
p-
i-
e
i-
er-
ty
r-
-
on

de
te

ed
in

in
d-

ed
n
er
lts

wo
is-
on
of
ery
the
ro-
test

f
d
all
est

©
co
Go
to
pu
IC
©

ABSTRACT:

Producing More Reliable Software: Mature Software
Engineering Process vs. State-of-the-Art Technology?

A customer of high assurance software recently sponsored a
software engineering experiment in which a real-time soft-
ware system was developed concurrently by two popular
software development methodologies. One company spe-
cialized in the state-of-the-practice waterfall method rated at
a Capability Maturity Model Level 4. A second developer
employed his mathematically based formal method with
automatic code generation. As specified in separate con-
tracts, C++ code plus development documentation and pro-
cess and product metrics (errors) were to be delivered.Both
companies were given identical functional specs and agreed
to a generous and equal cost, schedule, and explicit func-
tional reliability objectives. At conclusion of the experiment
an independent third party determined through extensive
statistical testing that neither methodology was able to meet
the user’s reliability objectives within cost and schedule
constraints. The metrics collected revealed the strengths and
weaknesses of each methodology and why they were not
able to reach customer reliability objectives. This paper will
explore the specification for the system under development,
the two competing development processes, the products and
metrics captured during development, the analysis tools and
testing techniques by the third party, and the results of a reli-
ability and process analysis.

KEYWORDS:

software reliability

Capability Maturity Model

formal methods

software engineering experiment

software process and product metrics

1. OBJECTIVE OF STUDY
A modest corporate sponsored software develo

ment activity was initiated to compare the functional rel
ability of two software applications built from the sam
requirements specification using different software eng
neering methodologies. One method was a classical “wat
fall method” perfected to a high level of process maturi
(Level 4) defined by Carnegie Mellon’s Software Enginee
ing Institute Capability Maturity Model[8]. The other meth
odology employed a state-of-the-art technology based up
formal methods with theorem proving and automatic co
generation. Specware[4] developed by Kestrel Institu
embodied this technology.

Each software development effort was manag
under separate subcontracts to companies specializing
each methodology. There were a few simple ground rules
the experiment. Each company was given equivalent fun
ing and schedule delivery requirements and well defin
reliability objectives for two defined classes of failures. I
addition they were allowed unlimited access to the custom
to understand,/refine/correct the specification should fau
be uncovered. (In actuality the customer embedded t
faults in the spec to determine if the developers could d
cover them through their methodology). Process metrics
skill level, hours, and errors uncovered as a function
development stage were to be gathered. The final deliv
was to include the source and executable C++ code for
system, documentation on the employed engineering p
cess, design and development documents, software
plans, procedures, and test results.

An independent third party, the University o
Maryland’s Reliability Engineering Department, reviewe
the customer’s requirements, refined the model after
faults were removed from the spec, and developed a t

Producing More Reliable Software: Mature Software
Engineering Process vs. State-of-the-Art Technology?

James C. Widmaier/Department of Defense

410-854-6951, widmaier@ncsc.mil

Dr. Carol Smidts/University of Maryland Reliability Engineering Program

301-405-7314, csmidts@Glue.umd.edu

Xin Huang

301-405-1071, xhuang@Glue.umd.edu

2000 Association for Computing Machinery. ACM Acknowledges that this
ntribution was authored or co-authored by a contractor or affiliate of the [U.S.]
vernment. As such, the Government retains a nonexclusive, royalty-free right
publish or reproduce this article, or to allow others to do so, for Government
rposes only.
SE 2000, Limerick, Ireland
ACM 23000 1-58113-206-9/00/06 �$5.00
1

tifi-
i-
tes

es
li-
ide
the
ital
he
as

op-

en
m
A
i-
d
ers
the

h
et
99
model of the specified system using Teradyne’s Testmaster
[1] They then executed a test script using Mercury’s tool
WinRunner [5]. (SPRE Inc. was hired to independently vali-
date the test models developed by the University of Mary-
land). Each delivered software system was tested by the
University of Maryland using the same test scenario. Failure
data were gathered for each developed software application
and then used to estimate the operational/functional reliabil-
ity. Process metrics at discrete stages were gathered from
the two software developers and were compared to help
understand what led to differences in reliability.(see Figure
1 for the Experimental Process)

2.DESCRIPTION OF SOFTWARE UNDER TEST
The software system specified for contracted

development was a fictitious version of a personnel badge
reader typically found at the entrance to restricted buildings.
The Personnel Access Control System (PACS) is an auto-
mated entry access (gate) which reads a personal I.D. card
containing an individual’s name and social security number.
The user swipes the card in the reader while the system
searches for a match in the database, which may be periodi-
cally updated by system administration. If a match occurs,

the system allows the user to enter his/her personal iden
cation number (PIN), a four digit code, into a twelve pos
tion keyboard display. The system then validates invalida
the PIN and instructs/prevents entry through the gate.
A single linedisplay screen provides instructional messag
to the user. An attending security officer monitors a dup
cate message on his console with a gate entry over-r
capability. There are six simple hardware components to
PACS system - the card reader, keyboard, single line dig
display unit, the guard display unit, guard reset unit, and t
gate. Figure 2 summarizes the functional requirements
stated by the customer for the two software system devel
ers.

For simplicity the system was to consist of only
one reader which operated twenty-four hours a day, sev
days a week. Usage (i.e. system loading) was to vary fro
light to heavy depending on time of day and day of week.
Level 1 failure of the software was defined to be the cond
tion or conditions in which the software was hung, or vali
user cards and valid pins were not processed, invalid us
had access, timing requirements were compromised, or
guard could not over-ride the system.
In summary, a Level 1 failure was defined to be one whic
brought the system to a critical state. The reliability targ
was specified to be 0.99 per transaction (i.e. on average

Software
Specification

S-O-A Technology S-O-P Process

Formal Method development

Company Y

SEI/CMM Level 4 waterfall

Company X

C++ code
people & process metrics

Spec Modeling

(University of
SPRE Inc.

 Reports:

C++ Code
people & process metrics

Product reliability
Process & People

 Maryland)

IV&V
Code Testing
Metric Analysis

Figure 1: Experimental Process

Enter

valid
card

input

valid

PIN

Gate

reset
entry

notify
officer

 Card/PIN
database

yes

yes

no yes

no

3

attempts

Card
Reader

Keyboard

LED

LED

 3
tries

no

LED
message
to officer

gate

LED

* Card reader and keyboard share the single line LED display

 Figure 2: Personnel Access

audit

database
LED

 message

no allow
 entry?

over-ride
LED

message

yes

yesno

Control System (PACS)
2

pro-
oft-
to
ing
re

ge-
ent
&
nt,
,

nt.
or

o-
red
)
re

e-
sed
m

++
-

ct
en-
ch-
ss

ro-
s.
d-
as
to
a

ca-
i-
e

er-
-
ode
he
by
n
ere
a
no
t-

his
ed

s,

nal-
out of 100 typical gate transactions were to run successfully
without Level 1 failures.)

Level 2 failures on the other hand, were defined to
be less severe but manifested themselves as the system not
working properly. The guard could override these malfunc-
tions and still keep the system running. Anomalies such as
an entrant carrying a large package who needs extra time
were to constitute conditions for Level 2 system failure.
Thus, a Level 2 failure was to have an operational work
around. The target reliability was specified to be 0.9 per
transaction.(i.e. 9 out of 10 transactions were to run success-
fully)

The specification also included messages for both
the user and guard, auditing log requirements, database size
constraints, keyboard timing and response requirements,
and a few additional modest performance requirements.

A software solution was estimated by an indepen-
dent source to be on the order of 800 to 1000 lines of C++
source code statements, excluding embedded comments.

3. RELIABILITY DEFINITION
Both software developers were given specific and

identical targets for the reliability of their software as men-
tioned above. Reliability estimations were to be determined
from testing the software using typical user input function
frequency profiles (i.e. operational profiles). Operational
profiles are defined as particular functions/operations and
their frequency of usage [Musa99]. (In this experiment 88
operations comprehensively defined the compete functional
profile for the specified system. However, only 35 were
needed to cover 99% of all the user’s expected operational
profiles.) The reliability value in this project was defined as
the probability of no failure for each gate transaction.
Equivalently, it was the number of successful gate transac-
tions divided by the total attempted gate transactions for the
given operational profile.

In actuality, there are numerous ways to estimate
the operational reliability taking into account runs which are
partially successful or situations where faults are removed
and the system operations are continued. However, in this
experiment there was no requirement for demonstrating
improvement in reliability (reliability growth) by the devel-
opers as a function of software evolution (calendar time).
Thus, computing the reliability for this experiment by the
developers should have equated to the simple success to
success plus failure ratio. For example, if the program failed
twice in one hundred separate system test runs, the reliabil-
ity would have been 0.98 per transaction.

4. DEVELOPMENT ACTIVITIES
Conventional SEI Level 4 Approach
A development team which has reached Level 4 in

the ascending scale of 1 to 5, is characterized as one which
is focused on product and process quality. The team in this
approach consisted of a program manager, a requirement

spec analyst, a system analyst, a quality assurance and
cess engineer, one junior and three senior experienced s
ware engineers. Their activities could be categorized in
two groups-engineering and management. Engineer
activities included the Requirements Management, Softwa
Product Engineering, and Quantitative Process Mana
ment. Supporting these major activities were managem
related activities of: Project Planning, Project Tracking
Oversight, Peer Reviews, Integrated Software Manageme
Intergroup Coordination, Training, Quality Assurance
Quality Management, and Configuration Manageme
Each activity had a corresponding documented process
procedure. The design methodology of choice was to intr
duce object oriented methodology to generate the requi
C++ source code. The Unified Modeling Language (UML
and its computer based support tool Rational Rose [7] we
employed for the first time to specify the system requir
ments and lead into development. Testing was addres
with only sixteen cases and they were run during syste
integration. A statement was made at delivery that the C
“code was 100% reliable”; however no reliability demon
stration tests were conducted.

Formal Methods Approach
The formal methods team consisted of a contra

manager and two senior mathematicians/computer sci
tists. Aside from scoping the cost and schedule the two te
nical people were responsible for all development proce
activities.

Requirements analysis was a very intense and p
ductive activity which produced multi-level state diagram
The team opted to a prototyping stage which involved mo
eling and executing Haskell[2] specifications. Specware
required in the contract could have been used directly
express the hierarchal functionality of the PACS system in
language called SLANG and run as an executable specifi
tion. According to the programmer Haskell offered add
tional features with which to capture features of imperativ
programming languages as well as being “more us
friendly”. The Haskell prototype was automatically con
verted to Specware specifications so that the automatic c
generation feature of Specware could be exercised. T
source code generated was in C++ and was compiled
GNU C++ compiler. The development team’s integratio
test set-up was handwritten and only thirty test cases w
run. A bug in the automatic code transformation led to
schedule slip before it could be resolved; consequently
theorem proving was done to verify specification correc
ness and completeness. As with the first contractor, t
developer had no reliability demonstration test and assum
a “correct and complete implementation”.

5. TESTING SCENARIO
During the subcontracted development activitie

the University of Maryland prepared for the reliability
assessment of the two operational coded solutions and a
3

ns
al
em
er
r-
f
ed
m
n-
an
ty
ed
ter
ts
d a
ve
y
n-

for

iv-
cts.
ss
ns
-
ly,
ual
uct
and
nt
ma-

e
ry
tly
le 1
ts

the
n,

for
s
ach
the
y
l”
ble
h-
ule
sy
t-
s,
ysis of developer process metrics. The first step in the
assessment process was the construction of a test model
using the tool TestMaster. An outside independent consult-
ant (SPRE Inc.) was hired by the customer to review the
TestMaster models constructed by the University of Mary-
land [3].

TestMaster is a relatively new test design tool
based on the model reference test (MRT) technology. It uses
the concept of Extended Finite State Machine (ESFM) to
graphically and textually represent the specifications and
describe the application’s desired behavior. Software tests
are created automatically using a script generator. The gen-
erator develops tests by finding a path through the specified
system diagram from the starting to the exit state. The path
will be a sequence of events and actions that traverse the
diagram, defining an actual -use scenario. Each transition in
the path may contain events, output actions, control infor-
mation (predicates and constraints), variable assignments,
and testing information. Once a path has been defined, the
test generator creates a test script for that path by concate-
nating all of test action statements (in the language of the
test execution environment) and data values required to
move the system from its current state to the next state [1].
When the test executor applies this script to the system
under test, the system should follow the sequence defined
by the path if the system’s implementation is correct. Figure
3 shows a high level view of the PACS TestMaster Model.

Figure 3: High Level TestMaster
Model of PACS

To fully automate the entire testing process, the test
generation tool had to be followed by a test execution tool.
In this study, Mercury’s tool WinRunner was chosen. Win-
Runner’s test executor recognizes its own Test Script Lan-
guage (TSL) which was used to construct TestMaster
snippets. To calculate the reliability of PACS from the reli-
ability of its functional and nonfunctional elements (perfor-
mance), it is necessary to determine the probability with
which a particular functional element will be executed. The
probability can be determined by identifying the likelihood

of different user software operations and the functio
involved in these operations. (An operation being a logic
system usage scenario which returns control to the syst
when complete and whose processing is different from oth
operations). An operational profile is simply the set of ope
ations which users will employ and their probability o
occurrence [Musa]. The PACS operational profile contain
a theoretical 88 operations with frequencies ranging fro
2.7E-10 to 0.38. A total of 35 out of the 88 operations co
tributed to a system reliability of 0.999, a value greater th
the specified 0.99 requirement. Modeling 0.995 probabili
space would still have been sufficient. Testing proceed
along different operations by constraining the TestMas
model in each operation with an identical number of tes
per operation. The testing approach could have considere
random selection of test cases; however, this would ha
precluded the in-depth investigation of the low probabilit
operations and the study of behavior of the code in this co
text. In all 200 test were run on each of the 35 operations
a total of 7000 test cases.

6. RESULTS
C++ software was designed, developed, and del

ered under the two methodology development subcontra
However, what was delivered for product and proce
requirements failed to meet all programmatic expectatio
in many areas-from functionality to the lack of explicit reli
ability estimates to the required process metrics. Ironical
both developers claimed they had satisfied contract
requirements from both the process and software prod
standpoints. Process metrics concerned with manpower
skill levels were captured for all stages during developme
by both subcontractors. These process metrics are sum
rized in Table 1.

In the SEI/CMM waterfall methodology much care
was taken for initial project preparation and estimation. Th
cost and schedule estimation predicted both early delive
and cost under-run. Project management was grea
involved at this and subsequent stages and as seen in Tab
amounted to almost 50% of all man-hours. Requiremen
analysis, ironically, was minimized after having initially
judged the customer’s Requirements Spec to be “one of
best seen”. However, lack of involvement of the desig
development, and testing team may have been the reason
not finding the “two hidden faults” in the Requirement
Spec. However, this team did tabulate defects found at e
of their major development stages. As time progressed
initial CMM Level 4 (Quantitative Processes and Qualit
Management) contractor degraded to a “maturity leve
somewhere between Level 1 and Level 2 (ad hoc/ repeata
respectively) when schedule and funding grew short. Tec
nical heroes were conscripted to meet cost and sched
when the junior engineer failed to solve a seemingly ea
problem with new Object Oriented tools. System level tes
ing was sacrificed to meet final delivery deadlines; thu

Insert Card

Enter Card Enter PIN

Exit

T

T

ProceedGuard

System Reset

T

T
T

T

T

T

4

he
al

6
n
. If
ad
ve
p-

ors
w.
nd
n
1

et-

l
are
eli-
he
s
ice
rs,

rig-
ng
e
ity
g
n
ch
ct
ring
e’s
ic,
lso

get
m
to

li-
ss
an

w
at
e
-

ted
ts.
all
or-
t on
ss
reliability based testing and consequential estimates were
never made other than a statement that: “The software is
100% reliable”. When the University of Maryland ran 7000
user profile tests on this contractor’s 296 lines of code, reli-
ability was determined to be 0.56 for Level 1 failures (on the
average 44 of 100 test cases caused Level 1 failures). Pro-
cesses and methodology were, however, well documented
and re-traceable through most of the “non-panic” portion of
the experimental development.

The formal methods process was surprisingly thor-
ough in the requirements analysis stage as evidenced by the
amount of time expended in this area (reference Table 1).

Table 1 Summary of Analysis Results

It was in this stage that both the incomplete and conflicting
requirements in the GFE specification were found. (One
ground rule of the experiment was that the two subcontrac-
tors could not share information, such as shortcomings in
the requirements provided by the customer. Thus, the SEI/
CMM Level 4 subcontractor never had the benefit of resolv-
ing the shortcomings uncovered by the formalists). There
was also continuity throughout the development from one
stage to another since the two scientists “did it all”. A proto-
type was developed by the mathematicians in Haskell, a
simple functional language with which they were intimately
familiar. This intermediate stage was neither expected nor
required, however, it was translated to the required
Specware specifications, and then to C++ code. The C++
code generation was a major undertaking, fraught with tech-
nical incompleteness found within the Specware tool. The
code generation stage consumed time and resources beyond
what was expected. Theorem proving was consequently not
done on the specifications because of escalating cost and
schedule constraints. Unfortunately, this would have been
an opportunity to uncover any possible specification faults
or inconsistencies (of which there were two). Testing to
enable reliability estimations was not conducted, which

consequently, would have also led them to discovery of t
two simple temporal errors. However, the 7000 operation
profile tests by the University of Maryland on their 398
lines of C++ code led to a reliability estimation of 0.77 (o
the average 23 Level 1 failures within a 100 test case set)
the two errors found during the requirements review h
been documented and removed, the reliability could ha
jumped to 98% instead of the measured 77 %!.The develo
ment process was poorly documented including the err
they found with the customer during a requirements revie
Their engineering process was more of a research a
development activity i.e. difficult to reproduce (a commo
short coming of most leading edge technologies).Table
summarizes the reliability estimates and performance m
rics,

7. CONCLUSIONS
From the system reliability perspective, the forma

approach produces better results than the classical softw
engineering approach; however, the customer’s system r
ability requirements were not met by either approach. T
reliability advantage realized by the formal method
occurred in the requirements stage where more than tw
the man hours were devoted to finding requirements erro
inconsistencies, and incompleteness. The very nature of
orous formal specifications and the executable prototypi
capability were responsible for this advantage. Due to tim
constraints, the formal approach never had the opportun
to employ the theorem proving features of the tool durin
which additional shortcomings in the original specificatio
may have been revealed. However, the formal approa
lacked the overall process environment for good proje
management and a documented approach for re-enginee
and/or maintenance. In addition a bug related to Specwar
auto code generator’s inability to represent nested log
cost the developers precious time. The formal approach a
suffers from a code optimization problem. While program
performance never became an issue in this simple tar
system, more realistically sized real-time software syste
performance requirements may stress Specware’s ability
generate efficient code.

The classical approach fell short of the stated re
ability objectives for a number of reasons as the proce
metrics revealed. Junior people being assigned to lead
apparently easy project got in technical trouble with ne
OO tools and technology. The primary weakness was th
requirements analysis was not sufficient nor did it involv
all “next-step” parties to detect inconsistencies or incom
pleteness. Consequently, the developed product reflec
only what the coder interpreted to be the requiremen
Inadequate scaling of the Level 4 process down to a sm
project may have also contributed to the degraded perf
mance as witnessed by the heavy loading of managemen
the resource consumption. Documentation of the proce

Summary of Analysis Results

 SEI/CMM Level 4 Formal Methods

People Company X
 1 Entry Level Engineer
 3 Senior S/W Engineer
 1 Process Engineer
 1 Q.A. Engineer
 1 Program Manager

Company Y
 1 Ph.D. Compute
 Scientist
 1 Computer
 Scientist

Process
 Requirements
 System & S/W
 Design
 Implementation
 Integration &
 Test
 (Management)

Total

SEI/CMM Level 4
 83 hrs
 211
 47
 36
 385

762

Undocumented
 178 hrs
 52
 283
 36
 8

557

Technology * Object Oriented
* Rational Rose
* Unified Modeling Language

* Formal Specs
* Specware

S/W
RELIABILITY 0.56 0.77
5

1,

y

le
ll,

/

y
EI
was very good and faults in the code could be easily cor-
rected.

In conclusion, it might be apparent that a hybrid
software development methodology be optimum for
improved reliability by building on the strengths of require-
ments analysis by the formalists and the process manage-
ment and documentation of the conventionalists. In any
case, no claims about the reliability of software products
should ever be made without having made deliberate testing
attempts and reliability estimations.

References:
1. Apfelbaum L., Spec-based tests make sure telecom
works, IEEE Spectrum, November 1997.

2. Haskell, The Haskell 98 Report, http://www.haskell.org/.

3. Huang, X., A Comparison Between Standard and Formal
Mathematical Development, Master’s Thesis, University of
Maryland, Department of Nuclear Materials and Reliability
Engineering, 1998.

4. Kestrel Institute, SPECWARE Users Guide, Version 2.0
Kestrel Institute, 1996.

5. Mercury, WinRunner User’s Guide, Version 4.0, Mercur
Interactive Corporation.

6. Musa J., Software Reliability Engineering: More Reliab
Software, Faster Development and Testing, McGraw-Hi
New York, 1999.

7. Rose, Rational Rose 98 Edition, http://www.rational.com
rose/.

8. Software Engineering Institute, The Capability Maturit
Model: Guidelines for Improving the Software Process, S
Series in Software Engineering, Addison Wesley, 1995.
6

