CLICK ON A PICTURE BELOW FOR PREVIOUS GATE QUESTIONS 1987 ONWARDS IN THE THEORY OF COMPUTATION
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() |
|
|
GATE 1990 PROBLEMS
THEORY OF COMPUTATION
PART A
Q3(iv) Recursive languages are:
(A) a proper subset of context-free languages.
(B) always recognisable by pushdown automata
(C) also called Type 0 languages.
(D) recognisable by Turing machines.
Q3(vii) It is undecidable whether:
(A) an arbitrary Turing machine halts after 10*phi steps.
(B) a Turing machine prints a specific letter.
(D) a Turing machine computes the product of two numbers.
Note:- Choice (C) is absent in the question paper copy available to me.
PART B
Q15(a) Is the language generated by the grammar G regular? If so, give a regular expression for it, else prove otherwise.
G: S------------->aB
B-------------->bC
C------------->xB
C---------->c
Q15(b) Complete the following production rules which generate the language
L = { a^n b^n c^n | a, b, c in Ê }
where variables R and Q are used to move back and forth over the current string generated
A----------->aYc
Y------------>aYc|Q
Qc---------->Rc
cR--------->Rc
aR--------->a_Q
bR---------->b_Q
Qb--------->_ _ _
Qc---------->cQ
Q_---------->R' c
cR' ----------> _ _ _
bR' ----------> _ _ _
a R'----------->a _ _
ANS | ||
1987 | 1988 | 1989 |
1990 | 1991 | 1992 |
1993 | 1994 | 1995 |
1997 | 1998 | 1999 |
2000 | 2001 | 2002 |
2003 | 2004 | 1987 |
QUES | ||
1987 | 1988 | 1989 |
1990 | 1991 | 1992 |
1993 | 1994 | 1995 |
1997 | 1998 | 1999 |
2000 | 2001 | 2002 |
2003 | 2004 | 1987 |