
Implementation of Fast Multipole Algorithm on

Special-Purpose Computer MDGRAPE-2

Nguyen Hai Chau, Atsushi Kawai and Toshikazu Ebisuzaki
Computational Science Division
Advanced Computing Center

RIKEN (Institute of Physical and Chemical Research)
2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan

ABSTRACT

N -body simulation is a time consuming task in which
force calculation part is most dominant part. The
simplest and most accurate algorithm for force calcu-
lation is direct summation which has time complexity
O(N2). It is not practically suitable for large-scale
simulations on most general-purpose computers. To
cut down cost of force calculation one applies fast
algorithms or performs force calculation on special-
purpose hardware. GRAPE is a special-purpose com-
puter designed for force calculation between point-
charge or point-mass particles. It performs force cal-
culation much faster than general-purpose computers
of similar cost. However the time complexity of direct
force calculation on GRAPE is still O(N2). In this pa-
per, we deal with the implementation of fast multipole
algorithm whose time complexity is O(N) on special-
purpose computer MDGRAPE-2. We present our ex-
perimental results for up to four millions particles sys-
tem. Performance and accuracy of FMM on GRAPE
is presented. Comparison of FMM with treecode and
direct summation on GRAPE is also given.

Keywords: N -body simulation, fast multipole
method, GRAPE special-purpose hardware, Ander-
son’s method, P2M2 method, tree algorithm.

1. INTRODUCTION

N -body simulation was devised in 1950s and widely
used since 1970s when digital computers became pow-
erful and affordable. It is an orthodox method of
studying particle systems nowadays. The N -body
simulation problems require very high computational
cost in which force calculation part is most expensive.
The cost of direct summation algorithm for force cal-
culation is O(N2), therefore calculation time grows as
rapidly as the number of body N increases. There
are two main approaches to reduce force calculation
cost of N -body simulation. The first approach is to

apply fast algorithms such as treecode [4] or fast mul-
tipole method [5] which reduces calculation cost down
to O(N. log N) and O(N), respectively. The second
is to perform N -body simulation with special purpose
hardware.

GRAPE (GRAvity PipE) [11], [12] is a special-
purpose hardware for the calculation of force be-
tween point-mass or point-charge particles. A typical
GRAPE system consists of a general-purpose com-
puter (hereafter we refer as ’host computer’) and a
GRAPE board. GRAPE calculates force and the host
computer performs everything else.

Although GRAPE can speed up force calcula-
tion significantly, about 100-1000 times faster than
general-purpose computers of the same price, calcula-
tion cost is still proportional with N2 for direct sum-
mation algorithm. Implementation of fast algorithms
on GRAPE therefore becomes demanded for large-
scale simulations. The first implementation of a fast
algorithm (treecode) on GRAPE is presented in [10].
The implementation combines advantages of both fast
algorithm and fast hardware and obtains typically 30-
50 times faster than the treecode without GRAPE.
This leads us to implement fast multipole algorithm
on GRAPE.

In this paper we describe the first implementation
of fast multipole method (FMM) on special-purpose
hardware MDGRAPE-2, a member of the GRAPE
family. Since GRAPE can only operate with point-
charge or point-mass interaction, we modify the orig-
inal FMM so that it can be run on GRAPE.

Remaining parts of the paper are organized as fol-
lows. Section 2 gives a summary of FMM and its
variants. Section 3 deals with GRAPE system archi-
tecture briefly. In section 4 we present our implemen-
tation of modified FMM on GRAPE and experimental
results. Finally, conclusions are given in section 5.

2. SUMMARY OF FMM, ANDERSON’S
METHOD AND P2M2

The FMM is presented in [5] for two dimensional



case. In the following we describe briefly non-adaptive
version of FMM for three dimensional case. We as-
sume all particles are uniformly distributed in a unit
cube.

Initially we construct a oct-tree structure by hier-
archical subdivision of the cube. The subdivision pro-
cess starts from the root cell at refinement level l = 0
of the tree which contains the whole system. The sub-
division is repeated recursively for all child-cell and
stops when r reaches an optimal refinement level n.
We call this process as tree construction.

Next we form multipole expansions for all leaf cells
then form multipole expansions for all non-leaf cells in
coarser level by shifting and adding up expansions of
their children. This step is called as upward pass as
we traverse the tree from leaf to root. In this step we
have performed multipole expansion transitions M2M.

Neighbour
cell

Interaction
cell

Objective
cell

Figure 1: Neighbour and interaction list of hatched
cell

The last step is downward in which we traverse the
tree from root to leaf. First we form local expansion
at geometric center of each cell due to potential field
of its interaction list.

The interaction list of a cell is the set of cells which
are children of the nearest neighbours of the cell’s par-
ent and which are not neighbours of the cell itself.
Neighbour list of a cell is set of cells in the same level
with the cell in question and have contact with the
cell. Figure 1 shows an example of neighbour and in-
teraction list of a cell.

The potential field due to interaction list of the cell
are calculated by converting their multipole expan-
sions to local expansion of the cell and adding them up
(M2L conversion). Then we sum up local expansions
at different refinement levels to obtain total potential
field at all leaf cells.

Finally we calculate force on each particles in all leaf
cells by summing up contribution of far field and near

field force. The near field contribution is directly cal-
culated by evaluating the particle-particle force. The
far field contribution is calculated by evaluating local
expansions at position of the particles (L2L transi-
tion). The time complexity of FMM is O(N).

Anderson [1] proposed a formulation of the mul-
tipole expansion. The purpose of his method is to
simplify the implementation of FMM. Here we briefly
describe his method.

Anderson’s method is based on the Poisson’s for-
mula. This formula gives solution of the boundary
value problem of the Laplace equation. When poten-
tial on the surface of a sphere of radius a is given, the
potential Φ at position ~r is expressed as

Φ(~r) =
1
4π

∫

S

∞∑
n=0

(2n+1)
(a

r

)n+1

Pn

(
~s · ~r
r

)
Φ(a~s)ds

(1)
for r > a, and

Φ(~r) =
1
4π

∫

S

∞∑
n=0

(2n + 1)
( r

a

)n

Pn

(
~s · ~r
r

)
Φ(a~s)ds

(2)
for r < a. Here Φ(a~s) is the given potential on the
sphere surface. The area of the integration S covers
the surface of a unit sphere centered at the origin. The
function Pn denotes the n-th Legendre polynomial.

In order to use the formula as an replacement of
the multipole expansion, Anderson proposed a dis-
crete version of the formula, i.e., he truncated the
right-hand side of the Eq. (1)–(2) at finite n, and
replaced the integrations over S with numerical ones
using the spherical t-design [6]. The relation he ob-
tained is expressed as

Φ(~r) ≈
K∑

i=1

M∑
n=0

(2n + 1)
(a

r

)n+1

Pn

(
~si · ~r

r

)
Φ(a~si)ds

(3)
for r > a, and

Φ(~r) ≈
K∑

i=1

M∑
n=0

(2n + 1)
( r

a

)n

Pn

(
~si · ~r

r

)
Φ(a~si)ds

(4)
for r < a.

Anderson’s method uses Eq. (3) and (4) for M2M
and L2L conversion, respectively. The procedure of
the tree construction part is the same as that of orig-
inal FMM.

P2M2 is very similar to Anderson’s method. The
difference is that P2M2 uses the masses/charges dis-
tribution on the surface of a sphere instead of poten-
tial values. The pseudo particles must be distributed
on the sphere so that they exactly express the coeffi-
cients of multipole expansion. Distribution of pseudo
particles is given by spherical t-design [6]. We ap-
plied Makino’s approach to define pseudo particles’



masses/charges. Positions of pseudo particles are fixed
and masses/charges are obtained as follows:

Mj =
N∑

n=1

mi

p∑

l=0

2l + 1
K

( |ri|
a

)l

Pl(cosγij), (5)

where ri is position of physical particle, Rj is K points
on the unit sphere defined by t-design, γij is the angle
between Rj and ri and Pl is l-th Legendre polynomial.

3. BRIEF DESCRIPTION OF THE GRAPE
SYSTEM

GRAPE (GRAvity PipE) [11], [12] is a special-
purpose hardware for the calculation of force between
point-mass or point-charge particles. Figure 2 shows
a typical GRAPE system consisting of a general pur-
pose computer and a GRAPE hardware connected
via a communication interface. The host computer
sends positions and masses or charges of particles to
GRAPE. GRAPE then calculates the gravitational or
Coulomb forces due to these particles and results back
to the host computer. GRAPE can speed up force

HOST
COMPUTER GRAPE

Return forces

Positions,
charges/masses

Figure 2: Basic structure of a GRAPE system.

calculation about 100-1000 times faster than general-
purpose computers of the same cost and the time com-
plexity of force calculation on GRAPE is O(N2) for
direct summation algorithm. In contrast, the accu-
racy of direct force calculation on GRAPE is lower
than that of host computer due to hardware limita-
tion. For example, the error of relative force calcu-
lated by MDGRAPE-2 is around 10−8. However this
accuracy is far enough for almost all N -body simula-
tions.

4. IMPLEMENTATION OF FMM ON
SPECIAL-PURPOSE COMPUTER

MDGRAPE-2

Since GRAPE can only deal with point-charge or
point-mass interaction, only near-field part of original
FMM can be implemented on GRAPE. Unfortunately,
the far field force calculation is also a time consuming
task if it is executed only on the host computer. Thus
we modified FMM so that it can be run on GRAPE
hardware using P2M2 and Anderson’s method. In the
following, we use notation p and q for expansion or-
der of P2M2 and Anderson’s method in Eq. (5) and

(4), respectively. We will refer ’particle’ as a real
particle to distinguish with pseudo-particles given in
P2M2 method. Summary of our modification of orig-
inal FMM is as follows.

At first stage, instead of forming multipole expan-
sions’ coefficients, we distribute pseudo particles at
points Rj on spheres located at geometrical centers of
cells and calculate their masses/charges Mj based on
spherical t-design [6] and Eq. (5). We will refer these
spheres as P -spheres. The ratio between edge length
of a cell and radius of its corresponding P -sphere is
predefined. The number of pseudo-particles on the P -
sphere depends on multipole expansion order p. We
then use another type of sphere (hereafter refers as Φ-
sphere) located in geometrical center of the cell with
different radius from P -sphere. Spherical t-design is
applied again to define R

′
j points on Φ-sphere surface.

Potential values at these points will be used for calcu-
lation of M2L and L2L stages. Number of R

′
j points on

Φ-sphere surface depends on q. The potential values
Ψj at these R

′
j points are accumulated during M2L

and L2L stages. The contributions potential to values
Ψj include direct potential from interaction list and
far field potential.

In M2L stage, direct potential contributions at R
′
j

points of Φ-sphere of each non-leaf cell are calculated
due to pseudo-particles corresponding to interaction
list of the cell by GRAPE hardware.

In L2L stage, far field potential contributions are
obtained by shifting local expansion on Φ-sphere of
parent cell to center of child cells using inner-sphere
approximation given in Eq. (4). This process is re-
peated for all level of the oct-tree and finally poten-
tial values at R

′
j points of Φ-sphere of all leaf cells are

obtained.
Force on each particle will be sum of near field and

far field force. For each leaf cell, the near field force
is calculated directly by GRAPE. This contribution
includes force from particles belonging to the cell it-
self, the cell’s neighbour list and pseudo particles on
P -sphere of cell’s interaction list.

The far field force is obtained by deriving force ap-
proximation from potential given in Eq. (4) as follows.
Let ~x = (x, y, z) be position of a particle of the sys-
tem. Let u be dot product ~si ~xp and r be length of
vector ~x. The x component of far field force on ~x is
then expressed as:

−∂Φ
∂x

=
K∑

i=1

M∑
n=0

(
nxPn(u) +

ux− sixr√
1− u2

∂Pn(u)
∂x

)

(2n + 1)
rn−2

an
g(a~si)wi, (6)

where g(a~si) are potentials values at R
′
j points on Φ-

sphere, Pn is n-th Legendre polynomial and wi are
constant weight values. The y and z components are



obtained in the same way. The following gives detailed
of our FMM implementation after the modifications
mentioned above.

Tree construction stage.
Description: Assume particles are uniformly dis-
tributed on a unit cube. Choose a refinement level
n, expansion order p of P2M2 and q of Anderson’s
method. We build an oct-tree by subdivision the
cube into eight equals subcells. The subcells then
divided into 8 smaller subcells. Repeat this process
until we reach level n. By experiment, we found that
n ≈ log8(N) − 1 is the optimal refinement level for
fastest force calculation.

M2M stage.
Description: Traverse the oct-tree from leaf to root
to calculate masses/charges and positions of pseudo
particles in all cells. At all leaf cells, calculate
masses/charges and positions of pseudo particles
based on mass and position of all real particles be-
longing to the cells. At non-leaf cells, masses and po-
sitions of particles are calculated based on masses and
positions of pseudo particles of their children.

for c = 1 to 8n begin
Calculate pseudo particle’s positions Rj and
masses Mj of c based on masses (charges) and
positions of particles belonging to c and Eq. (5).

end

for l = n− 1 to 0 begin
for c = 1 to 8l begin

Calculate positions of points Rj
′ on Φ-sphere

of c.
Calculate pseudo particle’s position Rj and
mass Mj of c based on pseudo particles’ mass
and position corresponding to child cells of c
in level l + 1 and Eq. (5)

end
end

M2L and L2L stages.
Description: Traverse the oct-tree from root to leaf
in order to obtain Ψj potential values at all leaf cells.
For each non-leaf cells, calculate potential contribu-
tion to Ψj at Rj

′ of Φ-sphere surface due to all pseudo-
particles corresponding to its interaction list. The far
field potential contribution to Ψj are calculated re-
peatly while going down the oct-tree by using inner-
sphere approximation given in Eq. (4). The range
of integration is Φ-sphere of a non-leaf cell and eval-
uation points are Rj

′ of its children. For each leaf
cell, calculate force on each particle. Near field part
is calculated by direct summation. Far field part is
calculated by Eq. (6).

for l = 0 to n− 1 begin
for c = 1 to 8l begin

Calculate potential contributions to Ψj at Rj
′

on Φ-sphere surface of c due to pseudo parti-
cles corresponding to interaction list of c then
accumulate these potential values.
Using Eq. (4) to calculate far field potential
contribution Ψj at Rj

′ on Φ-spheres of all chil-
dren d of c and accumulate the potential values
to Ψj of d

end
end

At finest level:
for c = 1 to 8n begin

Calculate force on particles due to near-field and
far-field force. Near field force are calculated
due to particles belonging to c, its neighbour list
and pseudo particles belonging to its interaction
list. Far field is calculated by Anderson’s method.
Force approximation is given in Eq. (6).

end

In the following we give our numerical results. We
implemented FMM on GRAPE and tested the imple-
mentation on a system consisting of a MDGRAPE-2
board (192 GFlops equivalent) and a host computer
(COMPAQ DS20E Alpha 21264/667MHz). We uni-
formly distributed particles within a unit cube cen-
tered at origin and measured time spend for one time
step calculation for various accuracy. We tested the
code with number of particles N from 65536 particles
to 4194304 particles. We measured the relative error
of potential and force averaged over all the particles.
The averaged error is defined as follows:

e =

√√√√ 1
N

N∑

i=1

|Φ′
i − Φi|2
|Φi|2 , (7)

where Φ
′
i is the potential value calculated by FMM,

Φi is exact potential calculated by direct summation
algorithm.

Fig. 3 shows calculation time for potential. From
top to bottom, five curves are for direct summation,
FMM with (p, q)=(1,1), (1,2), (2,2) and (2,3), respec-
tively. The error e for each results are 6.8 × 10 −3, 3.6
× 10 −4, 1.6 × 10 −3, and 8.9 × 10 −3, respectively.
Similarly, Fig. 4 shows calculation time for force.

The results show that the calculation time of our
implementation scales as O(N), and is achieving much
better performance than direct summation code.

5. CONCLUSIONS

We have presented the implementation of fast
multipole method on special-purpose computer



0.1

1

10

100

1000

10000

64K 128K 256K 512K 1M 2M 4M

T
 (

s/
st

ep
)

N

N*N

N

Figure 3: Potential calculation time is plotted against
the number of particles N . The time is measured
on a single MDGRAPE-2 board. From top to bot-
tom, five curves are for direct summation, FMM with
(p, q)=(1,1), (1,2), (2,2) and (2,3), respectively.

MDGRAPE-2. Experimental results show that our
implementation is scalable with number of particles
in the systems for various accuracy. At present, FMM
on GRAPE is still in development and its performance
is not better than that of treecode for same accu-
racy. The FMM on GRAPE is slower than treecode on
GRAPE roughly 10%-15%. The reason is that Ander-
son’s force formula cannot be performed on GRAPE.
This will increase calculation amount on the host com-
puter leading to unbalance of calculation cost between
the host computer and GRAPE. However we still have
room for improvements and expect to obtain better
performance in near future. The parallel implementa-
tion of FMM on GRAPE will be implemented soon.

REFERENCES

[1] C. R. Anderson, ”An implementation of the fast
multipole method without multipoles”, Siam J. Sci.
Stat. Comput., Vol. 13, No. 4, 1992, pp. 923-947.

[2] A. Appel, An efficient program for many-body
simulation”, SIAM J. Sci. Stat. Comput., 6(1), 1985,
pp. 85-103.

[3] J. E. Barnes, ”A modified tree code: Don’t
laugh; It runs”, Journal of Computational Physics 87,
1990, pp. 161-170.

[4] J. E. Barnes, P. Hut, ”A hierarchical O(NlogN)
force-calculation algorithm”, Nature 324, (1986), pp.
446-449.

[5] L.Greengard, V. Rokhlin, ”A fast algorithm for
particle simulations”, J. Comput. Phys., 73 (1987),
pp. 325-348.

0.1

1

10

100

1000

10000

64K 128K 256K 512K 1M 2M 4M

T
 (

s/
st

ep
)

N

N*N

N

Figure 4: Same as Fig. (3) but for force calculation
time.

[6] R. H. Hardin, N. J. A. Sloane, ”McLaren’s im-
prove snub cube and other new spherical design in
three dimensions”, Discrete and Computational Ge-
ometry, 15 (1996), pp. 429-441.

[7] Y .Hu, S. L. Johnsson, ”A data-parallel im-
plementation of O(N) hierarchical N -body methods”,
Intl. J. of Supercomput. Appl. and High Perf. Com-
put., 10(1), 1996, pp. 3-40.

[8] A. Kawai, J. Makino, ”Pseudo-particle multi-
pole method: A simple method to implement a high-
accuracy tree code”, The Astrophysical Journal, 550,
2001, pp. L143-L146.

[9] J.Makino, ”Yet another fast multipole method
without multipoles - pseudo-particle
multipole method”, J. Comp. Phys., 151, 1990, pp.
910.

[10] J. Makino, ”Treecode with a special-purpose
processor”, Publ. Astron. Soc. Japan 43, 1991, pp.
621-638.

[11] J. Makino, and M. Taiji, ”Scientific Simulations
with Special-Purpose Computers — The GRAPE Sys-
tems”, Chichester: John Wiley and Sons, 1998.

[12] D. Sugimoto, Y. Chikada, J. Makino, T. Ito,
T. Ebisuzaki, M. Umemura, ”A special-purpose com-
puter for gravitational many-body problems”, Nature,
345, 1990, pp. 33-35.


