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ABSTRACT

With reference to the Elastic Continuum Theory, fundamental concepts of kinetic energy
and potential energy of a particle have been reviewed in relation to the development of
Schrodinger’s wave equation.  Distinction between the particle and the accompanying wave
packet, has been emphasized.  Consequently an error in the Schrodinger’s wave equation has been
brought out and highlighted, wherein  the potential energy term  V(r)  has not been made
dependent on particle coordinates. Some of the resulting inconsistencies noticed  in a typical
solution of the  Schrodinger’s wave equation,  are critically examined. For example, one of the
results indicate an overall  23.81 %  probability that the electron in 1s Hydrogen orbital will
possess negative kinetic energy, which is absurd.  Rectification of this error may have far reaching
consequences on further development  and refinement of Quantum Mechanics.

Keywords.    Potential energy; Schrodinger’s  wave equation;  Interaction energy.

Uncertainty Principle :  ‘A basic indeterminacy in the behavior of nature, like the one that
is being advocated, is due to an incompleteness of the theory.’

                                                                                                                   Albert  Einstein
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1.  INTRODUCTION

1.1     The Schrodinger’s  wave equation of Quantum Mechanics  may be considered
as founded in the suggestion of  L. de Broglie  that some sort of waves accompanied
electrons and other micro particles in motion.  These waves were assumed to represent the
crucial dynamic characteristics of motion of the particle, namely the momentum p and total
energy E,  through following two relations adapted from the photon wave packet.

                    p = h/λ                                                                       …………….   (1)

                    E = h ν                                                                       …………….   (2)

Here  h  is the Planck’s constant,  λ  is the wavelength and  ν  the frequency of the above
mentioned motion induced waves accompanying the particle.  Of course, unlike the photon
wave packet which as a whole behaves like a particle,  the motion induced wave packet
accompanying a material particle is a separate entity, an appendage to the particle. The
material particle (i.e. a particle with non-zero rest mass) itself does not ‘become’ or
transform itself  into a wave packet.  Let us consider the motion of a free particle, say an
electron, located at point  Q  in a Cartesian coordinate system with center at point O as
shown in  figure 1.  At any instant  t ,  let  r ′ be the position vector of point Q  and let r′ be
the magnitude of  this position vector.  Since the particle at  Q(r ′) is assumed to be in
motion, it will be accompanied by a motion induced wave packet spread over or extending
into a region of space of   say, volume τ, around the location of the particle.

Figure  1.

1.2     Let this motion induced wave packet be characterized by the parameter  ψ
known as wave function.  The  ψ  is  non-zero and finite at all points within the region  ‘τ’
and vanishes at the boundary of  ‘τ’.  The whole region of space  τ  where
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the wave function  ψ  is defined or ‘exists’, may be termed as the  ψ wave field .  At any
space point  A(r ), with position vector  r , the value of wave function  ψ  will keep varying
with time t and hence may be written as  ψ(r ,t).  The  ψ(r ,t)  in general will be a complex
function of space and time coordinates.  The intensity of the wave function  will be given
by

                         |ψ|2  =  |ψ.ψ* | =  P(r ,t)                                       ……………….      (3)

The wave intensity  P(r ,t) is also known as the probability density. The wave function  ψ is
normalized by equating the integral of  P(r ,t),  over the entire volume  τ  of the  ψ wave
field, to unity.  The intensity or probability density  P(r ,t) is expected to be maximum in a
region of space  where the moving particle is actually expected to be located at that instant
of time.  If we consider a small element of volume δτ  around point  A(r ) where the
probability density is  P(r ,t),  then the actual probability of locating the point  Q(r ′),
representing the moving particle, within this volume  δτ  is given by   [P(r ,t). δτ ] .   In
other words the wave intensity  P(r ,t) is expected to be maximum in a region of space
around point  Q(r ′).  Only in a limiting or extreme case when the volume  τ of the wave
field  tends to diminish to zero, that is  when the  ψ field collapses, will the field point
A(r ) tend to merge with the particle location point  Q(r ′).

2.  SCHRODINGER’S  EQUATION  FOR  FREE  PARTICLE

2.1     At any particular instant  t , the point A(r ) may be considered as a general field
point within the wave field τ  and the point Q(r ′) may be considered as a fixed point
representing the instantaneous location of the particle within this  ψ wave field.  During the
motion of the particle, the position vector  r ′ of point  Q will keep changing with time.
That is,  r ′ can be expressed as a function of time t.

                                     r ′  =  f(t)                                            ……………………   (4)

Equation (4) will therefore, represent  the trajectory of the moving particle.  At the given
instant, let us examine the wave function  ψ(r ,t)  within the entire wave field  τ  when the
moving particle is located at point  Q(r ′).  This wave function  ψ(r ,t)  is obtained as a
solution of Schrodinger’s wave equation.  The Schrodinger’s  equation in turn is derived
from the energy conservation principle as applied to the moving particle, by making use of
the following two  operators which form the core of Quantum Mechanics.

                          p Æ - L� ! ∇                                                                 …………….   (5)

                            E Æ L� ! ∂./∂t                                                          ………………..   (6)

where  L�   = √(-1)   and   ! = h/2π.     Using the total energy relation for a moving free
particle of mass  m,     Total  Energy  =  Kinetic  Energy  +  Potential  Energy

 Or                                        E      =        T      +     V                         ……………….   (7)

 and with  V= 0 ;                   E      =    p2 /2m   +  0                             ……………….   (8)

Multiplying equation (8) with ψ and then applying the operators (5) and (6),   we get

                 L� ! ∂ψ/∂t  =  - (!2/2m).∇2ψ   +   0                                             ………….   (9)
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which is the well known  Schrodinger’s  wave equation  for a free particle.   Before
considering a similar approach for arriving at the Schrodinger’s  wave equation for  a
moving particle with force constraints or with  non-zero potential energy,  let us first
examine our basic concepts of kinetic energy (T)  and potential energy (V), with special
reference to the Elastic Continuum Theory[1].  Henceforth we shall consider an electron to
be the moving particle whose motion induced wave function  ψ(r ,t) is under discussion.

3.  KINETIC  ENERGY

3.1    If the kinetic energy (T) of a free particle is reduced to zero by bringing it to rest
we can see from equations (5) and (9) that  ∇ψ,  ∇2ψ,  ∂ψ/∂t  and  ψ will all reduce to zero.
That is, in the absence of kinetic energy,  the ψ wave field of the particle will collapse to
zero.  It implies that the ψ field of a moving particle is highly dependent on the kinetic
energy of the particle.  We know from the ‘Elastic Continuum Theory’ that for a micro
particle or ‘strain bubble’ of rest mass  m, the entire mass energy  mc2  is stored or
contained in the form of dynamic strain energy within the specific boundary of that
particle.  Further, just as all other forms of energy exist in the Elastic Continuum as strain
energy of various strain bubbles or strain wave fields, the kinetic energy associated with the
motion of any strain bubble or micro particle also must be ‘existing’ or ‘contained’ in some
sort of ‘strain wave field’ associated with or induced by its motion. Therefore, combining
the above mentioned concepts that the ψ field of a moving particle  is highly dependent on
kinetic energy of the particle and that the kinetic energy must be existing as  strain energy
of the associated strain wave field;  we may consider it most likely  that the kinetic energy
of a moving particle could be actually ‘existing’ or ‘contained’ within the ψ field of the
particle.  In fact the intensity of the normalized wave function  P(r ,t)  or  |ψ|2 given by
equation (3), may actually represent the normalized kinetic energy density of the  particle.
This also corresponds to the concept of energy density in  electromagnetic field  being
proportional to the squares of electric and magnetic field strengths or to the sum of squares
of strain components.

3.2     We can generally say that any change in motion of a particle will induce a
corresponding change in the kinetic energy of that particle and vice-versa. Extending this
notion to the ψ wave field of a moving particle, we can say that any change in the motion
of the particle will induce a corresponding change in the overall ψ wave field of that
particle and vice-versa.  That is, any change in the overall  ψ wave field of a particle will
induce a corresponding change in the motion of that particle.  Thus we may appreciate that
high energy interactions of micro particles could be governed by the superposition
interactions of their  ψ wave fields.  This precisely is the reason of  phenomenal success of
Quantum Mechanics  in the study of micro particle interactions, especially the high energy
interactions.  However, the normalization of wave function ψ  has effectively rendered
Quantum Mechanics particularly suitable for statistical and qualitative applications.

4.  POTENTIAL  ENERGY

4.1     Let us consider an isolated  electron.  As per the Elastic Continuum Theory[1], it
consists of a small spherically symmetric ‘core’ of standing strain wave oscillations[2],
surrounded by propagating phase wave type ‘strain wave field’.  The electrostatic field  of



5

(ODVWLF�&RQWLQXXP�7KHRU\ %\ *�6�6DQGKX

electron with radially decaying electric field strength can be identified with its strain wave
field with radially decaying amplitude. About 35% of the ‘mass’ energy of the electron is
actually stored or ‘contained’ in this electrostatic or strain wave field.  The energy density
in this wave field of the electron is proportional to the sum of squares of the amplitudes of
its strain components. The wave field energy component of the electron mass is an integral
part of the electron and is not dependent on the existence of any other charge or field in its
vicinity.  Now let us consider a proton and electron pair separated by distance  ‘d’ from
each other.  Their respective positive and negative electrostatic fields or strain wave fields
will get ‘overlapped’ or superposed almost throughout their spatial extension.  As a result
of mutual cancellation of superposed  +ve and  -ve fields from two charges, the resultant or
combined field strength of the two charges will get slightly reduced.  Consequently the
combined field energy of the proton-electron system, being proportional to the square of
the resultant field strength,  will be slightly less than the total sum of the individual field
energies of the isolated charges.   This reduction  in the combined field energy of the
proton-electron system, is precisely the negative interaction energy due to the Coulomb
interaction[2] of the system  and is known as the negative potential energy  of the proton
electron pair.  Therefore,

  Potential energy of  proton-electron pair  =  V = -e2/4πε0d                   ………… (10)

or    Interaction energy released by the system = |V| = e2/4πε0d                   …………. (11)

4.2     Obviously the interaction energy released by the proton-electron pair is  zero
when they are separated by infinite distance.  As their separation is reduced to say ‘d’, the
interaction energy released by the system, as given by equation (11),  is continuously
converted into the kinetic energy of the proton-electron pair.   Of course,  during this
conversion  or transfer of released interaction energy to the kinetic energy of the system,
the overall conservation of energy, momentum  and  angular momentum  is automatically
ensured.  As already noted , the kinetic energy of a particle is ‘stored’  or ‘contained’  in the
ψ wave field of the particle.  Therefore, the potential energy  or  the interaction energy of
the proton-electron pair  may be considered as a parameter signifying the transfer of energy
between the ψ wave field and the combined field energy of the system.  Thus a  +ve
potential energy of a particle signifies the transfer of  ψ wave field energy  (i.e. K.E.)  to
the field strain energy  (i.e. mass energy)  of the particle.  Similarly a  -ve  potential energy
signifies the transfer of a part of the field strain energy to the ψ wave field energy of the
interacting particles.  The Schrodinger’s  wave equation is intended to describe the
variations in  ψ wave field of a moving particle as a result of such energy transfers.

4.3     It is therefore obvious that the potential energy of an electron with respect to a
proton at distance  d, represented as  V(d), can not be regarded as a field parameter in the
sense that it does not represent any entity distributed in space.  For example,  the
electrostatic field strength or strain wave field energy density  can be regarded as field
parameters  because they represent the entities which are ‘existing’ or defined at all space
points of the associated field at any instant of time.  The potential energy, on the other
hand, is the interaction energy depending entirely on relative location of the electron with
respect to the proton at any particular instant and is not ‘defined’ or ‘existing’ at any other
space point at that instant.  However, the term potential energy, indicating the transfer of
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energy between  the electrostatic field  and the ψ wave field, is not applicable for a single
isolated particle where such transfer can not occur due to absence of any interaction.  It has
a meaning only for two or more interacting particles, wherein such transfer of energy could
take place between the combined electrostatic or strain wave field energy (i.e. total rest
mass energy) and the total ψ wave field energies of the interacting particles, without
violating the principle of conservation of momentum and energy.  If at any instant  t,  the
proton (considered almost stationary)  is located at point  O, the origin of coordinate
system (Fig. 1) and the moving electron is located at point  Q(r ′) with position vector  r ′,
then the potential energy of the electron will depend on the magnitude of the position
vector  |r ′| or simply  r′ and may be represented by  V(r′).  It will not be a function of the
coordinates of  field point A(r ).  That is, when the wave function is represented as ψ(r ,t),
the potential energy term can not be represented as V(r).

5.  TOTAL  ENERGY   

5.1     The total energy  E of a system of two interacting particles  (the proton-electron
pair in the present case) is defined through equation (7) , that is,

                       E  =  T  +  V(r′)  =  T  +  [- e2/4πε0r′]                    ……………… (12)

Truly speaking the term  E in equation (7) or (12) represents the total external energy
supplied to the system.   E is  +ve when this amount of energy is externally added  or
supplied to the system of interacting particles  and is  -ve when it is extracted,  or taken out
of the system.  The externally supplied energy may either get directly added to the kinetic
energy of the system or may get added to their electrostatic field energies through the
potential energy term  and vice-versa.  Generally a  -ve E will represent a bound state of the
system of interacting particles.  Even though the name implies total energy, it actually does
not include the rest mass energies of the interacting  particles.  Therefore, a constant total
energy E or a stationary energy state of an isolated system of interacting particles, implies
the constancy of sum of K.E. and potential energy of the  system.

6.  Schrodinger’s  Equation  with  Wrong  Potential  Energy  Term

6.1    The total external energy, whether supplied to or extracted from the system will
naturally influence the kinetic energy T and hence the  ψ wave field of the moving particle.
The complex relationship between the variations of  total  &  potential  energy  and the
corresponding space-time variations of the  ψ wave field representing the kinetic energy, is
reflected through the Schrodinger’s wave equation involving the potential energy term .
Multiplying equation (12) with ψ(r ,t) throughout and then applying the operators (5) and
(6), we get,

                  E . ψ(r ,t)  =  (p2/2m) . ψ(r ,t)  +  V(r′) . ψ(r ,t)              ……………   (13)

and                  L� ! ∂ψ/∂t  =  - (!2/2m).∇2ψ  + V(r′) . ψ                        ……………   (14)
But  the Schrodinger’s wave equation is normally written in the form

                       L� ! ∂ψ/∂t  =  - (!2/2m).∇2ψ  + V(r) . ψ                         ……………   (15)

The difference in equations (14) and (15) is in the potential energy terms  V(r′) and V(r).
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6.2    In the Schrodinger’s  original wave equation (15), the potential energy is
expressed as a function of the coordinates of  general field point  A(r ),  instead of  the
coordinates of instantaneous location  Q(r ′) of the particle (Figure 1).  That means  the
Schrodinger’s  wave equation  (15) is founded on the total energy relation

                       E  =  T  +  V(r)  =  T  +  [- e2/4πε0r]                      ……………… (16)

instead of equation (12).  As already discussed above, the potential energy of an electron-
proton pair is strictly a function of their instantaneous relative distance  r′ and is not
defined at any other space point  A(r ).  This discrepancy is not a simple or inadvertent
mistake in the Schrodinger’s  original wave equation (15)  but rather a serious conceptual
mistake with far reaching consequences.  This mistake is continued with  throughout
Quantum Mechanics,  where the potential energy term  V(r)  is often replaced by  e.φ(r);
with scalar potential  φ(r) treated as a function of coordinates of general field point  A(r )
rather than a function of coordinates of instantaneous location  Q(r ′) of the particle.
Probably the greatest temptation for permitting this mistake, must have been the
consequent ease of  solving the Schrodinger’s equation (15) by treating the potential energy
term  V(r) as spherically symmetric and independent of time.  Even though most
weaknesses of  Quantum Mechanics could be attributed to this conceptual mistake, yet for
want of timely rectification, the mistake had to be ‘swept under the uncertainty carpet’.

7.  Consequential  Errors  in  Established  Solutions

7.1    Let us now examine a few consequential errors in the established solutions of
Schrodinger’s wave equation (15),  arising out of the above mentioned mistake in the
potential energy term V(r).   For this let us consider the ground state  1s  orbital of
Hydrogen atom,  the normalized wave function   ψnlm= ψ100(r ,t)   of which is,

                 ψ100(r ,t) = (1/πa0
3)1/2.exp(-r/a0).exp(-L  E1t/!)              ………………  (17)

where             E1 = - 13.6 ev         is the total energy of the  1s  orbital
and                 a0 = 0.53  A°          is the corresponding  Bohr  radius.

7.2    Oscillating  ψ  Wave  Field.      In accordance with the original suggestion of
L. de Broglie,  the solution for ground state  1s  orbital of  Hydrogen was expected to yield
some sort of waves or wave packet, i.e. ψ wave packet, accompanying the orbiting
electron.  But equation (17) represents a spherically symmetric standing wave oscillations
of the ψ field, which does not correspond to the physical situation.  Equation (17) can not
represent any traveling wave or a wave group  which could describe the orbiting motion of
the electron.  Hence, fundamentally this solution is unsuitable to represent the physical
situation and should have been rejected.   This error could be attributed to the wrong
potential energy term V(r)  used in the Schrodinger’s equation (15), as discussed above.

7.3    Spherically  Symmetric  ψ Wave Field.       As discussed earlier, at any instant
the intensity of ψ wave function ( i.e.  P(r ,t) of equation (13) ) is expected to be maximum
in the vicinity of location of the electron at that instant.  But from equation (17) we get,

                P(r ,t)  =  |ψ100|2  =  (1/πa0
3).exp(-2r/a0)                 …………………      (18)
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Equation (18) shows that the intensity of the ψ wave function is spherically symmetric with
its maximum value at the center where the proton is located.  The obvious conclusion from
this result could be that the electron and proton are both located at the center, which of
course is physically impossible.  The physical situation demanded that the ψ wave packet
should  not only  have accompanied the orbiting electron but also should have been
centered at and spread around the instantaneous location of the electron.  Therefore, it
could be concluded that solution (17) does not represent the physical situation and should
have been rejected as invalid.  This error too could be attributed to the wrong potential
energy term  V(r) used in the Schrodinger’s equation (15).  It is, of course, a different
matter that use of correct potential energy function  V(r′) might have rendered the
Schrodinger’s  equation (14) analytically unsolvable.  Ideally speaking, the Schrodinger’s
equation (14) should be solved in conjunction with pre-set initial and boundary conditions
to yield a complete solution consisting of,

   (a)   The electron trajectory         r ′ = f(t)
         (b)   The wave function     ψ(r,r ′,t)   or   ψ(r ,t) .

In fact the electron trajectory can be computed  even  without  using  the  Schrodinger’s
wave equation.  Therefore we must reject equation (17) as an invalid solution.

7.4    Zero  Orbital Angular  Momentum  of  the  Electron.     The ground state  1s
Hydrogen orbital solution  ψ100(r ,t)  given by equation (17), corresponds to zero orbital
angular momentum.  The zero angular momentum, by virtue of its basic definition and its
fundamental physical concept, will represent either a stationary electron  or an electron
passing through the nucleus.  Both of these alternatives do not correspond to the physical
situation of an orbiting electron and hence invalid.  This error also seems to have occurred
due to the wrong potential energy term V(r) used in the Schrodinger’s equation (15).

7.5    Negative  Kinetic Energy  of the  Electron.       As per the usual terminology in
Quantum Mechanics, equation (17) represents the ψ wave function for the lowest
stationary state of electron in Hydrogen atom.  In this stationary state, the total energy
eigenvalue E1 is equal to  -13.6 ev .  For this stationary state, the probability density P(r) is
given by equation (18).  The integral of this probability density over the entire ψ field (i.e.
for r varying from zero to infinity) works out to unity, as expected, since ψ is normalized.
This result is interpreted as the overall probability of finding the electron within the entire
ψ field  is  100 %  (again as expected, since, after all the electron has to be somewhere !).
Let us now work out the overall probability of finding the electron within a spherical shell
of inner radius  r1 = 0.5 a0   and  outer radius  r2 = 1.5 a0    where a0 is the Bohr radius.

        P P r r Sin
r

r
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2
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ππ

θ θ φ  dr d   d

         = ∫4 2
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r

( ).        =    0.4965                          by using equation (18).
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That means the overall probability of finding the electron within a spherical shell of radii
0.5 a0  and  1.5 a0  is  49.65 %.   We may interpret this result as follows.  If somehow we
could conduct a very large number of  electron location determining experiments, then in
about 49.65 percent cases we are likely to locate the electron within a spherical shell of
radii  0.5 a0 and  1.5 a0 .  Apparently this is quite a reasonable result and in the backdrop of
uncertainty principle it is generally accepted  quite faithfully.

7.6   Now let us carry out one more computation.  This time let us work out the overall
probability of finding the electron outside a sphere of radius  r3 = 2 a0 .  Proceeding on the
same lines as above, we get this probability as

         P3 =
∞

∫4 2

3

π P r r dr
r

( ).

                    = −
∞

∫
4

2
0
3 0

2

2 0
a

r a r dr
a

exp( / ).         =    0.2381

That means the overall probability of finding the electron outside a sphere of radius  2a0  is
about  23.81 percent.  We might be tempted to accept this result too as quite reasonable
essentially due to our immense faith in  Quantum Mechanics.  But a little closer look will
show that this result is most unreasonable, absurd and totally wrong.  For this let us once
again consider the parent equations from which this result is derived, namely the original
Schrodinger’s equation (15) and the total energy equation (16).  Obviously, since the result
(17) is valid or true in the region of space outside a sphere of radius  2a0 , the parent
equations (15) and (16) must also be valid in that region.  However for a stationary state
represented by equation (17), the total energy  E1 =  -13.6 ev = 2.176×10-18 J,   is known to
be constant.  Therefore, from equation (16) we get,

              T =  E1 -  [- e
2/4πε0r]  =  e2/4πε0r  -  2.176×10-18       Joules             ………. (19)

This shows that kinetic energy  T of the electron, in the stationary state (17), keeps
reducing with increasing  r.  Equation (19) shows that  T reduces to zero  at  r = 2a0 .    That
means  when the electron is located outside a sphere of radius  2a0, its kinetic energy will
become negative.  But we have seen above that  probability of finding the electron outside
a sphere of radius  2a0 is  23.81 percent.  Hence we draw the conclusion that as per
Quantum Mechanics, based on original  Schrodinger’s  equation (15), there is 23.81 %
probability that the electron, in ground state of Hydrogen atom,  will exist in a negative
kinetic energy state with imaginary velocity components.  Since this is patently an absurd
conclusion, we must review the situation to find what went wrong and where?  Therefore
we come back to our previous observation that the potential energy term  V in the original
Schrodinger’s equation (15) has been wrongly taken as a function of coordinates of general
field point  A(r ), instead of taking it as a function of coordinates of point  Q(r ′),  the
instantaneous location of the electron.
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7.7   From equation (19)  we can easily see that for the ground state of Hydrogen, the
electron will always remain  bound well within a bounding sphere of radius  2a0 .  That is
whatever be the shape of trajectory  or electron orbits  ( r ′= f(t) ) in the ground state of
Hydrogen, these orbits will always be located well within this bounding sphere of radius
2a0    i.e.    r′< 2a0 .  Now, let us assume for the time being that we succeed in obtaining
analytical solutions of correct Schrodinger’s  equation (14).  Then  the ψ wave field will
have to be restricted within this bounding sphere, so that the overall probability of finding
the electron outside this sphere is zero.   If  however, the ψ wave field could not be reduced
to zero outside this bounding sphere, the wave function intensity |ψ|2 will have to be  re-
interpreted  as the normalized kinetic energy density instead of electron probability density
as already discussed at para 4 above.

7.8   In spite of the error in potential energy term V, as brought out above, the Quantum
Mechanics has been extremely useful in the study of high energy micro particle
interactions.  Even for those applications where either the effect of potential energy term is
negligible or the potential energy function V is made more dependent on particle locations,
the Quantum Mechanics has been of  immense value.  It is hoped that through rectification
of the error in potential energy term V in the Schrodinger’s  wave equation, we may be in a
better position to further enhance the efficacy  and utility of Quantum Mechanics.  We
must keep striving to further develop, improve and refine this extremely important branch
of  Physics.   Possibly, the already complex wave function  ψ  might ultimately  turn out  to
be much more complex; possibly a longitudinal strain wave packet.   Therefore,  the
necessity  of strengthening  the logical foundations of  Quantum Mechanics,  so as to bring
it within the grasp of  imagination,  can not be overemphasized.  After all, from purely
philosophical standpoint , the end result of any intellectual pursuit must come within the
mental grasp, within the perceptible limits of human mind. That is, any deeper
understanding of the physical reality of the micro world, that we may develop through an
intellectual process by using simple or mathematical logic, must be fully perceptible to the
human mind and we should be in a position to mentally comprehend and visualize the
same.

8.  SUMMARY  AND  CONCLUSION

8.1     Considering the Schrodinger’s  wave equation as founded on L. de Broglie’s
suggestion that some sort of waves or wave packets accompany the electrons and other
micro particles in motion, we must emphasize the distinction between the moving particle
and the waves that accompany it.  At any instant  t, if  ψ(r ,t) is the wave function that
describes the accompanying wave or wave packet, it must be defined at infinitely many
space points (i.e. variable r  ) that constitute the ψ field,  while at that instant the moving
particle can be located at only one space point say Q(r ′).  The potential energy  V  or  the
interaction energy of the proton-electron pair is a precise function of their relative
separation distance r′ and hence  should be represented by the function V(r′) and not by
V(r).  This precisely is the error in the Schrodinger’s  wave equation, where the potential
energy function used is  V(r)  instead of  V(r′).  Obviously  this has lead to wrong solutions
for the wave function ψ(r ,t).  In this paper  we have highlighted some of the glaring errors
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in a typical solution for  ψ.  For example, one of the results indicate an overall  23.81 %
probability that the electron in 1s Hydrogen orbital will possess negative kinetic energy,
which is obviously absurd.  In addition to pointing out a gross conceptual mistake in the
formulation of Schrodinger’s wave equation and certain inconsistencies in the established
solutions, we have also attempted to present a comprehensive conceptual picture of the
kinetic energy, potential energy and the total energy of a pair of interacting particles.  Most
significant of these is the concept of ψ wave field carrying the kinetic energy of the particle
in motion, adapted from the ‘Elastic Continuum Theory’.   The dynamic interactions of all
micro particles are therefore controlled or governed by their ψ wave field interactions.  The
Quantum Mechanics provides an excellent and indispensable tool for studying such ψ
wave field interactions of high energy particles.  It is hoped that the rectification of the
mistake in potential energy term of Schrodinger’s wave equation will further enhance the
utility and efficacy of Quantum Mechanics.
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