
GTR  is  founded on  a   Conceptual  Mistake 

And  hence   Null  and  Void 
A critical review of the fundamental basis of General Theory of Relativity  shows 

that a conceptual mistake has been made in the basic postulate of General Relativity 
through violation of the principle of 'invariance' of space points.  By linking the metric of 
space with the gravitational field,  the physical space is implied to be deformable and 
subjected to an incompatible set of strain components. Since the focus of our attention 
in this article is going to be on the Conceptual Mistake made in the very foundation of 
General Theory of Relativity, let us begin our analysis with a review of fundamental 
definitions of relevant basic concepts. 

Definitions of relevant Basic Concepts 

•        Coordinate Systems:    

The cardinal idea responsible for the invention of coordinate systems by Descartes 
consists of the assumption that to each real number there corresponds a unique 
point on a straight line. We choose a straight line X and a point O on it, which we call 
the origin. We choose a point A and call the length of the line segment OA, the unit 
length.  Next we pick up any point P on this line X, as shown in the figure and take 
the ratio of the lengths of the line segments OP and OA. Let this ratio OP/OA be 
equal to x.  The number x is called the coordinate of P. 

        .............O............A.............................................P.............................> X 

The association of the set of points P on coordinate line X with the set of real 
numbers x, constitutes a coordinate system of the one-dimensional SPACE, 
once the notion of certain 'unit length' OA has been defined.   

•        Coordinate Space:    

The coordination of the set of points lying in the plane with sets of real numbers is 
accomplished by taking two orthogonal coordinate lines X1 and X2 in that plane and 
defining the notion of unit lengths on each of them. With each point P in the plane of 
the coordinate axes we associate an ordered pair of real numbers (x1,x2) termed 
coordinates of that point. The one-to-one correspondence of ordered pairs of 
numbers with the set of points in the plane X1X2 is the coordinate system of the two-
dimensional SPACE consisting of points in the plane. The extension of this 
representation to points in a 3-dimensional space is obvious.  With predefined notion 
of unit length, the essential feature of it is the concept of one-to-one correspondence 
of points in SPACE with the ordered sets of real numbers.  Spaces, where it is 
possible to construct a coordinate system such that the length of a line segment is 
given by the formula of Pythagoras, are called Euclidean spaces. In these spaces 
the notion of displacements is fundamental. 
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•        Vector Components and Transformations:  

In a three-dimensional space, let us choose three orthonormal vectors a1, a2, a3, as 
our coordinate vectors.  In this case any vector X has the representation,  

         X = x1a1 + x2a2 + x3a3                                         ....................    (1) 

where (x1, x2, x3) are called the physical components  or measure numbers of  X  
and the vectors a1, a2, a3 contain the notion of 'unit lengths' along the coordinate 
lines. If however, the coordinate vectors a1, a2, a3, are not of unit length then (x1, x2, 
x3) will represent different measure numbers or contravariant components of X. The 
corresponding physical projections of X along coordinate directions, will be given by 
the product of such contravariant components with their base vectors as x1*| a1| ; 
x2*|a2| and  x3*|a3|  respectively.  The matrix A in the equation X' = A X  can be 
interpreted as an operator which converts a vector X into another vector X'  through 
a transformation of its components.   We may interpret the resulting vector X' as a 
deformed vector produced by the operator A.   It is very important to note here that 
the deformation of vector X can be brought about either through the variation of its 
components  x1, x2, x3  by  some operator A  or  through the variation of the set of  
base vectors  a1, a2 and a3 by the transformation of reference coordinate system. 

•        Invariance of Space Points:  

In particular, we may deal with such transformation of components xi and base 
vectors ai such that the vector X itself remains invariant. The concept of invariance of 
mathematical objects, called vectors and tensors, under coordinate transformations, 
permeates the whole structure of tensor analysis. We shall suppose that a point is 
an invariant. In a given reference frame a point P is determined by a set of 
coordinates xi. If the coordinate system is changed, the point P is described by a 
new set of coordinates yi, but the transformation of coordinates does nothing to the 
point itself. A set of points, such as those forming a curve or surface, is also 
invariant. The curve may be described in a given coordinate system by an equation, 
which usually changes its form when the coordinates are changed, but the curve 
itself remains unaltered, invariant.  Similarly a triply infinite set of points, constituting 
a 3-D space , may also be considered invariant if an infinitesimal separation distance 
'ds' between any pair of neighboring space points remains invariant under 
admissible coordinate transformations.  The notion of invariance of the arc 
element 'ds' in all admissible coordinate transformations is most crucial in the 
formulation and efficacy of tensor analysis. 

However, it is extremely important to understand that the  'invariance' of 
mathematical objects, like vectors, is only in respect of coordinate transformations.  
In any particular coordinate system when we define certain vector or tensor we are 
free to assign any value to it, but once assigned that value will remain invariant 
under all admissible coordinate systems. Of course in any particular coordinate 
system, we are always free to redefine that vector or tensor or to   re-assign   any 
other value to it on physical considerations.  
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 Coordinate Transformations  and  the  Metric Tensor  [gij] 

Let us consider a displacement vector (dy i) determined by a pair of points P(y) 
and P'(y+dy) referred to orthogonal Cartesian coordinates y i .  The square of distance 
between points P and P' is given by the formula of Pythagoras  as 
                         (ds)2 = (dy1)2 + (dy2)2 + (dy3)2                                     ................. (2)  
where  ds is called the element of arc. A change in coordinate system from yi to xi given 
by the transformation relations  
                          yi = yi(x1, x2, x3)                                                     .................... (3)  
permits us to write the relation (2) as  
                          ds2 = (gij)(dxi)(dxj)                                                  .................... (4)  
with usual summation over indices  i & j  from 1 to 3  and  where the metric tensor 
coefficients   are given by the partial derivatives of yi  as,  

                       gij(x) = (∂yk/∂xi)(∂yk/∂xj)                  sum for k = 1 to 3       ........... (5)  

Here the equations (4) and (5) will jointly ensure that the length of the arc element ds 
remains invariant with the transformation of coordinates (3).  If we do not ensure the 
invariance of arc element during coordinate transformations (say, by arbitrarily changing 
the notion of unit length or the metric of space), the whole structure of tensor analysis 
may crumble. Any new coordinate system will have its corresponding metric coefficients 
uniquely defined through relations of the type (3) and (5).  In orthogonal coordinate 
systems, the value of three metric coefficients  g11,  g22,  g33  determines the magnitude 
of corresponding base vectors  a1, a2, a3  as  a1.a1 = g11 ;   a2.a2 = g22 ;  a3.a3 = g33 .   
And the square of arc element is,  

                     ds2 =  g11*(dx1) 2 + g22*(dx2) 2 + g33*(dx3) 2                  .....................(6) 

Differential  Scaling  Effects  of  Metric  Coefficients 

Let us  consider a 4-dimensional  space-time manifold covered with spherical 
polar orthogonal coordinates system with its origin at point O and the coordinate 
parameters yi of an arbitrary point P given by,  

                    y1 = R ;   y2 = θ ;   y3 = φ  and   y4 = T                                       

such that the invariant arc element dS is given by,  

                   dS2 =(dR) 2+(R.dθ)2+(R.sin(θ).dφ )2 + (ιc.dT) 2            .....................(7)  

 The spatial metric coefficients of this coordinate system can be written as,  

                   g11 = 1 ;  g22 = R2 ;  g33 = R2.sin2θ ;   g44 = 1                    ................... (8)  
And the magnitude of corresponding spatial base vectors is given by,  

       |a1| = 1  ;      |a2| = R  ;       |a3| = R.sin(θ)  ;    |a4| = 1                 ................... (9)  
So that the arc element vector dS may be given by,  

                dS = dR a1 + dθ a2 + dφ a3 +  ι c.dT a4                          ..................... (10) 
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Now consider a coordinate  transformation from  coordinate system y i to another 
coordinate system xi(r, θ, φ, t) through transformation relations of the type (3) as,  

               R = 2 r ;      θ = θ ;         φ = φ ;        T = t                                    
So that the invariant arc element dS in (xi) space will be given by,  

              dS2 = {(2dr) 2 + (2r.dθ)2 + (2r.sin(θ).dφ)2} - (c.dt) 2             ...................(11)  
The spatial metric coefficients of this coordinate system xi can now  be written as,  

              h11 = 4 ;      h22 = 4 r2 ;       h33 = 4 r2.sin2θ                         ...................... (12)  
And the magnitude of corresponding spatial base vectors is given by,  

             |a1| = 2  ;   |a2| = 2 r  ;  |a3| = 2 r.sin(θ)                                ....................... (13)  
An infinitesimal arc element vector dS will therefore be given by,  

           dS = dr a1 + dθ a2 + dφ a3 +  ι c.dt a4                               ....................... (14)  
Here the coordinate parameter r does not represent the length of the line segment OP. 
The fact that the magnitude of this coordinate parameter r has been reduced to R/2, can 
not be construed to imply that the coordinate space has been shrunk by virtue of this 
coordinate transformation or by virtue of changed values of the associated metric 
coefficients.  It only implies that the coordinate space has been scaled down by virtue of 
changed values of the associated metric coefficients.   Here too, the length of the line 
segment OP will be given by the product of the coordinate parameter r and the length of 
the base vector a1, that is by r*a1, which remains invariant. 

Riemannian  Space  and  the  Curvature Tensor 

Spaces, where it is not possible to construct a coordinate system such that the 
length of a line segment is given by the formula of Pythagoras, are called Riemannian 
spaces.  In other words, the metric coefficients gij(x) of a Riemannian space cannot 
be transformed into constant components hij by any admissible coordinate 
transformation. But a necessary and sufficient condition that a symmetric tensor gij(x) 
with |gij| ≠ 0, reduce under a suitable transformation of coordinates to a tensor hij, where 
the coefficients hij’s are constants, is that the Riemann-Christoffel tensor formed from 
the gij’s be a zero tensor.   The Riemann-Christoffel tensor or simply the Riemann 
tensor is given by the relation, 

     Ri
jkl =   ∂/∂xk Γi

jl - ∂/∂xl Γi
jk  +  Γi� � Γ

�
jl - Γ
�

jk Γi� � �������
	��  ��������������������� �����  

where Γi
jk is a Christoffel symbol of second kind.  Therefore, the notion of Riemannian 

space may be directly associated with the non-zero value of Riemann tensor formed 
from the components of the metric tensor.  However, non-zero value of the Riemann 
tensor is known to represent the curvature of two-dimensional parametric surfaces.  A 
non-zero value of Riemann tensor in 3-D space or 4-D space-time manifolds is 
therefore associated with the notion of ‘curvature’ of the corresponding space or space-
time manifolds.  The Riemann tensor is also referred to as the curvature tensor of the 
concerned space or space-time manifold. Hence the Riemannian space can be 
identified with finite non-zero value of  the Riemann tensor .  
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Notion of ‘Space Points’ and ‘Space-time Points’ 

 The notion of a point  in a  3 D physical space  represents a  space point,   
whereas the notion of an event in 4 D reference framework represents a space time 
point.  We have to be careful about this description when considering a  space time 
interval for studying a time varying phenomenon.  As per the most fundamental concept 
of tensor analysis, a space point is an invariant.  If we identify two neighboring space 
points as P1 and P2, they will remain points P1 and P2 for all time to come and their 
separation distance ‘ds’ will remain time invariant constant.  In a 4 D space time 
reference framework, these points will constitute time like traces P1'  and  P2'.   At any 
given instant of time  t1, a spatial section of the time like traces P1'  and  P2' in the 4 D 
reference frame work,  will represent the original space points P1 and P2 with their 
separation distance ‘ds’.  The most fundamental invariant characteristics of space points 
do not vanish merely by their representation in a  4 D reference framework.  There is a 
correspondence between the 3 D space points and the  time like parallel traces in the   
4 D space time reference framework. The notion of invariance of space points 
signifies the time invariant constancy of their mutual separation distances and 
this notion is also used for defining admissible coordinate transformations in 3 D 
space.   However, the notion of invariance of events or  space time points does not 
imply any time invariance;  but a similar notion of invariance of space time interval 
between two space time points or events is used for defining admissible coordinate 
transformations in 4 D space time manifold or reference frame work. 

Main Postulate of General Relativity  

The main postulate of General Relativity is that the gravitational phenomenon 
can be satisfactorily represented by 'suitably adjusting' the metric properties of the 
space time manifold.   For this the metric coefficients of the space time manifold are 
required to satisfy a set of partial differential equations (EFE) involving energy-
momentum tensor, whereby the non-rectilinear trajectories of mass particles will 
transform into geodesics. Thus the study of dynamical trajectories of mass particles in a 
gravitational field will reduce to the study of geodesics in the space time manifold 
defined by specified metric coefficients. After doing so, the main postulate could be 
extended to imply that the gravitational field itself 'somehow' modifies the metric 
coefficients of space-time manifold such that the trajectories of mass particles 'naturally' 
turn out to be geodesics.    

Line element ‘ds’ and the Space Metric  

 The most fundamental concept underlying all the basic notions of space is that 
of the absolute invariance of space points.  Say, in any particular coordinate system X 
with origin at point O, let us consider a particular space point P1 with coordinates (xi).  If 
P2 is another space point in the neighborhood of P1, then an infinitesimal separation 
distance  ds  between the points  P1  and  P2  is  given  by: 

        (ds) 2 = gij dxi dxj                                                   ..................... (16) 



6 

where gij are the metric coefficients in coordinate system xi.  The invariance of space 
points P1, P2 etc. implies that 'ds' will remain constant, even when the coordinate 
system is changed (or more correctly 'transformed' ) from X  to say  Y.  Obviously, from 
equation (16), once the coordinate parameters xi are changed  to  yi,  the metric 
coefficients gij  must also transform to say hij to ensure the invariance of 'ds'.  As such, 

        (ds) 2 = hij dyi dyj                                             ..................... (17) 
Further, it can be easily seen from equations (16) and (17) that the transformation of 
metric coefficients gij(x) to the coefficients hij(y) has to be intimately related to the 
transformation of coordinate parameters xi to the parameters yi, so as to ensure the 
invariance of  ds.  Such  transformations  that ensure the invariance of  ds and hence 
the invariance of space points in general, are said to be admissible transformations.  
Obviously, if the coefficients gij constitute the metric of Euclidean space, then all other 
coefficients hij etc. obtained through any admissible transformation of coordinates will 
also represent the metric of same Euclidean space.  

On the other hand  let us consider an arbitrary change in metric coefficients   
gij(x) in equation (16) to  g1ij(x).   Here, by an arbitrary change  we mean a change that 
is brought about on any considerations other than through an admissible transformation 
of coordinates.  From equation (16), it can be easily seen that an arbitrary change in 
metric coefficients  gij(x)  to say  g1ij(x),  without any corresponding change in 
coordinate parameters xi, will lead to a change in separation distance 'ds' between 
points P1  and P2  to say  ds1.  Therefore,                

 (ds1) 2 = g1ij dxi dxj                                                   ................. (18) 
Obviously, from equations (16) and (18), 'ds1' cannot be equal to 'ds' until and unless 
g1ij(x) is equal to gij(x).  The ‘arbitrarily changed’ coefficients g1ij(x) can be associated 
with the metric of a Riemannian space, whereas the original coefficients gij(x) 
represented the metric of Euclidean space.  Hence, it may be concluded that whenever 
the metric [gij(x)] of Euclidean space is changed (through whatever means -  other than 
admissible transformations) to the metric [g1ij(x)] of Riemannian space, the separation 
distance 'ds' between two neighboring points P1 and P2 given by equation (16) will 
change to the separation distance 'ds1' as given by equation (18).     

Any change in separation distance ds between space points P1 & P2  to ds1  will  imply  
a  relative displacement between neighboring points  P1  &  P2, leading  to the  
concept of deformable space where the space points are no longer held invariant.  
This notion of relative displacement (with displacement vector U) will be applicable at all 
space points  where the metric coefficients  gij(x)  are changed  to  g1ij(x).   

GR Postulate implies Deformable Space 

However, as per General Relativity, it is a fundamental postulate of GR that a 
gravitating body with its gravitational field changes the metric [gij(x)] of Euclidean space 
to the metric [g1ij(x)] of Riemannian space in accordance with Einstein’s Field 
Equations.  With this change in the metric of space, the separation distance ‘ds’ 
between any pair of neighboring space points P1 and P2 will also change to ‘ds1’ as 
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given by equations (16) and (18).   That means all space points within the region of 
gravitational field will experience relative displacements (with displacement vector U) 
leading to the development of deformation of space in that region.  Hence, in essence, 
the fundamental postulate of GR  implies the deformation of space in the region of  
gravitational field.   

This displacement vector field U will naturally lead to the development of a strain 
field throughout the region of space under consideration. In the study of a continuous 
medium, we consider a continuum of identifiable material points,  mathematical 
representation of which constitutes a manifold.  The deformation characteristics of such 
a continuous media are studied through the study of changes in metric coefficients of 
the manifold.  In fact, subtracting (16) from (18)  we get: 

(ds1)² - (ds)² =  {g1ij - gij} dxi dxj  =  2.eij dxi dxj             .............. (19) 

where eij represent the components of a strain tensor expressed as functions of 
coordinate parameters xi.   

Gravitational Field induced Strain Components 

Let us consider a spherical polar coordinate system with origin at point O and the 
coordinate parameters r, θ and φ.  For a spherically symmetric mass particle M of 
physical radius r0, located at the origin O of the coordinate system, if we consider the 
gravitational field in its vicinity (i.e. r > r0 > 0), the radial metric coefficient grr is given by 
the Schwarzschild solution as: 
              grr = 1/(1 - 2GM/c2r)  ;    gθθ =   r2  ;      gφφ=   r2.Sin2 (θ)         ............ (20) 

Thus the radial metric coefficient grr at any particular space point P1(r, θ, φ) can be taken 
as a function of M, that is  grr(M).   Its value in the region under consideration is always 
greater than unity for M>0.   The arc element or the separation distance dsr between 
two neighboring space points P1 and P2 in this region will be given by:  

(dsr)2 =  grr (dr)2 + gθθ (dθ)2 + gφφ (dφ)2 

          = (1/(1 - 2GM/c2r)).(dr)2 + r2.(dθ)2 + r2.Sin2 (θ).(dφ)2         …….... (21) 

As a part of detailed mathematical analysis, let us study the variation of dsr as a function 
of M.  Holding all other parameters constant, any change in M (say from M to M+dM), 
will induce a corresponding change in radial metric coefficient grr  which will lead to the 
corresponding change in the separation distance dsr between the two neighboring 
space points P1 and P2 under consideration. Therefore dsr can now be considered as a 
function of M, i.e. dsr(M).  Let us give a general notation [gij(M)] to the metric tensor with 
its coefficients grr(M), gθθ and gφφ in coordinate system (r, θ, φ).  With this general 
notation [gij(M)] for the metric tensor, equation (21) for the separation distance dsr(M) 
between two neighboring space points P1 and P2 in this region, can be re-written in a 
more compact notation, in line with equations (16) and (18) above, as: 

       {dsr(M)}2 = gij(M) dxi dxj                                   ..................... (22) 

where xi, xj refer to coordinate parameters (r, θ, φ). 
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In the small region under consideration, let us study the CHANGE in the separation 
distance dsr between two neighboring space points P1 and P2, when mass of the body 
located at the origin of reference coordinates (r, θ, φ) is CHANGED from M to M+dM 
(through whatever means). The changed separation distance will again be given by 
equation (22) as, 

          {dsr(M+dM)}2 = gij(M+dM) dxi dxj                      .................. (23) 

From equations (19), (22) and (23), we can compute the CHANGE or the VARIATION  
in the separation distance dsr between two neighboring space points P1  and P2,  when 
M gets changed to M+dM. 

{dsr(M+dM)}2-{dsr(M)}2 = { gij(M+dM)- gij(M)}dxi dxj   = 2.eij dxi dxj          .........(24) 

Whenever dsr(M+dM) is different from dsr(M), a strain field eij(x) can be associated with 
all space points, as induced by the change in mass of the gravitating body from M to 
M+dM or in other words, as induced by a change in the metric tensor from [gij(M)] to 
[gij(M+dM)].  In the reference coordinate system (r, θ, φ) considered above, let us 
substitute the value of metric coefficients gij(M) and gij(M+dM)   in equation (24) to get, 

  2. err = {grr(M+dM) - grr(M)}                                  ....................  (25) 

  and                  eθθ =  eφφ =  0                                                     ....................  (26) 
Substituting the simplified value of grr from equation (20), we get (an incremental value 
of err induced by dM) 

 err = {(1 + 2G(M+dM)/c2r) – (1 + 2GM/c2r) }/2 = G.dM/c2r     ................. (27) 
This shows that the total radial strain err induced in space by the gravitational field, is 
directly proportional to the mass M of the gravitating body.  All other strain components 
(eθθ  & eφφ) are zero. This set of strain components constitutes the strain field induced in 
the region of space influenced by the gravitational field of M.   

GR  induced  Elasticity  of  Riemannian 3-D Space 

 We have seen earlier that as the gravitational field develops or varies in a region 
of space under consideration, the radial metric coefficient grr and hence the radial strain 
component err varies accordingly, leading to the radial deformation of space. This radial 
deformation will keep developing or increasing with the development of gravitational 
field in that region. The radial deformation of Riemannian space induced by a 
developing gravitational field, through the variation of its metric tensor,  is a reversible 
phenomenon.  That means a developing gravitational field increases the radial metric 
coefficient grr, thereby increasing the radial spacing between concentric spherical 
surfaces and thus leading to the increase in radial strain or deformation.  But when the 
gravitational field is reduced back to the initial state, the radial strain will also get 
reduced to the initial state.  This reversible characteristic of the induced radial strain 
field in response to the external influence of gravitational field, actually implies an 
elastic response of the Riemannian space!!  This implied notion of elasticity property of 
space is further strengthened with the associated notions of the ‘energy’ of gravitational 
field.  Hence, we might view this revised notion of space, which is defined to be a 
continuum of space points, as an Elastic Space.   
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Mutual incompatibility of the Strain Components 

 The existence of radial strain components  err given by equation (27), with all 
other components being zero, violates the compatibility conditions for the strain 
components.  In order to illustrate and highlight this problem, let us consider the relative 
displacement vector U that gives rise to the strain components  err, eθθ and eφφ of 
equations (26, 27).    If ur is the radial component of the displacement vector U, then the 
strain components dependent on ur are given by, 

err =  ∂ur/∂r    ;     eθθ  =  ur/r      and    eφφ  =  ur/r                ………………. (28)  

Obviously, if the radial strain component err is non-zero, the radial displacement 
component ur must be non-zero.  But once the radial displacement component ur is non-
zero, the tangential strain components  eθθ and eφφ  cannot be zero. This precisely is the 
incompatibility of the strain components  err, eθθ and eφφ induced by the static 
gravitational field of a spherically symmetric gravitating body of mass M.  This 
incompatibility is not limited to the strain components induced by the Schwarzschild 
metric of spherically symmetric, static gravitational fields  but is applicable to all strain 
components induced by the Riemannian metric obtained from EFE.  In fact one of the 
essential requirements imposed by the standard compatibility conditions on strain 
components eij is that  the Riemann tensor composed from eij must be a zero tensor.  
This can be true only if both metrics of equation (19), namely g1ij  and gij are Euclidean 
which however contradicts the basic postulate of General Relativity.  Therefore, the 
specification of metric coefficients (20) as per the Schwarzschild solution is physically 
invalid and unacceptable.    

Physical Invalidity of General Theory of Relativity 

 In GR, the 'structure' of real physical space has been tampered with imprudently 
by hypothesizing that the metric coefficients of space are affected by the presence of 
gravitational field as per the Einstein’s Field Equations. The Einstein’s Field Equations 
require the metric of space under gravitational influence to be inherently Riemannian. 
However, as seen above, when the metric of space is ‘changed’ from Euclidean to 
Riemannian, the ‘induced’ deformation of space gives rise to a mutually incompatible 
set of strain components leading to discontinuities and voids that are physically invalid 
and unacceptable. The compatibility conditions of strain components require the metric 
of space to be Euclidean even under the influence of a gravitational field.  

Therefore, the main postulate of GR and the Einstein’s Field Equations are found 
to be physically invalid, firstly on account of the ‘deformation of space’ induced 
by the Riemannian metric and secondly on account of the violation of  essential 
compatibility conditions for the induced strain components in the space thus 
‘deformed’.  The General Theory of Relativity is thus physically invalid, null and 
void, irrespective of any claimed utility, application or validation of this ‘theory’.   

 G.  S.  SANDHU   
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Appendix  ‘A’ 

Review of Einstein’s  Original GR Postulate 

[Relevant Excerpts from an old book ‘THEORY OF RELATIVITY’ (PART IV – GTR)  by  W. PAULI, translated 
from the German by G. FIELD]] 

“As soon as the physical deductions from the special theory of relativity had reached a 
certain stage, Einstein at once attempted to extend the relativity principle to reference systems in 
non-uniform motion. He postulated that the general physical laws should retain their form even 
in systems other than Galilean.  This was made possible by the so-called principle of 
equivalence.  The problem next arose of how to set up such a theory which was to be based on 
the principle of equivalence and which would also apply to non-homogeneous gravitational 
fields.  If the square of the line element is transformed into an arbitrary curvilinear space-time 
coordinate system, it becomes a quadratic form in the coordinate differentials, with ten 
coefficients gik.  The gravitational field is now determined by this ten-component tensor of the 
gik, and no longer by the scalar light velocity.  At the same time the equation of motion of a 
particle, the energy-momentum law and the electromagnetic field equations for the vacuum, were 
all given a definite, generally covariant, form by introducing the gik.  Only the differential 
equations for the gik themselves were not generally covariant yet.  In a subsequent paper (1914), 
Einstein tried to establish these differential equations in a more rigorous manner and he even 
believed to have proved that the equations that determine the gik themselves could not be 
generally covariant.  In the year 1915, however, he realized that his gravitational field equations 
were not uniquely determined by the invariant-theoretical conditions, which he had formerly laid 
down for them.  To restrict the number of alternatives, he reverted to the postulate of general 
covariance, which he had previously ‘abandoned only with a heavy heart’.  Making use of 
Riemann's theory of curvature, he in fact succeeded in setting up generally covariant equations 
for the gik themselves, which met all the physical requirements. 

Originally, the principle of equivalence had only been postulated for homogeneous gravitational 
fields.  For the general case, it can be formulated in the following way: For every infinitely small 
world region (i.e. a world region which is so small that the space- and time-variation of gravity 
can be neglected in it) there always exists a coordinate system  K0 (X1, X2, X3, X4) in which 
gravitation has  no influence either on the motion of particles or any other physical processes. In 
short, in an infinitely small world region, every gravitational field can be transformed away. (We 
can think of the system K0 in terms of a small box freely falling under gravity.) It is clear that 
this "transforming away" is only possible because the gravitational mass is always equal to the 
inertial mass. It is evidently natural to assume that the special theory of relativity should be valid 
in K0. All its theorems have thus to be retained, except that we have to put the system K0, defined 
for an infinitely small region, in place of the Galilean coordinate system.  All systems K0, which 
are derived from each other by a Lorentz transformation, are on the same footing.  In this sense 
we can therefore say that the invariance of the physical laws under Lorentz transformations also 
persists in infinitely small regions.  We can now associate with two infinitely close point events a 
certain measurable number, their distance ds.  For this, we only need to transform away the 
gravitational field and then form, in K0 the quantity, 

                                 ds2 = (dX1) 2 + (dX2) 2 + (dX3) 2 - (dX4) 2                   ............. (A1) 
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Let us now consider some other coordinate system K in which the values of the coordinates x1, 
..., x4 are assigned to the world points in a completely arbitrary way, apart from the conditions of 
uniqueness and continuity. At each space-time point, the corresponding differentials dXi will 
then be linear homogeneous expressions in the dxk, and the line element ds² will be transformed 
into the quadratic form, 

                                    ds2 = gik dxi dxk                                                    ................. (A2) 

where the coefficients gik are functions of the coordinates. It is moreover obvious that for a 
transition to new coordinates, the gik transform in such a way that ds2 remains invariant.  The 
situation is thus completely analogous to that obtaining in the geometry of non-Euclidean 
multidimensional manifolds.  The system K0 in a freely falling box takes the place of the 
geodesic system; the gik in it are constant, so long as their second derivatives can be neglected 
and the line element is of the form (A1) up to terms of second order.  The totality of the gik 
values at all world points will be called the G-field. The equation of motion of a particle, which 
is subjected to no forces other than gravity, can now be set up very easily. The world line of such 
a particle is a geodesic line, 
                                     d²xi/ds2 + Γi

jk dxj/ds dxk/ds  = 0                            ................ (A3) 

where Γi
jk is a Christoffel symbol of second kind.  For in system K0 the particle is in a rectilinear 

uniform motion at a given moment, i.e. d²xi/ds2 = 0, which is at the same time the system of 
equations of the geodesic line in K0. Now the statement, that the world line of a particle is a 
geodesic line, is invariant and therefore holds generally. (We have assumed here, however, that 
the second derivatives of the gik with respect to the coordinates do not appear in the equation of 
motion of the particle.) The validity of this simple theorem is not surprising. It is just due to the 
fact that the line element was defined in such a way that the world line of a particle becomes a 
geodesic line.  We thus see that the ten tensor components gik in Einstein's theory take the 
place of the scalar Newtonian potential ΦΦ; the components ΓΓi

jk formed from their 
derivatives, determine the magnitude of the gravitational force. 

There is, however, also a third way in which the G-field can be measured. With the help of 
measuring rods (or better, measuring threads) and clocks we could determine, for a given 
coordinate system, the dependence of the magnitude ds of the line element on the coordinate 
differentials dxk  along all world lines originating from an arbitrary point. From this the G-field 
follows immediately.  It thus characterizes not only the gravitational field but also the behavior 
of measuring rods and clocks, i.e. the metric of the four-dimensional world, which contains the 
geometry of ordinary three-dimensional space as a special case. This fusion of two previously 
quite disconnected subjects - metric and gravitation - must be considered as the most beautiful 
achievement of the general theory of relativity.  The motion of a particle under the sole influence 
of gravity can now be interpreted in the following way: The motion of the particle is force-free. 
It is not rectilinear and uniform because the four-dimensional space-time continuum is non-
Euclidean and because in such a continuum a rectilinear uniform motion has no meaning and has 
to be replaced by motion along a geodesic line. This fusion of gravity and metric leads to a 
satisfactory solution not only of the gravitational problem, but also of that of geometry. The 
general theory of relativity now allows us immediately to make a general statement: Since 
gravitation is determined by the matter present, the same must then be postulated for 
geometry, too.  The geometry of space is not given a priori, but is only determined by 
matter.”   


