1-1=) "0", (2-1=) "1" 
... (35-1=) "34", and (36-1=) "35". 
 
 
The audio property sets identified by level 0 will be:  
 
(The check for a sound already encountered would fail as these sounds are being 
presented to the system for the first time).  
 
A2.1 The exact sound "square": {(3.5, 2.5, 2.1, 2.0, 1.8)}. These are the 
frequency values corresponding to the end of the time intervals 1, 2, 3, 4, and 
5, as shown. 
 
A2.2 The pattern of the sound "square": {(1, 1.4, 1.67, 1.75, 1.94)}. Since 
humans analyze sounds logarithmically, it seems better to take the relative 
ratios in the case of audio. Assuming the first frequency value, against which 
all others are to be compared, is the one occurring first with respect to time, 
this is the resulting property set that is saved. The absolute frequency values 
at the end of the time intervals 1, 2, 3, 4, and 5 are 3.5, 2.5, 2.1, 2.0, and 
1.8 respectively. Relative to the first, the frequency ratios would thus be (3.5 
/ 3.5 =) 1, (3.5 / 2.5 =) 1.4, (3.5 / 2.1 =) 1.67, (3.5 / 2.0 =) 1.75, and (3.5 
/ 1.8 =) 1.94. 
 
 
At Instance 3 >> 
 
The third image (Figure 3.1) and the sound “move” (Figure 3.2) are presented to 
the system as shown in the Diagram 3 below.  
 

  
 

Diagram 3: Figure 3.1 – Visual Instance 3       Figure 3.2 – Audio Buffer for Instance 3    
 
(I have used just numbers, not any specific units, to represent the magnitudes of the frequency on 

the y scale and the time on the x scale) 
 
 
 



Attention is still focused both on the red square as well as on the black 
background due to the color changes caused by the moving square covering up some 
black with red and presenting some new red over black. The Attention Focusing 
Module also specifies separately that the pixels comprising any object with the 
same shape and color as the square encountered before needs to be focused on, 
however it finds that these are already in focus. This will give the following 
visual property sets: 
 
V3.1 The exact square: {(14,4), (15,4), (20,4), (21,4)}. 
 
V3.2 The shape of the square: {(0, 1, 6, 7)}. This is the same as before. 
Invariance in shape could be used for the identification of static relative 
orientation in terms of cyclical rotation in unrestricted dimensions (x, y, z, 
... planes) as well as distance (moving closer would cause the image to seem 
enlarged). 
 
V3.3 The exact background: {(1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), 
(8,0), (9,0), (10,0), (11,0), (12,0), (13,0), (16,0), (17,0), (18,0), (19,0), 
(22,0), (23,0), (24,0), (25,0), (26,0), (27,0), (28,0), (29,0), (30,0), (31,0), 
(32,0), (33,0), (34,0), (35,0), (36,0)}  
 
V3.4 The shape of the background: {(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)}.  
 
 
The audio property sets identified by level 0 will be: 
 
A3.1 The exact sound "move": {(1.5, 2.2, 1.7, 1.5, 3.3, 2.0)}. Here six 
frequency values have been taken as opposed to five for the last sound. This is 
because is possible that a sound will not consume all available buffer space 
corresponding to a particular visual instance, and after the sound ends there is 
conceivably silence thereafter until the end of that buffered stream. 
Considering this example, the sound “square” as shown in the diagram is seen to 
take up 5 out of 6 units of buffer space whereas “move” takes up all 6.  
 
A3.2 The pattern of the sound move: {(1, 0.68, 0.88, 1, 0.45, 0.75)}. Relative 
to the first, the frequency ratios are (1.5 / 1.5 =) 1, (1.5 / 2.2 =) 0.68, (1.5 
/ 1.7 =) 0.88, (1.5 / 1.5 =) 1, (1.5 / 3.3 =) 0.45, and (1.5 / 2.0 =) 0.75.  
 
 
 
 
2.3: Objects and Concepts in the Gen-I-Sys machine 
 
Property sets resulting from different sensory inputs are combined to form 
‘objects’ that are then passed on to level 1. Level 1 processes the 
relationships existing between these objects (if any) and sends these ‘concepts’ 
on to level 2. Similarly, advanced implementations of this AGIS could involve 
the extraction of relationships between the concepts themselves to produce 
‘hyper-concepts’ that are more abstract. 
 
Objects 
 
An object consists of a visual property set separated by a field separator 
("||", for instance) from the auditory, olfactory, etc. property sets associated 
with that visual set. Several objects may result from different combinations of 
the visual, auditory, etc. property sets discovered in an instance.  



 
With regard to the example that was being discussed, the objects formed here 
are:  
 
For Instance 2 -  
 
O2.1 = {V2.1 || A2.1, A2.2} 
     = {(16,4), (17,4), (22,4), (23,4) || (3.5, 2.5, 2.1, 2.0, 1.8), (1, 1.4,            
       1.67, 1.75, 1.94)}  
 
O2.2 = {V2.2 || A2.1, A2.2} 
     = {(0, 1, 6, 7) || (3.5, 2.5, 2.1, 2.0, 1.8), (1, 1.4, 1.67, 1.75, 1.94)} 
 
O2.3 = {V2.3 || A2.1, A2.2} 
     = {(1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (9,0), (10,0),   
       (11,0), (12,0), (13,0), (14,0), (15,0), (18,0), (19,0), (20,0), (21,0),  
       (24,0), (25,0), (26,0), (27,0), (28,0), (29,0), (30,0), (31,0), (32,0),   
       (33,0), (34,0), (35,0), (36,0) || (3.5, 2.5, 2.1, 2.0, 1.8), (1, 1.4,   
       1.67, 1.75, 1.94)} 
 
O2.4 = {V2.4 || A2.1, A2.2} 
     = {(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21,   
       24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35) || (3.5, 2.5, 2.1, 2.0,  
       1.8), (1, 1.4, 1.67, 1.75, 1.94)} 
 
 
For Instance 3 - 
 
O3.1 = {V3.1 || A3.1, A3.2} 
     = {(14,4), (15,4), (20,4), (21,4) || (1.5, 2.2, 1.7, 1.5, 3.3, 2.0), (1,  
       0.68, 0.88, 1, 0.45, 0.75)} 
 
O3.2 = {V3.2 || A3.1, A3.2} 
     = {(0, 1, 6, 7) ||  (1.5, 2.2, 1.7, 1.5, 3.3, 2.0), (1, 0.68, 0.88, 1,   
       0.45, 0.75)} 
 
Since the visual property set for O3.2 matches that for O2.2, the record for 
O2.2 is updated to include all other sensory data associated with V2.2 and is 
renamed to O3.2, with O2.2 itself being deleted.  
 
O3.3 = {V3.3 || A3.1, A3.2} 
     = {(1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (9,0), (10,0),   
       (11,0), (12,0), (13,0), (16,0), (17,0), (18,0), (19,0), (22,0), (23,0),  
       (24,0), (25,0), (26,0), (27,0), (28,0), (29,0), (30,0), (31,0), (32,0),  
       (33,0), (34,0), (35,0), (36,0) || (1.5, 2.2, 1.7, 1.5, 3.3, 2.0), (1,  
       0.68, 0.88, 1, 0.45, 0.75)} 
 
O3.4 = {V3.4 || A3.1, A3.2} 
     = {(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 22, 23,     
       24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35) || (1.5, 2.2, 1.7, 1.5,  
       3.3, 2.0), (1, 0.68, 0.88, 1, 0.45, 0.75)}  
 
This specific representation scheme places the other sensory data with respect 
to visual data. That is, the object format becomes: 
Visual Object > sounds, sound patterns, other sensory data (all that are ever 
associated with that visual object).  



Visual Shape > sounds, sound patterns, other sensory data (all that are ever 
associated with that visual shape).  
 
This is because in this example and in most learning situations as we know them, 
it is the visual data that recurs the most. Should a sound or a sound pattern 
ever recur, the respective object formats would be drawn up: 
Sound > visual objects, visual shapes, other sensory data (all that are ever 
associated with that sound).  
Sound Pattern > visual objects, visual shapes, other sensory data (all that are 
ever associated with that sound pattern). 
 
At level 1, therefore, the system has a growing collection of objects, each of 
which is made up of grouped sensory data or property sets. Any specific sensory 
data or sensory data pattern picked up by the system is thus linked to all other 
data or patterns encountered at the same instant. From the data collected as per 
the example being discussed, the system can technically infer the following 
(after the three instances are presented to it):  
1. The sound or sound pattern of “square” could refer to the red square, the 
shape of the square, the black background, and the shape of the background. 
2. The sound or sound pattern of “move” could refer to the red square, the shape 
of the square, the black background, and the shape of the background. 
 
Only some of these inferences can actually be correct in the real world, as the 
system will learn from repeated associations. As more and more sounds are 
associated with the image or shape of the red square, those associations that 
occur again and again will increase in strength of correlation to the square, 
and these will probably be sounds like "red", "square", etc. In memory, there 
must be an index to identify this. Similarly, the system will learn that the 
black background is not referenced by either the sounds "square" or "move", 
other sounds such as "black" will hold much stronger correlations to it than any 
other irrelevant sounds. Additionally, the processing taking place would involve 
the identification of similarities and differences in property sets that occur 
consecutively on more than one instance. These similarities and differences form 
the basis of “concepts”. 
 
 
Concepts 
 
Concepts represent relationships between instances in terms of the introduction, 
disappearance, persistence, physical translation, growth, shrinkage, etc. of 
objects. In fact, many types of changes involving objects can be identified with 
the use of concepts. The identification of some basic changes must be 
preprogrammed into the AGIS before it is able to interrelate elements of this 
basic set for the derivation and identification of more complex object 
transformations or “hyper-concepts”. 
 
In the example being discussed, the square is introduced into the system’s 
visual field after which the square is displaced leftwards (and, if more 
instances had been considered, might have been made to continue leftwards until 
it disappeared from the screen). Some of the basic changes that need to be 
specified to the AGIS are ‘introduction’, ‘physical translation’ (whether 
horizontal or vertical, leftwards or rightwards), and ‘disappearance’. When the 
square suddenly appears a new object is registered by the AGIS. The various 
property sets associated with the new object may be associated with a predefined 
concept of “introduction”. It is initially difficult to see how this could be of 
any practical use (a characteristic shared by several aspects of the Gen-I-Sys 
engine). If we consider those images, ideas, and thoughts that are brought to 



our own minds upon hearing or reading the word “introduction” then we may see 
how the categorization of property sets into different concepts may help. 
Usually this word would bring up in our minds any or all of the following: 
“new”, “starting the use of”, “beginning”, “first social meeting”, 
“incorporating within”, etc. Now consider this: the Gen-I-Sys engine functions 
primarily by first generating an Action Sequence that takes it from its current 
state to a goal state and then “executing” everything that can be executed in 
that Action Sequence (see the later section ‘How outputs are produced in the 
Gen-I-Sys machine’). Thus, if any of these thoughts or ideas were verbally 
pronounced during the introduction of the square then the property sets for 
these sounds would be correlated to the concept of introduction. If the 
introduction of an object were to fall in one of the system’s Action Paths (just 
like the introduction of a feeding bottle would fall in a hungry baby’s action 
path) then upon retracing the path the system would “execute” or produce the 
waveforms for the associated sounds. Not only does this help the system to 
understand what the sounds mean (in terms of associated images and 
transformations in the images) but it also helps the system to take a first step 
in spoken language. 
 
Similarly, whenever the Attention Focusing Module indicates the continued 
presence of an object, the associated property sets may be incorporated into a 
concept of “persistence”. If movement of an object were detected then the 
concept category would be “physical translation” with perhaps sub-concepts 
existing for the left, right, up and down directions of motion. When the AFM 
searches for a pattern match with a previously existing object (in order to 
identify persistence) and finds none then the data associated with that object 
is appended to the “disappearance” category.  
 
With reference again to the earlier example, when the system detects that the 
exact square has persisted across instances 2 and 3, it searches within records 
of the visual property sets of V2.1 and V3.1 to find the absolute position of 
the square at both instances. The displacement of the square can thus easily be 
determined by finding the difference between the coordinates of any point of the 
square before and after the translation:  
 
Displacement, D = (14-16 = 15-17 = 20-22 = 21-23 =) -2 
 
Therefore, C-Translation-3.1 = {D | A3.1, A3.2} 
                             = {(-2) | (1.5, 2.2, 1.7, 1.5, 3.3, 2.0), (1, 0.68,  
                               0.88, 1, 0.45, 0.75)} 
 
Since the word “move” was registered by the system across this displacement, it 
can technically infer the following:  
1. The sound or sound pattern of "move" refers to a displacement of –2 and to 
the concept of “physical translation”.  
 
 
 
2.4: How Outputs are produced in the Gen-I-Sys machine  
 
The Gen-I-Sys engine functions primarily by first generating an Action Sequence 
that takes it from its current state to a goal state and then “executing” 
everything that can be executed in that Action Sequence. 
 
For outputs such as motion to occur, the system would have to be equipped with 
sensors telling it what mechanical movements it is going through. Given this, 
outputs become recollections of pre-encountered movements that the system is 



able to trigger off itself. As the intended functioning of the system is best 
explained through examples, another one will be presented here. Although in the 
earlier example only audio-video associations are considered, this one will 
consider more associations (video, audio, motion, and internal state). 
 
Suppose the system at its 'birth' is sitting in the middle of an empty room. The 
room has a power outlet on one wall. This power outlet is covered so that 
although the system might 'recharge' itself from it, it would need to call upon 
the help of a human (who will also be standing in the room) to remove the cover 
and give it access. The system will initially start out with full power, which 
will drop steadily with time so that it is necessary for it to recharge in order 
to keep running. The main rule guiding the system is 'never let the power reach 
0, and aim to trigger outputs that will maximize it'. 
 
Sitting in the middle of the room, the system's power continues dropping. After 
some time, the human approaches, pushes the system towards the power outlet, 
removes the cover, and plugs the system in. The system has continuously been 
monitoring all sensory data (exact data as well as patterns), and it now detects 
a surge in its power level. After it is completely recharged, the human unplugs 
it, pushes it back to the middle of the room, and leaves it there. The next time 
the system senses a low power level, it searches its memory for an instance in 
which its power increased. It finds this instance in the form of a visual image 
of the power outlet literally 'pressed against its face'. It then traces back 
until it finds an instance corresponding to its present situation, and simply 
triggers off those same motions that it sensed it was going through while being 
pushed by the human. 
 
Just as in the example presented earlier, in which the system noted sensory data 
corresponding to the transformation of (-)2 of the square (in our terms: 
leftward movement of the square), the system will here also know which sensory 
data caused which of the transformations that led from its position in the 
center of the room to its position at the power outlet. The sensory data that 
are associated with those transformations are the movements of its, say, wheels. 
These movements, which were recorded before, are triggered off now, and the 
system rolls towards the power outlet. The sequence of events is shown below: 
 

Image: ---  |   A (center of room) |   B |   C |   D (at power outlet) 
Power Level: ---  |   Low |   Low |   Low |   Increasing 
Motion: ---  |   Forward |   Forward |   Forward |   None 
 
 
Teaching the system to speak would be rather similar. The human would in this 
case, perhaps, lasso the system and pull it towards him/herself. When the system 
reaches the human, the human would maybe say the word 'food' and would then pull 
the system to the power outlet and plug it in. Given this, the next time the 
system requires recharging it would trace back events from power rise to power 
low and would execute those outputs corresponding to those instances in reverse 
temporal order. The system would thus roll towards the human, produce the 
waveform (or 'say' the word) "food", and would then roll towards the power 
outlet (if the human does not push it around to the contrary). Speech in the 
system is programmed as the production (‘execution’) of all waveforms on an 
instance path leading from a low to a high state. 
 
It is level 2 that tracks and stores those sets of instances leading from low to 
high states. In the above example, all the instances involved in rolling to the 
wall (or in first rolling to the human, producing the sound, and then rolling to 



the wall), are identified by level 2 and sent to level 3 for storage. Thus, 
level 3 contains macro or compound instance sets that actually are high order or 
abstracted concepts that let the system carry out a relatively complex series of 
activities in order to reach a specific goal and with a specific intent. These 
abstractions could form the basis of plans, predictions, or the memory of plans 
and predictions. (The system could be said to 'remember' an instance, an object 
or a property set whenever one of them is being processed by it.) As it is, 
following this framework, the AGIS demonstrates reasoning (see the Reasoning 
section) although at a very rudimentary level and although purely based on 
retracing the actions that it had earlier observed itself being put through. 
Through 'associative reasoning' it establishes the fact that being near the 
power outlet (i.e. analogous to having a large view of the power outlet, 
implying lesser distance) may cause its power levels to go up. Through 
'deliberate reasoning' it establishes the chain or sequence of actions that will 
take it from its current position to its desired position. 
 
If we ignore for the moment the fact that we are talking here about a computer, 
then we get: 
 
... an entity that is shown the way to food once, twice, thrice ... and 
subsequently knows how to go and get the food for itself. Could we be talking 
about anything other than a human child? 
 
For a fuller description of the Gen-I-Sys design and how it works please contact 
the author. 
 
 
2.5: Further Issues 
 
The Gen-I-Sys model may be enhanced by recursively clustering groups of neuronal 
structures together [9], with each individual structure being responsible for 
the identification of one specific mini-feature out of the entire input data 
set. Similar to the Recognition Cones, we could thus have one or more structures 
solely devoted to the identification of edges, with another set devoted to the 
identification of displacements of those edges when moving from one instance to 
the next. If we cluster together color recognizing structures with the edge-
detectors and break up the displacement-recognizing category of structures into 
two further sets that deal with vertical and horizontal displacements 
respectively, then we have a reasonably complex Visual Module. This module could 
correlate directly to the visual cortex of the human brain. Further improvements 
may be made to the existing visual and auditory modules by considering works 
including and beyond research done on visual object movements [7] and research 
done on phonetics and word boundary identification [15] respectively as well the 
research focusing on contextual evaluation and interpretation of sensory input 
signals [8]. 
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