Gerwin Griffioen's Technical Analysis Pages

Gerwin Griffioen's Technical Analysis Pages

Home | Thesis | Publications | Data | Contact | Links

G.A.W. Griffioen, "Technische analyse maakt zichzelf waar", Economische Statistische Berichten, 8 augustus 2003

b e l e g g e n

Technische analyse maakt zichzelf waar

* De auteur is werkzaam bij de business unit Asset and Liability Management van ORTEC bv. GGriffioen@ortec.nl

Op basis van historische data blijkt technische analyse geen winst op te leveren. Uit een model blijkt echter dat technische analyse wel bestaansrecht heeft.


G.A.W. Griffioen*

Is technische analyse effectief als hulpmiddel bij het doen van voorspellingen over de toekomstige koersontwikkeling van een financiŽle waarde? Waarom wordt technische analyse in de financiŽle praktijk zo veelvuldig toegepast, terwijl in de financieel wetenschappelijke literatuur de efficiŽnte markthypothese centraal staat?

EfficiŽnte markthypothese
In de financiŽle praktijk is het niet de vraag of beurskoersen te voorspellen zijn, maar hoe ze voorspeld kunnen worden. Zo is technische analyse ontwikkeld als hulpmiddel bij het doen van voorspellingen over de koersontwikkeling. Daarentegen is het in de financiŽle wetenschap meer de vraag of beurskoersen Łberhaupt wel te voorspellen zijn, dan hoe ze voorspeld kunnen worden. Sinds het overzichtsartikel van Fama staat in de financiŽle wetenschap de efficiŽnte markthypothese (emh) centraal1. De emh is ontstaan uit empirische bevindingen dat prijsveranderingen onvoorspelbaar lijken te zijn en de theorie van Samuelson die een verklaring geeft waarom prijsveranderingen onvoorspelbaar zouden moeten zijn2. Samuelson argumenteert dat op een markt waarin iedereen vrij toegang heeft tot alle mogelijke

informatie, deze informatie ook direct in de prijs van een financiŽle waarde wordt verwerkt. Omdat nieuwe informatie op willekeurige momenten beschikbaar komt, zullen prijzen onvoorspelbaar fluctueren. Fama onderscheidt drie vormen van marktefficiŽntie. Hij noemt een financiŽle markt zwak efficiŽnt als historische koersdata geen informatie bevat waarmee de toekomstige koersontwikkeling voorspeld kan worden3. Volgens de zwakke vorm van de emh is het dus niet mogelijk om met voorspeltechnieken uit de technische analyse een bovengemiddeld rendement te behalen.

Volgens technisch analisten is een financiŽle markt niet eens zwak efficiŽnt. Er bestaat daarom een verschil van inzicht tussen praktijk en wetenschap over de effectiviteit van het gebruik van technische analyse. In dit artikel wordt de zwakke vorm van de emh empirisch getoetst door een uitgebreide verzameling van technieken uit de technische analyse toe te passen op een groot aantal financiŽle datareeksen. Als de zwakke vorm van de emh verworpen kan worden, dan kan de conclusie worden getrokken dat financiŽle markten in hun geheel niet efficiŽnt zijn4. Echter, als de zwakke vorm van de emh op basis van het onderzoek in dit artikel niet verworpen kan worden, dan betekent dit alleen dat er geen bewijs gevonden is voor het niet zwak efficiŽnt zijn van financiŽle markten.

Wat is technische analyse?

De filosofie achter het ontstaan van technische analyse is dat nieuwe macro- en micro-economische informatie meestal geleidelijk en zelden direct in de prijs van een financiŽle waarde wordt verwerkt. Hierdoor zouden in een koersgrafiek regelmatig terugkerende patronen worden gevormd. Technisch analisten claimen dat zij die
patronen bijtijds kunnen herkennen en dat zij op basis daarvan de toekomstige koersontwikkeling kunnen voorspellen. Dit is dus in strijd met de emh. Technische analyse is een verzamelnaam voor tal van voorspeltechnieken. Sommige zijn gebaseerd op visuele patroonherkenning, andere zijn gebaseerd op vast omschreven mathematische regels. Een voorspeltechniek uit de technisch analyse kan gecombineerd worden met een handelsstrategie. Een dergelijke handelsstrategie kan bijvoorbeeld zijn dat er gekocht respectievelijk verkocht wordt als de voorspeltechniek hogere respectievelijk lagere prijzen voor een aandeel voorspelt. De combinatie van een voorspeltechniek uit de technische analyse met een handelsregel wordt een technische handelsstrategie genoemd.

Resultaten

In het onderzoek (zie tekstkader onderzoeksopzet op bladzijde 372) zijn talloze populaire technische handelsstrategieŽn toegepast op verschillende financiŽle datareeksen. Voor bijna alle onderzochte datareeksen tonen de empirische resultaten aan dat de onderzochte voorspeltechnieken uit de technische analyse geen economisch en statistisch significante voorspelkracht hebben na correctie voor transactiekosten, risico en Ďdata-

1. E.F. Fama, Efficient capital markets: a review of theory and empirical work, Journal of Finance, 1970, blz. 383-417.
2. P.A. Samuelson, Proof that properly anticipated prices fluctuate randomly, Industrial Management Review, 1965, blz. 41-49.
3. Bij twee Ďsterkereí vormen van marktefficiŽntie wordt verondersteld dat alle mogelijke informatie direct in de koers wordt verwerkt (sterke efficiŽntie) of dat alle publiekelijk beschikbare informatie direct in de koers wordt verwerkt (semi-stringente efficiŽntie).
4. Als een financiŽle markt sterk efficiŽnt is, dan is hij ook semi-stringent en zwak efficiŽnt. Als een financiŽle markt niet eens zwak efficiŽnt is, dan is hij logischerwijze ook niet semi-stringent en sterk efficiŽnt.

ESB 8-8-2003 371
top
snoopingí5. Binnen de beste handelsstrategieŽn blijkt het percentage winstgevende orders rond de dertig procent te schommelen. Opmerkelijk is dat de posities voortvloeiende uit deze orders lang worden aangehouden. Zij omvatten gemiddeld meer dan zestig procent van de periode waarin de strategieŽn zijn toegepast. Echter, de resterende zeventig procent van de orders levert een zodanig verlies op dat er geen positief resultaat resteert. Het onderzoek toont aan dat technische analyse niet tot een significant bovengemiddeld rendement leidt. Bovendien kan dan ook worden geconcludeerd dat de emh niet zondermeer verworpen kan worden.

Bestaansrecht van technische analyse

Als de historische data aantonen dat technische analyse niet werkt, heeft technische analyse dan nog wel bestaansrecht als hulpmiddel bij het doen van voorspellingen? Om deze vraag te beantwoorden zijn er in het laatste decennium tal

Ontwikkeling van technische analyse

In de twintigste eeuw is technische analyse uitgegroeid tot ťťn van de populairste vormen van financiŽle marktanalyses. Technisch analisten claimen dat de koers van een financiŽle waarde te voorspellen is door de bestudering van de historische koersontwikkeling. De ďDow TheoryĒ wordt beschouwd als het eerste begin van de moderne technische analyse. Deze theorie is gebaseerd op artikelen van Charles H. Dow, onder andere bedenker van de Dow Jones Industrial Average, toen hij redacteur was van de Wall Street Journal in de periode 1889-1902.

Eťn van de grondbeginselen van technische analyse die is voortgekomen uit de Dow theorie is dat koersbewegingen trendmatig gedrag vertonen. Deze theorie maakt onderscheid in drie soorten van opwaartse en neerwaartse koersbewegingen. Namelijk de primaire trend, met een duur van vier tot zes jaar, de secondaire trend, met een duur van twee weken tot enkele maanden en tenslotte de tertiaire trend, met een duur van enkele dagen tot twee weken. Het uiteindelijke doel van de Dow theorie is om primaire trends in een zoín vroeg mogelijk stadium op te sporen. Na de Dowtheorie is de literatuur over technische analyse de afgelopen eeuw uitgebreid met tal van voorspeltechnieken, van zeer simpel tot zeer geavanceerd.

van financiŽle marktmodellen ontwikkeld. Deze modellen formuleren in een theoretisch raamwerk het gedrag van beleggers. Zo kan worden onderzocht of beleggers een bepaalde voorspeltechniek zullen blijven gebruiken of juist niet. Voor dit artikel is een model van Brock en Hommes als uitgangspunt genomen6. In het model kunnen beleggers kiezen tussen fundamentele of technische analyse. Bij fundamentele analyse wordt alle macro- en micro-economische informatie in ogenschouw genomen. Verwachte toekomstige kasstromen worden verdisconteerd om de Ďwerkelijkeí prijs van een financiŽle waarde te berekenen. Deze werkelijke prijs wordt ook wel de fundamentele prijs genoemd. Een koop- of verkoopbeslissing wordt genomen door de berekende fundamentele prijs te vergelijken met de marktprijs.

Superieure voorspeltechniek?
Om het model eenvoudig en analyseerbaar te houden, kunnen de beleggers kiezen uit ťťn fundamentele of ťťn technische voorspeltechniek. De fundamentele voorspeltechniek voorspelt dat de prijs van een financiŽle waarde met een bepaalde snelheid terugkeert naar de fundamentele prijs. De technische voorspeltechniek is gebaseerd op een voortschrijdend gemiddelde (zie tekstkader onderzoeksopzet). Beleggers kunnen op elk moment van voorspeltechniek veranderen. De keuze voor een bepaalde voorspeltechniek hangt af van de resultaten van die voorspeltechniek in het meest recente verleden. Hoe hoger de behaalde winst van een voorspeltechniek is, hoe meer beleggers deze voorspeltechniek zullen kiezen. Iedere belegger bepaalt zijn vraag naar de financiŽle waarde op basis van de voorspelling van de door hem gekozen voorspeltechniek en zijn mate van risicoaversie. De uiteindelijke marktprijs wordt berekend door vraag en aanbod aan elkaar gelijk te stellen. Het doel van het model is om te

analyseren of ťťn bepaalde voorspeltechniek superieur is aan de andere. Hierbij is de uitkomst van het model afhankelijk van de invulling van de modelparameters. Daarom wordt er onderzocht hoe de uitkomst van het model verandert als de waarde van ťťn van de modelparameters wordt gewijzigd. Bijvoorbeeld: hoe verandert de uitkomst als fundamenteel analisten minder risicoavers worden? Of hoe verandert de uitkomst als technisch analisten in plaats van een tiendaags voortschrijdend gemiddelde een twintigdaags voortschrijdend gemiddelde gebruiken?

Zichzelf versterkend gedrag Uit de modelsimulatie blijkt dat fundamenteel analisten niet in staat zijn om technisch analisten uit de markt te drijven. Omdat fundamenteel analisten enigszins risicoavers zijn, zullen zij niet snel bepaalde trendmatige bewegingen in de markt Ďcorrigerení door middel van aan- of verkopen waardoor de prijs snel terug naar de fundamentele waarde beweegt. Dit geeft technisch analisten de ruimte om trendmatig gedrag in de koersontwikkeling te veroorzaken. Gedurende zoín koerstrend levert technische analyse meer winst op dan fundamentele analyse, waardoor meer beleggers voor technische analyse kiezen. Dit versterkt de trendmatigheid in de markt. Echter, een dergelijke trend zal nooit eeuwig duren, omdat fundamenteel analisten bij te grote afwijkingen ten opzichte van de fundamentele prijs steeds meer aandelen gaan kopen of verkopen. Hierdoor wordt de koerstrend afgezwakt net zolang totdat het koersrendement lager wordt dan de marktrente. Omdat de fundamentele voorspeltechniek nu meer

5. ĎData-snoopingí is een algemene term voor het gevaar dat in een zoektocht naar een goede voorspeltechniek er altijd wel een voorspeltechniek gevonden kan worden die bij toeval goede resultaten oplevert.
6. W.A. Brock en C.H. Hommes, Heterogeneous beliefs and routes to chaos in a simple asset pricing model, Journal of Economic Dynamics and Control, 1998, blz. 1235-1274.

372
top
winst oplevert dan de technische voorspeltechniek, zullen er steeds meer beleggers gaan kiezen voor de fundamentele voorspeltechniek, waardoor de trend wordt omgebogen in de richting van de fundamentele prijs. Er is nu een nieuwe koerstrend ontstaan waarmee de cyclus weer van voor af aan begint: in de nieuwe ontstane trend levert technische analyse weer meer op, waardoor meer beleggers voor deze voorspeltechniek zullen kiezen. Hierdoor stopt de nieuw ingezette trend niet zodra de koers in de buurt komt van de fundamentele prijs, maar zal deze zich tot voorbij de fundamentele prijs ontwikkelen, totdat de fundamentele beleggers weer voldoende winstkansen zien om deze trend weer om te buigen. Technisch analisten worden alleen uit de markt gedreven als de risicoaversie van de fundamenteel analisten zeer laag is. De fundamenteel analisten zijn in dat geval bereid om hoge risicoís te nemen. Als de koers ook maar iets afwijkt van de fundamentele prijs, dan kopen of verkopen zij direct net zoveel aandelen totdat de prijs weer gelijk is aan de fundamentele prijs. Ook volgt er uit het model dat het trendmatig gedrag in de koersontwikkeling sterker is als technisch analisten een twintigdaags voortschrijdend gemiddelde gebruiken dan als zij een tiendaags voortschrijdend gemiddelde gebruiken. Dit komt doordat technisch analisten verwachten dat een koerstrend langer zal aanhouden bij het gebruik van een twintigdaags voortschrijdend gemiddelde dan bij een tiendaags voortschrijdend gemiddelde.

Conclusie

De resultaten van dit artikel over technische analyse zijn tweeledig. Empirisch is aangetoond dat er, op basis van historische data en na correctie voor transactiekosten, risico en Ďdata-snoopingí, geen statistisch significante winsten kunnen worden behaald door gebruik
te maken van technische analyse. Echter, doordat technische analyse een bekend hulpmiddel is onder beleggers bij het doen van voorspellingen, wordt zij in de financiŽle praktijk toch veelvuldig toegepast. Uit een theoretisch financieel marktmodel blijkt dat technische analyse kan overleven in concurrentie met fundamentele analyse. Omdat tijdelijk voldoende beleggers kiezen voor technische analyse, levert het incidenteel winst op als gevolg van een zichzelf waar-makende voorspelling. Hieruit ontleent technische analyse haar bestaansrecht, alhoewel het niet winstgevend is op de lange termijn.

Gerwin Griffioen

Dit artikel is gebaseerd op het proefschrift van G.A.W. Griffioen, Technical analysis in financial markets, Thela Thesis, Amsterdam, 2002. Het promotieonderzoek is verricht in het kader van CeNDEF (Centrum voor niet-lineaire dynamica in de economie en de financiering) onder leiding van C.H. Hommes, Universiteit van Amsterdam.

Onderzoeksopzet1

In het onderzoek is voor 787 technische handelsstrategieŽn getoetst of deze winstgevend zijn. Al deze strategieŽn zijn gebaseerd op drie basale technische handelsstrategieŽn2.

De eerste is gebaseerd op het n-daags voortschrijdend gemiddelde. Dit is niets anders dan de gemiddelde prijs van een financiŽle waarde over de afgelopen n-dagen. De technische handelsstrategie koopt (respectievelijk verkoopt) de financiŽle waarde als de prijs het voortschrijdend gemiddelde opwaarts (respectievelijk neerwaarts) doorkruist. De tweede basale technische handelsstrategie is gebaseerd op Alexanderís filters3. Deze strategie koopt (respectievelijk verkoopt) de financiŽle waarde als de prijs met x procent stijgt (respectievelijk daalt) ten opzichte van het meest recente koersdal (respectievelijk de meest recente koerstop). De laatste basale technische handelsstrategie is gebaseerd op steun- en weerstandsniveaus. Als gedurende een bepaalde periode de prijs niet onder (respectievelijk boven) een bepaald prijsniveau zakt (respectievelijk stijgt), dan wordt dit prijsniveau een steun (respectievelijk weerstand) genoemd. Een doorbraak van het steun- of weerstandsniveau is een technisch signaal om te verkopen respectievelijk te kopen. Deze drie basale technische handelsstrategieŽn kunnen worden verfijnd. Een mogelijke uitbreiding is bijvoorbeeld het tijdsvertragingsfilter. Er wordt dan alleen gehandeld als een koop- of verkoopsignaal een aantal dagen stand houdt. Een andere populaire uitbreiding is de Ďstop-lossí. Als een handelspositie teveel verlies oplevert, dan wordt de positie gesloten. Door de drie basale technische handelsstrategieŽn uit te breiden met allerlei verfijningen en door het variŽren

van de strategieparameters zijn er 787 technische handelsstrategieŽn opgesteld.

Empirisch onderzoek

Deze technische handelsstrategieŽn zijn toegepast op verschillende financiŽle waarden, zoals aandelen in de Dow Jones-index in de periode 1973-2002, aandelen in de AEX-index in de periode 1983-2003 en op de koersreeksen van vijftig indices van lokale aandelenmarkten in Afrika, Noord- en Zuid-Amerika, AziŽ, Europa, het Midden-Oosten en OceaniŽ in de periode 1981-2002. Alle reeksen bestaan uit dagelijkse data.

De resultaten zijn gecorrigeerd voor transactiekosten. Hierin begrepen zijn de onderzoekskosten om een goede strategie te vinden, de implementatiekosten voor het invoeren van de strategie in een handelssysteem en de daadwerkelijke kosten van handelen. De transactiekosten zijn gevarieerd van 0,1 tot en met 1 procent per order.

Als technische handelsstrategieŽn na correctie voor transactiekosten winstgevend blijken te zijn, dan kan het zijn dat die winsten de beloning vormen voor het dragen van risico of het resultaat zijn van een te uitgebreide zoektocht naar de beste strategie. Deze hypothesen worden in het onderzoek getoetst.

1. Zie voor de precieze onderzoeksopzet: G.A.W. Griffioen, Technical analysis in financial markets, Thela Thesis, Amsterdam, 2002.
2. Gebaseerd op R. Sullivan, A. Timmermann en H. White, Data-snooping, technical trading rule performance, and the bootstrap, Journal of Finance, 1999, blz. 1647-1691.
3. S.S. Alexander, Price movements in speculative markets: trends or random walks, Industrial Management Review, 1961, blz. 7-26.

ESB 8-8-2003373
top

Home | Thesis | Publications | Data | Contact | Links

Copyright © 2004 Gerwin Griffioen