
Introduction

Senior secondary mathematics students could justifiably question the rele-
vance of subject matter they are being required to understand. One

response to this is to place the learning experience within a context that
clearly demonstrates a non-trivial application of the material, and which
thereby provides a definite purpose for the mathematical tools under consid-
eration. This neatly complements a requirement of mathematics syllabi (for
example, Queensland Board of Senior Secondary School Studies, 2001),
which are placing increasing emphasis on the ability of students to apply
mathematical thinking to the task of modelling real situations. Success in this
endeavour requires that a process for developing a mathematical model be
taught explicitly (Galbraith & Clatworthy, 1991), and that sufficient opportu-
nities are provided to students to engage them in that process so that when
they are confronted by an apparently complex situation they have the think-
ing and operational skills, as well as the disposition, to enable them to
proceed.

The modelling process can be seen as an iterative sequence of stages (not
necessarily distinctly delineated) that convert a physical situation into a math-
ematical formulation that allows relationships to be defined, variables to be
manipulated, and results to be obtained, which can then be interpreted and
verified as to their accuracy (Galbraith & Clatworthy, 1991; Mason & Davis,
1991). The process is iterative because often, at this point, limitations, inac-
curacies and/or invalid assumptions are identified which necessitate
refinement of the model, or perhaps even a reassessment of the question for
which we are seeking an answer.

This article develops a model of a physical situation that can be explained
through application of senior secondary mathematical concepts, and which
has elements of all phases of the modelling process. A transit of Venus is a
very rare astronomical event that occurred most recently on 8 June 2004. We
were the first in several generations that was provided with an opportunity to
witness it, 1882 having been the previous opportunity. In the 18th century,
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calculations stemming from extremely precise observations of a transit of
Venus were central to the determination of the size of the Sun, the distance
of the Sun from Earth, and thence the scale of the known universe, which
were only guessed at prior to that time. There are web resources, such as
Bueter’s (2004) website and the Sun–Earth Connection (2004) document,
where the techniques implemented are described. However, this article
focuses on another aspect of the scenario, one for which we have been unable
to uncover any mathematics-oriented web sites, and one for which the model-
ling process can be utilised: when will a transit occur?

This was an important question in Australia’s recent history: James Cook’s
primary directive in 1769 was to observe a transit from Tahiti. Only after that
did he read sealed orders that culminated in his landing on Australia’s east
coast (James Cook University’s (2004) website has further details).
Furthermore, when past transits are analysed, a mathematical curiosity
emerges: it becomes apparent that transits occur in a regular cycle, but within
that cycle, a seemingly unusual pattern appears. Transits are separated by
periods of eight years (the next transit is scheduled to appear in 2012),
followed by a gap of 105 years, then eight years, then 121 years. This pattern
then repeats itself.

Specifying the problem

It is one thing to observe a pattern in past observations; another to replicate
that pattern mathematically, and thereby create a tool than can be used
outside the range of observed phenomena. When students are faced with the
problem of determining when transits will occur, it is to be expected that
many of them, if unfamiliar with modelling as a process, would be uncertain
how to begin. They may be confident with algebraic manipulation to obtain
an answer, but that is the relatively simple component of mathematical model-
ling. In the early stages of formulating a model, the essential skills required
are those that involve identifying quantities and relationships that are
deemed to be significant (Mason & Davis, 1991), and breaking a seemingly
complex task into smaller subtasks with simpler parameters and goals. This
will often require the making of simplifying assumptions.

A transit of Venus occurs when Venus passes directly in front of the Sun, as
seen from Earth. The key values that deal with that physical situation are the
speeds at which the planets orbit (or, their orbital periods). Because Venus’
orbit lies closer to the Sun than Earth’s, Venus’ orbital period is less than
Earth’s. That is, it completes a revolution of the Sun in less time than Earth.
So the first problem to solve is, how often does Venus, in its orbit around the
Sun, pass the Earth? This phenomenon is called a planetary alignment.

However, an alignment does not imply a transit. The reason can be seen by
looking at Figure 1, which shows the orbits of Venus and Earth.

Venus’ orbital plane is inclined with respect to Earth’s orbital plane (which
is called “the plane of the ecliptic”). Therefore, the fact that Venus has caught
up with the Earth does not automatically imply that Earth, Venus and the Sun
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are collinear, which is the condition necessary for a transit. So the next
problem is to work out how far Venus is above (or below) the ecliptic when
an alignment occurs. If an alignment occurs when Venus is very close to the
ecliptic, a transit results. To calculate this we need to know the angle of incli-
nation of Venus’ orbit, and the radius of Venus’ orbit. 

But just how close must Venus be to the ecliptic for a transit to result?
Because the Sun is a relatively large disk in the sky, Venus need not be exactly
crossing the ecliptic at alignment — there is some margin involved. As long
as Venus traverses some part of the Sun, it is deemed a transit. To calculate
the margin, we need to know how far Venus is from Earth at alignment, as
well as the apparent size of the Sun.

Formulating the mathematical problem

Relevant information that has so far been identified includes:
• orbital periods of Venus and Earth;
• angle of inclination of Venus’ orbit (with respect to the ecliptic);
• radius of Venus’ orbit;
• angular size of the Sun (as seen from Earth).
Some of these values may be obtained by direct measurement, while others

must be calculated. Direct observation provides us with the following data:

Earth’s Period of Revolution 365.25636 days
Venus’ Period of revolution 224.701 days
Inclination of Venus’ orbit to ecliptic 3.3944°
Angular size of the sun, from Earth 0.534°

Students could be encouraged to engage in some research to locate this
information for themselves, via a search of the World Wide Web, or their
school library resources, for example. In collaboration with a school’s physics
department, an opportunity arises for students to explore the science that
provides these observations and measurements, thereby extending utilisation
of the scenario beyond the mathematics classroom.

We have also identified several subtasks, the solution to which will enable
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us to successfully proceed towards our original goal. These subtasks are as
follows:
1. Calculate the frequency at which alignments occur.
2. Calculate the maximum distance above or below the ecliptic that Venus

may be at alignment for a transit to occur.
3. Subtask 2 requires that we know the distance between Earth and Venus

at alignment.
4. Determine how high Venus is whenever an alignment occurs.

The final step in the iterative process will be the implementation of the
model using some technology — be it pencil and paper, graphing calculator,
or a spreadsheet — to verify its accuracy and to use it to make predictions.

Solving the mathematical problem

Once we have reduced the problem to a few subtasks, generating results
becomes far simpler, almost trivial in some cases. Simple application of ratios
and trigonometry provide answers to most of the subtasks. Knowledge of peri-
odic functions is required to model Subtask 4, Venus’ distance from the
ecliptic.

Alignment frequency
Planets closer to the Sun orbit the Sun in fewer days than planets further
away. They therefore “catch up” and “overtake” the outer planets from time
to time, depending upon their relative orbital periods. By simply calculating
their orbital velocities, in terms of degrees travelled per day, we can deter-
mine how frequently an alignment occurs.

Venus, closer to the Sun than Earth, makes one complete orbit (360°) of
the sun every 224.701 Earth days. Therefore, it travels 1.6021° per day.
Similarly, Earth orbits every 365.25636 days, travelling an angular distance of
0.9856° per day (Figure 2).
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Hence, Venus is travelling faster than Earth by 0.6165° per day. The time
it takes for Venus to “lap” Earth, from one planetary alignment to the next 
— that is, to travel 360° more than Earth — is approximately 
(360 ÷ 0.6165) ≈ 583.9 days. Or, more accurately, 

Earth–Venus distance at alignment
If the distance from the Earth to the Sun is known, the distance from Venus
to the Sun may be calculated by observing the maximum angular separation
of Venus from the Sun, and applying trigonometry. So we have identified two
additional quantities necessary to our model development.

The maximum angular separation between Venus and the Sun (as seen
from Earth) is obtainable by direct observation at the relevant time of year:

Maximum angle of separation, Venus–Sun 46.324°

For the purpose of senior secondary mathematics students, it is appropri-
ate to provide the Earth–Sun distance in terms of kilometres1:

Earth–Sun distance 149.6 million km

Given the angle and Earth–Sun distance, trigonometry can be applied to
determine Venus’ orbital radius, as shown in Figure 3.
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1. Note that in the 18th century, the Earth–Sun distance in kilometres was unknown. One of
the primary motivations behind the study of the transit of Venus was to establish this
value. Original calculations were made using Astronomical Units (AUs). One AU is
defined as the distance from the Earth to the Sun. Calculation of the Earth–Sun distance,
in kilometres, is beyond the scope of this article, but may be calculated with senior
secondary mathematics. The procedure is detailed on several websites, including the
online Sun–Earth Connection (2004) document.

Figure 3
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x = 149.6 sin(46.324)
= 108.2 million km

Venus’ maximum distance from ecliptic for a transit
To calculate the maximum distance above or below the ecliptic that permits
a transit to be possible we can use trigonometry, incorporating the angular
size of the sun (as seen from Earth) and the distance of Venus from Earth, as
shown in Figure 4.

Figure 7

Sun’s angular size from Earth = 0.534°,  ∴ θ = 0.534° ÷ 2 = 0.267°
Earth to Venus distance = 149.6 – 108.2 = 41.4 million km

x = 41.4 tan(0.267)
= 0.1929 million km

Venus’ distance from ecliptic 
The underlying problem requires us to identify alignments, which we have
determined to be 583.9 days apart and then, for each, decide whether it is a
transit. To do this, we have to know how far above or below the ecliptic Venus
is at that particular point in its orbit. If it is within 0.1929 million kilometres,
then a transit will occur. So, how can we model Venus’ position with respect
to the ecliptic?

We are considering Venus to be travelling in a circular orbit at constant
speed, inclined to the ecliptic. For half its orbit, it is above the ecliptic; for
half, below. This regular oscillatory behaviour associated with circular motion
can be modelled using a sine curve. The general form of a sine function is

y = A sin (Bx + C) + D

where A is the amplitude, B is 2π divided by the period, and C is the horizon-
tal displacement (or phase shift) of the curve. For now, we will consider C to
be zero. We will return to this parameter later. D is the vertical displacement
of the curve. Since Venus spends equal time above and below the ecliptic (see
Figure 1), this parameter is zero. (Taking into account the latitude of an
observer of Earth would affect this parameter slightly, but for simplicity of the
model we are assuming all observations are taken from a point through which
the ecliptic passes.) So the function simplifies to
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y = A sin Bx

where y is the height of Venus above the ecliptic and x is the number of days
into Venus’ orbit, measured from some nominated starting point, x = 0.

In this situation, the period is determined solely by the actual orbital
period of Venus (224.701 days); that is, how long it takes for Venus to travel
from its highest point above the ecliptic, to its lowest, and back to its highest
— one complete cycle, which occurs in conjunction with its physical orbit. So
B is simply

A is the amplitude of the function; that is, the maximum distance of Venus
above the ecliptic. This may be determined through, once again, application
of simple trigonometry. All that is needed is Venus’ distance from the Sun,
which we calculated previously (108.2 million km) and its orbital inclination,
obtainable through direct observation, 3.3944° (see Figure 5).

Figure 5

x = 108.2 sin(3.3944)
= 6.4064 million km

We can now substitute parameter values into our periodic function:

Remember, y represents the height of Venus above the ecliptic at a point x
days into its orbit. This function appears as the graph in Figure 6.

Figure 6
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Acknowledging assumptions

Let us pause a moment to consider some of the assumptions that have been
made in course of developing our model. It is essential that students recog-
nise that assumptions are almost always present in a mathematical model.
Models are only approximations, simplifications of actual phenomena. As
long as the model answers a question to a desired level of detail or accuracy,
it is satisfactory. But the underlying assumptions must be identified, under-
stood and stated.

To simplify this model for high school students, we have made these
assumptions:
1. That the orbits of Earth and Venus are circular. While planetary orbits

are, in fact, elliptical, those of Earth and Venus have a very small eccen-
tricity. That is, they are virtually circular. Modelling orbits with high
eccentricities would require consideration of varying orbital speeds and
distances from the Sun.

2. That Venus is a point. The Sun is a relatively large disk, as seen from
Earth. In contrast, Venus’ disk is very small, about 3% of the angular
diameter of the Sun’s disk (when viewed from Earth). By treating Venus
as a point, we avoid complications that occur when Venus just “skims”
the extremity of the Sun.

3. That Earth is a point. Another way of stating this is to assume that all
observations are made from a point on Earth through which the eclip-
tic passes. Observations made from different latitudes generate
different results as the observers have slightly different perspectives.
The differences are very slight, but detectable. (In fact, it is these tiny
differences that permitted transits to be used for calculating the
Earth–Sun distance in the first place — refer to the Sun–Earth
Connection (2004) document for details of the calculations.) For our
purposes, the differences are negligible and are ignored.

Implementing and validating the model

We are now in a position to combine the elements we have calculated and
generate a model of Venus’ orbit that will allow us to identify when an align-
ment will occur, and whether that alignment will result in a transit.

The first step is to understand the origin of our function. When x is zero,
y will also be zero (because sin 0 = 0). What does this mean? At a point zero
days into Venus’ orbit, Venus is crossing the ecliptic. If we decide that an
alignment is occurring on that day, it follows that a transit is occurring on that
day (since –0.1929 ≤ y ≤ 0.1929). So it is most convenient to select the origin
of our function as being a known transit. We have decided to choose the June
8, 2004 transit as our origin, but any other previously known transit is valid. If
x = 0 represents 8 June 8 2004, then positive x values represent days after that
date, and negative x values represents days further into the past.

We now have enough information to be able to identify transits. Recall that
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a transit can only occur during an alignment, and alignments occur every
583.9 days. Further, a transit can only occur when Venus is close to the eclip-
tic. So we need to examine the height of Venus (with respect to the ecliptic)
at every alignment. This can be calculated manually for each multiple (both
positive and negative) of 583.9 days, or by examining the graph of the peri-
odic function (Figure 6) at every alignment value (i.e., each x multiple of
583.9) but is most conveniently implemented using a spreadsheet, or by
setting up a table in a graphing calculator. For each alignment, we then need
to examine the height of Venus with respect to the ecliptic. If it is within the
critical range (–0.1929 ≤ y ≤ 0.1929) then we have a transit.

To set up a spreadsheet, we require two columns, representing x and y. The
starting point is the origin, x = 0. We want to be able to extend our analysis
further into the future by adding rows after the origin, but we also want to be
able to look back into the past, so we need room to set up rows before (or
above) our origin point. In the example in Figure 7, the origin has been posi-
tioned on spreadsheet row 171, which gives opportunity to look back to the
1700s. We need to set up subsequent rows where x is incremented by 583.9;
similarly, prior rows are successively decreased by 583.9. The y value for each
row can be calculated by the software simply by setting up each cell in the y
column as our periodic function, using the value in the corresponding x
column.

For convenience, it is also desirable to convert the x value (number of
days) into a year. So x = 0, which is 8 June 2004, is 2004 160

366, or 2004.44. Then
it will be easy to identify the year, and time of year, in which transits occur. As
we add (or subtract) 583.9 to create successive x values, so too we add (or
subtract) 583.9/365.25, or 1.599, years for each alignment. This can be repre-
sented as an additional column in our spreadsheet or table (see Figure 7).

It is now time to test this initial version of our model. For what values of x
(or for what years) is a transit predicted to have occurred? This is determined
by checking y values for each alignment to see if they fall within the critical
range, ±0.1929. Investigating our spreadsheet into the past we see that, in
addition to 2004, we also get transits in 1761, 1769 and 1882. The decimalised
years are 1761.44, 1769.44 and 1882.94, corresponding with transits that
occurred in June 1761 and 1769, and December 1882. 

Figure 7

This seems fine until, upon checking historical records, we discover that
there was another transit in December 1874, and the next transit is predicted
(by far more sophisticated calculations than we have done here) to occur in
June 2012. What has happened to these transits? Looking at the y values
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generated for each of these alignments (Figure 8), we can see that our model
predicts near transits for these years — they are not far out of the critical
range, but enough to cause us to consider the possibility that our model is not
yet perfect!

Figure 15

Refining the model

We have generated a model, implemented it and attempted to verify it. It
shows some promise, but it seems to be lacking in some respects. It is now
time to return to some of the assumptions we made and see if we can improve
the model. 

Recall that one of the initial simplifying assumptions made was that y = 0
when x = 0. What does this mean? Simply, it means that during the June 2004
transit Venus was crossing the ecliptic (y = 0) at the precise time that the
transit occurred. As viewed from Earth, Venus would be crossing directly in
front of the centre of the Sun. We know that it is possible, however, for Venus
to be slightly above or below the ecliptic at alignment and a transit will still
occur. We come back to the critical range, –0.1929 ≤ y ≤ 0.1929. At x = 0, y may
be anywhere in this range. Those who witnessed the 2004 transit may recall
that Venus transitted quite some distance from the centre of the Sun.

How can we incorporate this factor into our model? This is where the C
parameter in the periodic function comes into play. It represents the fact that
y is non-zero at x = 0; or, alternatively, that y is zero at some value of x other
than zero. Translating this into our scenario, it means that Venus crossed the
ecliptic (y = 0) a short time before or after, rather than during, the transit
(which is at x = 0).

The first step in introducing C into our model is to determine the possible
range of values for C. This can be achieved by finding the value of C when x
is zero and y is each of the minimum and maximum values allowable; that is,
±0.1929. Substituting into our function, we have:
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The next step will be done manually, although students familiar with
manipulating spreadsheets may be able to come up with a technological solu-
tion. We want to find the value for C, within the range ±0.0301, which will
improve our model insofar as accurately identifying past known transits is
concerned. So far we have tested a value of C = 0. We need to manually alter
our function by iteratively incrementing C by amounts of, say, 0.001, and
checking our transit predictions for the years 1761, 1769, 1874, 1882, 2004
and 2012. The best fit turns out to be a value for C of 0.012. So our function
becomes

Using this formula, and checking values of y for all x multiples of 583.9,
provides a quite accurate prediction tool. The model is still not absolutely
perfect, but it is sufficient for most purposes, and that is as far as we will
proceed in this analysis. It would be instructive at this point to return to the
initial set of assumptions made, and investigate whether any of those may
have had an undue effect on our result.

Implications for teaching

Certain familiar scenarios are often presented to students to demonstrate the
application of trigonometric functions: tidal heights, and times between
sunset and sunrise, for example. These are textbook examples where the
information is handed to students and they convert it into a mathematical
representation. What makes this task different is that it starts with a topical
real world phenomenon for which students are required to “find the maths”
in order to interpret it.

It is important to know, prior to embarking upon this (or a similar) exer-
cise, what the purpose of the activity is, and to remain focused upon achieving
that outcome. As far as demonstrating the applicability of mathematics to
physical situations that are otherwise difficult to explain, describe or have
predictions made about them, this example hopefully fulfils that aim. But
when considered in the context of its being used as a learning experience of
modelling and mathematical thinking, care must be taken to ensure the
teaching and learning objectives are achieved.

Mathematical modelling takes place when students are able to interpret
results, justify assumptions taken in the construction of their model, and use
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their model to explore and predict. But if a specific outcome is expected, and
students are explicitly guided in such a way as to reach that outcome, then
students, while experiencing a model and seeing its applicability, are not
themselves modelling (Mason & Davis, 1991). The model that has been devel-
oped on the preceding pages can be presented as a detailed example of a
mathematical model, but if it is required that the students develop the model
themselves, clear emphasis must be placed on the modelling process, as
distinct from the scenario being modelled: students must be able to identify
relevant quantities, expose explicit or implicit assumptions, make refine-
ments, validate the model, and interpret and communicate results.
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