
 1

SC207 Software Engineering

Review Report: Producing More Reliable Software

Guo Zaiyi (SA1)

Lecturer: Dr. Edmond C. Prakash

School of Computer Engineering
Nanyang Technological University

Abstract
This term paper is prepared for SC207 Software Engineering. The
assigned paper is

Producing More Reliable Software: Mature Software
Engineering Process vs. State-of-the-Art Technology?

By
James C. Widmaier/Department of Defense

410-854-6951, widmaier@ncsc.mil
Dr. Carol Smidts/University of Maryland Reliability

Engineering Program
301-405-7314, csmidts@Glue.umd.edu

Xin Huang
301-405-1071, xhuang@Glue.umd.edu

This review report will discuss on following topics.

♦ Related topics covered in lectures
♦ Contribution of this paper
♦ Elaboration of techniques
♦ Relevant works
♦ Relation to lab project
♦ Possible improvements and extensions
♦ Comment on notations/diagrams
♦ Validation and expansion of ideas
♦ Comments on 5Ps
♦ Comments on result and relevance to future

Keywords: software reliability, Capability Maturity Model,
formal methods, software engineering experiment, software
process and product metrics

1 Introduction

A software project is assigned to two software developers
and the main paper wishes to find out which approach
produces more reliable software. One company is specialized
in the state-of-the-practice waterfall method rated at a
Capability Maturity Model Level 4. A second developer
employed mathematically based formal method with
automatic code generation.

2 Review of the paper
2.1 Locate the paper

The paper was searched using google search engine and was
found under Kestrel Institute.

Click here to retrieve the soft copy of the paper.

2.2 Related topics covered in lectures

This paper tries to compare the reliability of two processes of
developing a software. One of them, the waterfall model
was discussed in �software process models� module, while
the other, mathematically based formal methods is not
covered during lectures. Formal methods involve creating
system specification using mathematical notation (especially
discrete mathematics), which is supposed to be more
complete, consistent, and unambiguous than those produced
using conventional methods.

There are other topics also mentioned in this paper, such as
scheduling, project management, documentation, testing,
etc.

2.3 Contribution of this paper

This paper explores what kind of approach can produce more
reliable software. By examining the strengths and
weaknesses of two methodologies, namely state-of-the-
practice waterfall method and mathematically based formal
methods with automatic code generation, it suggests a
hybrid software development methodology in order to
improve the reliability performance.

It suggests that during requirements analysis, it is better to
use formal approach because mathematical specification
reduces ambiguities and even spots contradictions in the user
requirement. While for process management and
documentation, it is better to use conventional approach
which is strong in this area, as shown by the experiment.

The paper also discusses some issues during software
development, such as inexperienced junior engineers, errors
occurring during automatic code generation. Audiences are
advised that these issues should be considered early in the
project management to avoid defective software
development progress and product.

 2

2.4 Elaboration of techniques

The experiment was conducted as follows: it assigned the
project to two companies specializing in each methodology.
Both companies were given identical functional specs and
agreed to a generous and equal cost, schedule, and explicit
functional reliability objectives. After the completion of
software, a third party reviewed the customer�s requirements,
refined the model after all faults were removed and develop a
test model to test the software. Failure data were gathered for
each developed software application and then used to
estimate the operational functional reliability.

The way it defined the reliability is simplified comparing to
the real situation. The reliability value is the probability of no
failure for each gate transaction, i.e., the successful gate
transactions divided by the total attempted gate transactions.
It defined two levels of failures: level 1 failure was the one
which brought the system to a critical state and reliability
target was specified to be 0.99 per transaction. Level 2
failure was defined to be less severe but manifested
themselves as the system not working properly and the target
was 0.9 per transaction.

During software development process, each company used
different techniques to aim the development. The company
with Waterfall method used Objected Oriented approach,
with the help of Rational Rose tool and Unified Modeling
Language (UML). The one specialized in formal methods
used Haskell language to write executable specifications,
with automatic code generation by Specware.

The testing party constructed the test model by using
TestMaster, a new test design tool based on the model
reference test technology. The test cases were generated
automatically using a script generator. The generator
develops tests by finding a path through the specified system
diagram from the starting to the exit state. Once a path has
been defined, the test generator creates a test script for that
path by concatenating all of the test action statements and
data values required to move the system from its current state
to the next state. Once this script is applied to the system
under test, the system should follow the sequence defined by
the path, if the system�s implementation is correct.

To fully automate the entire testing process, Mercury�s tool
WinRunner was chosen. It generates test cases according to
an operational profile, which is the set of operations which
users will employ and their probability of occurrence. Thus
the failure rate would approximate the real one if the system
were put into use.

After collecting the statistical results, a comparison was
made between two companies� performance. Several things
were compared besides the final software reliability, such as
people involved, development activities, etc. The underlying
reasons for the result were also discussed, and a conclusion
was drawn at the end.

2.5 Relevant works

Author(s) John D. Musa
Year 1999

Book Title Software Reliability Engineering: More
Reliable Software, Faster Development and
Testing

Some
Description

It spotlights the practical steps that
necessary to apply software reliability
engineering to software development and
testing. It introduces topics such as
developing operational profiles, preparing
and executing test, software reliability
models, etc.

How does
it relate to
the main
paper

It is a comprehensive publication on
software reliability, containing detailed
explanation on the techniques of
determining the reliability of a software. It
helps me to understand how �reliability� is
defined and tested in the main paper.

Author(s) Kamesh Pemmaraju

Ed Lord
Gary Mcgraw

Year 1999
Article Software Risk Management: the

Importance of Building Quality and
Reliability into the Full Development
LifeCycle

Some
Description

This article discusses the importance of
quality and reliability of software. It
describes the issues we should take into
consideration at different stage of a
software development lifecycle to ensure
the reliability.

How does
it relate to
the paper

The main paper concentrates on how the
methodology employed affect software
reliability, while this article elaborates
issues to ensure software reliability at all
stages of a development life cycle. It is
more general, and gives a good
understanding on producing a reliable
software.

Author(s) Michael G.Hinchey, Jonathan P.
Year 1995
Book Title Applications of Formal Methods
Some
Description

It illustrates the application of formal
methods to realistic problems, each with an
industrial relevance, in various application
domains, describing how they can be scaled
to large-scale problems, and providing an
evaluation of methods, tools, and validation
and verification techniques.

How does
it relate to
the paper

It shows how formal methods are applied in
software engineering, how it is currently
developing and gives me a general picture
of formal methods.

Author(s) Jonathan P. , Michael G. Hinchey
Year 1995
Article Seven More Myths of Formal Methods
Some
Description

It lists and dispels seven myths about the
nature and application of formal methods.

How does
it relate to
the paper

The �Myths� it discussed, such as formal
methods delay the development process;
formal methods lack tools; formal methods
replace traditional engineering design
methods; are all closely related to the main
paper.

 3

2.6 Relation to lab project

This paper gives us some idea on improving software
reliability by using proper methodologies when developing
software. The approach we take in the lab is the waterfall
model, which starts from user requirement analysis, followed
by design, implementation, integration and testing.
According to the paper, this is a state-of-the-practice method,
which is strong in process management, documentation, thus
the whole process is reproducible. But the less informal
approach (i.e. use English rather than mathematical notations
to do specifications) may result in incompleteness or errors.

The other approach, namely formal methods, is more
advanced and unfamiliar to us, thus utilizing this technique is
not practical for this particular lab project. However, it does
impress me that analysis is a significant stage of the software
development life cycle. A good analysis may be time
consuming, but it makes great difference: it eliminates
ambiguity, spots incompleteness and contradictions in
clients� statements, thus less trouble will occur during
subsequent stages. For the future projects, we may consider
using formal approach to ensure a thorough analysis. Of
course, this means we should spend some effort to master
this technique before we can make use of it.

Through this paper, I also learnt that besides UML and
Rational Rose, many other design and implementation tools
aiming to ease the development process are available. For
example, the functional programming language Haskell,
which differentiates itself from �imperative� languages such
as C++ and Java, is superb for writing executable
specifications and suitable for programs which need to be
highly modifiable and maintainable. Others such as
Specware provides automatic code generation. Although I
won�t have chance to try these tools for this project, they
may be useful in the future assignment.

This paper also raises some issues that we should take care
of. One is that junior engineer failed to solve a seemingly
easy problem with new Object Oriented tools. This led to
unforeseen delay and other troubles. This is exactly what is
happening in our lab project. It is our first time to use
Rational Rose and a lot of diagrams need to get familiar
with, and though we have already written many programs
using Java, we are unfamiliar with many useful packages,
such as JavaMail and Java3D API. Learning these new
things takes a lot of effort, so we are a bit behind the
schedule. However, we are more well-equipped after this
learning experience, and ready to take more challenges. The
most important thing is to be able to learn fast, as rapid
development is very normal in computer engineering.

The other is automatic code generation is not always reliable,
as shown in the paper. The unanticipated bugs cost the
develops� precious time. Automatic generated code also
suffers from a code optimization problem. Thus we have to
be careful when deciding whether to use such kind of tools.

2.7 Possible improvements and extensions

I feel the following areas in this paper can be improved or
extended.

Besides tabulating the experiment results, the detailed
comparison of two developments can also be tabulated for
the ease of reading and referring. Elements to be put into the
table can be possible reasons for not detecting errors in
requirements, the tasks scheduled but not completed
(especially testing), unexpected issues raised, quality of
documentation, weaknesses, etc.

As mentioned in this paper, one of the weakness of the team
specialized in waterfall method is that �requirements analysis
was not sufficient nor did it involve all �next step� parties to
detect inconsistencies or incompleteness�. Consequently �the
developed product reflected only what the coder interpreted
to be the requirements�. While the formal methods team has
�continuity throughout the development from one stage to
another stage� because the two scientists �did it all�. So it is
questionable that if formal methods is used by a larger team
for analysis, whether it can still keep this continuity, that is,
what is done by analyzers is fully reflected during design and
implementation stages. Further research can be done to find
what is the result of a combination of conventional methods
and formal methods; whether it is always good, and what
factors will influence the performance (such as management
skills, etc).

2.8 Comments on notations/diagrams

There are 3 diagrams in this paper.

Figure 1 (pg 2) is an illustration of the experimental process.
It provides an overview of the sequence of the different
processes (S-O-A process, S-O-P process, and testing
process). It is concise and very helpful to the audience to
catch the whole picture of the experiment.

Figure 2 (pg 2) is essentially a flowchart of the Personal
Access Control System (the software to be developed by
both teams), with some variations. Besides action box and
decision box which are common in flowcharts, it also
includes two database to show the interaction of the system
and external database. It helps the audience to understand the
discussion on system reliability in the following paragraphs.

Figure 3 (pg 4) is a model used by TestMaster to test the
software. It can be easily seen that the chart is derived from
previous flowchart, discarding all the details irrelevant to
testing. It consists of the states that a tester interested: if the
software functions properly, it should follow the state
transitions as desired. This figure is essential such that
audience understand the testing process.

2.9 Validation and expansion of ideas

As this experiment is conducted only once, and there are
many contingencies (such as people, team dynamics, nature
of the software to be developed, software development tools
used) which influence the result of the experiment. It is
highly possible that one repeats this experiment and gets a
different statistics result. This doesn�t mean the conclusion of
this paper is not trustable. The comprehensive discussion in

 4

this paper illustrated the effect of contingencies before
coming up with the conclusion.

Though the result may vary from case to case, the conclusion
this paper suggests is worth trying. As indicated in section
2.7, within the conclusion itself, there are many question
marks and further research may be carried out on these
specific questions. For example, what kind of hybrid
software development methodology is the optimum solution,
and whether it varies with other factors, such as the maturity
of project team, experience level of engineers, nature of
software itself, and other constraints? To do this, one may
design some software project various in nature (such as of
different level of complexity, security requirement, etc), and
assign them to a number of project teams, which all use
hybrid software development methodology as suggested in
this paper, but varying in some factors (such as people,
design tools, implementation tools) and collect the statistics
of reliability as well as other metrics, to see if can draw some
conclusions.

2.10 Comments on 5Ps

The people, product, process, project and platform factors of
two approaches are summarized as follows:

 SEI/CMM Level 4
(team 1)

Formal Methods
(team 2)

People 1 entry level engineer
3 Senior S/W engineer

1 Process Engineer
1 Q.A. Engineer

1 Program Manager

1 Ph.D. Compute
Scientist

1 Computer
Scientist

Comments
on people

Team 1 had more members, and it has a
program manager to do management related
activities such as planning, project tracking,
peer reviews, etc. The entry level engineer
who was unfamiliar with design tools caused
some unexpected problem during
development. Team 2 comprised only two
members, experienced in techniques but
relatively weak in project management.

Process Waterfall model Formal methods
model

Requirements 83 (hrs) 178 (hrs)
Sys & S/W 211 52
Design 47 283
Implement 36 36
Integration &
test

385 8

Total 762 557
Comments
on process

Team 1followed the normal waterfall model.
Team 2 using formal methods devoted a lot
in analysis and design, and very little time for
integration and testing. This is possible
because they used automatic code generation.

Product Reliability = 0.56 Reliability = 0.77
Comments
on product

Product objectives and scope were made
clear to both team, as stated in this
experiment, �they were allowed unlimited
access to the customer to understand /refine/
correct the specification�.

Project This was not elaborated in this paper.
However, from some descriptions, we find

that team 1 is more well-scheduled and has a
better organized management process for the
project, while team 2, weak in project
management, had to sacrifice their testing
time when unexpected bugs occurred.

Platform This was not elaborated in this paper.

2.11 Comments on result and relevance to future

As software systems are becoming more and more common,
they will affect out businesses and daily lives deeply.
Software failure would be unacceptable as software plays
crucial roles in many areas. Hence, how to produce more
reliable software is a topic worth thorough discussing.

This paper attempts to examine if state-of-the-art
mathematical based formal methods can help in increasing
software reliability. The formal methods are to provide a
specification language which has a firm mathematical
semantics and a development notion which has a clear
concept of what needs to be proved for a design (ultimately
implementation) to satisfy its specification. Thus it is
expected produce better software. This paper got the result
that neither of them (conventional waterfall model and
formal methods with automatic code generation) could
satisfy the reliability requirement. But it did get something
worth thinking about.

According to the comparison, formal methods do have
advantage in analysis and results show that the process which
made use of formal methods had slightly better reliability,
and the reliability could have been increased further if the
test had been completely conducted. However, other factors,
such as the bug in Specware, and poor management process
degraded its performance. I would say it is a good point to
use formal methods for analysis, but other aspects need
improving. The way suggested by this paper is to combine
the two methodologies to optimize the performance, and I
strongly agree with that.

Formal methods are proven to be worth people�s attention.
However, making use of it doesn�t mean conventional way
has to be replaced; Formal methods is not an all-or-nothing
approach. A proper combination of conventional
methodology and formal methods is of great interest and
seemingly that is the right direction to increase software
reliability.

3 References

[1] Pressman, Roger S., Software engineering: a
practitioner�s approach, 5th edition, McGraw Hill, 2001.

[2] Musa J., Software reliability engineering: more reliable
software, faster development and testing, McGraw Hill, New
York, 1999.

[3] Haskell, The Haskell 98 Report, http://www.haskell.org/

[4] Pemmaraju K., Lord E., McGraw G., Software risk
management: the importance of building quality and

 5

reliability into the full development life cycle,
http://www.cigital.com

[5] Michael G. Hinchey & Jonathan P.Bowen, Applications
of formal methods, Prentice Hall, 1995.

[6] Formal Methods, http://www.afm.sbu.ac.uk/

[7]Langley formal methods, http://shemesh.larc.nasa.gov/fm/

[8] Specware, http://www.specware.org/

[9] Kestrel Institute, http://www.kestrel.edu/home.html

