If you want to know more about Cycads, you have to know first a little more about the group of plants (gymnosperms) Cycads belong to. If you are only vaguely interested please don't try to read this. If you desperately want to know more about the most trilling plants on the face of this planet ( living fossils ) Read on and wonder about them. There are more species then you know! Enjoy it.
I really like to thank the Encyclopaedia Britannica, since most of the informatian of this page came from it.


Gymnosperms


Introduction

Gymnosperms are a group of vascular plants whose seeds are not enclosed by a ripened ovary (fruit). In 1825 the Scottish botanist Robert Brown distinguished gymnosperms from the other major group of seed plants, the angiosperms, whose seeds are surrounded by an ovary wall. The seeds of many gymnosperms (literally, "naked seed") are borne in cones and are not visible. These cones, however, are not the same as fruits. During pollination, the immature male gametes, or pollen grains, sift among the cone scales and land directly on the ovules (which contain the immature female gametes) rather than on elements of a flower (the stigma and carpel) as in angiosperms. Furthermore, at maturity, the cone expands to reveal the naked seeds. Gymnosperms were considered at one time to be a class of seed plants, called Gymnospermae, but taxonomists now tend to recognize four distinct divisions of extant gymnospermous plants (Coniferophyta, Cycadophyta, Ginkgophyta, Gnetophyta) and to use the term gymnosperms only when referring to the naked-seed habit. Some of the divisions of gymnosperms are not closely related to others, having been distinct groups for hundreds of millions of years. Currently, about 60-70 genera are recognized, with a total of 700-800 species. Gymnosperms are distributed throughout the world, with extensive latitudinal and longitudinal ranges.



GENERAL FEATURES

Diversity in size and structure.

Among the gymnosperms are plants with stems that may barely project above the ground and others that develop into the largest of trees. Cycads resemble palm trees, with fleshy stems and leathery, featherlike leaves. The tallest cycads reach 19 metres (62 feet). Zamia pygmaea, a cycad native to Cuba, has a trunk less than 10 centimetres (four inches) in height. Of the gnetophytes, Ephedra (joint fir) is a shrub and some species of Gnetum are vines, while the unusual Welwitschia has a massive, squat stem that rises a short distance above the ground. The apex is about 60 centimetres in diameter. From the edge of the disk-shaped stem apex arise two leathery, straplike leaves that grow from the base and survive for the life of the plant. Most gymnosperms, however, are trees. Of the conifers, the redwoods (Sequoia) exceed 100 metres in height and, while Sequoiadendron (giant redwood) is not as tall, the trunk is more massive.



Distribution and abundance.

Although since the Cretaceous period (144 to 66.4 million years ago) gymnosperms have been gradually displaced by the more recently evolved angiosperms, they are still successful in many parts of the world and occupy large areas of the Earth's surface. Conifer forests, for example, cover vast regions of northern temperate lands in North America and Eurasia. In fact, they grow in more northerly latitudes than do angiosperms. Vascular plants that occur at the highest altitudes are the gnetophyte Ephedra. Land in the Southern Hemisphere is rich in conifer forests, which tend to be more abundant at higher altitudes. Gymnosperms that occupy areas of the world with severe climatic conditions are adapted to conserving water; leaves are covered with a heavy, waxy cuticle, and pores (stomata) are sunken below the leaf surface to decrease the rate of evaporation.


Cycads are distributed throughout the world but are concentrated in equatorial regions. As a natural population, Ginkgo originally appeared to have been confined to mountains of southeastern China; extensive artificial propagation has altered this natural distribution. Distribution of gymnosperms in the distant past was much more extensive than at present. In fact, gymnosperms were dominant in the Mesozoic era (245 to 66.4 million years ago), during which time some of the modern families originated (Pinaceae, Araucariaceae, Taxodiaceae).



Importance to humans and ecology.

Some of the oldest living things on earth are gymnosperms. Redwoods live for thousands of years, and some specimens of the bristlecone pine, found in the White Mountains of California, approach 5,000 years in age.

Gymnospermous plants are widely used as ornamentals. Conifers are often featured in formal gardens and are used for bonsai. Yews and junipers are often low-growing plants cultivated for ground cover. Conifers are effective windbreaks, especially those that are evergreen. Cycads are used as garden plants in warmer latitudes, and some may even thrive indoors. Their leathery green foliage and sometimes colourful cones are striking. Ginkgo is a hardy tree, and although it once approached extinction, it is now cultivated extensively and survives such challenging habitats as the streets of New York City. Some gymnosperms are weedy in that they invade disturbed areas or abandoned agricultural land. Pines and junipers are notorious invaders, making the land unusable.

Most of the commercial lumber in the Northern Hemisphere is derived from the trunks of conifers such as pine, Douglas fir, spruce, fir, and hemlock. Araucaria, kauri, and Podocarpus are important conifers of the Southern Hemisphere used for lumber. The wood is straight-grained, light for its strength, and easily worked. Wood of gymnosperms is often called softwood to differentiate it from the hardwood angiosperms. Wood of angiosperms typically has more kinds of elements than does softwood of gymnosperms. In addition to its use in building construction, gymnospermous wood is used for utility poles and railroad ties. Aromatic wood of cedar is frequently used in the construction of closets or clothes chests and apparently repels cloth-eating moths. Most plywood is gymnospermous. Fibres of conifers make up paper pulp and may occasionally be used for creating artificial silk or other textiles. Conifers are frequently planted in reforestation projects. Conifer bark is often the source of compounds involved in the leather tanning industry. Bark is also used extensively as garden mulch.

From conifer resins are derived turpentine and rosin. A hardened form of resin from a kauri (Agathis australis), called copal, is used in the manufacture of paints and varnishes. Some resins, such as balsam (from hemlock) and dammar (from Agathis) are used in the preparation of mounting media for microscope slides. Resins may also have medicinal uses. Many types of amber are derived from fossilized resin of conifers. Commercially useful oils are derived from such conifers as junipers, pines, hemlock, fir, spruces, and aborvitae. These oils serve as air fresheners, disinfectants, and scents in soaps and cosmetics. Seeds are often food sources. Pine seeds are a delicacy eaten plain or used as a garnish on bakery products. Seeds of Ginkgo and cycads may be poisonous unless detoxified. "Berries" (in reality the fleshy cones) of juniper are used to flavour gin.

Earliest gymnosperms.

The earliest recognized group of gymnospermous seed plants are members of the division Pteridospermophyta (pteridosperms, or seed ferns). These plants originated in the late Devonian and were widespread toward the end of the Paleozoic era (570 to 245 million years ago). Descendants persisted into the Mesozoic. In habit, Paleozoic seed ferns resembled some progymnosperms in that they were small trees with fernlike leaves (the equivalent of a progymnospermous flattened branch) bearing seeds. While Paleozoic seed ferns resembled ferns externally, the internal structure was like that of gymnosperms. Secondary vascular tissues were common in stems of seed ferns. The wood, however, was composed of thin-walled tracheids and abundant vascular rays, suggesting that stems were fleshy like those of cycads. Pteridosperm seeds were very similar to those of cycads. Many were large, with an outer, softer seed coat and a harder, inner seed coat. Within an ovule ready for fertilization was a massive female gametophyte with several archegonia. There has been one report of a pollination droplet in a Carboniferous pteridosperm ovule and a report of a pollen tube emerging from a pollen grain in the micropyle of a seed-fern ovule, suggesting that transport of the sperm through a pollen tube (siphonogamy) was in existence as far back as the Paleozoic. In some pteridosperms the seed was contained within a cupule; some botanists interpret the cupule as a precursor of an angiosperm carpel. Pollen grains, however, landed directly on the micropyle of the ovule. Pollen-bearing organs were variable among the pteridosperms; in many cases the microsporangia were elongated and fingerlike and were produced in clusters or were fused into compound organs. Mesozoic seed ferns are less well defined, and the concept of pteridospermy is used loosely to refer to plants with fernlike foliage bearing seeds.

Appearance of gymnosperm divisions.

It is generally conceded that from the pteridosperms arose members of the division Cycadophyta. The first cycads appeared in the Permian period (286 to 245 million years ago). Some of these presumed cycads differ from extant members in that megasporophylls were undivided, unlike those of Cycas, considered to be primitive among cycads, in which the distal portion of the megasporophyll may be pinnately divided. Other Permian megasporophylls, from China, are more like those of Cycas. Cycad remains, especially leaves, are abundant in Mesozoic rocks. For this reason paleobotanists often refer to the Mesozoic era as the "age of cycads." The earliest well-known cycads appear to have had slender stems, sometimes branched, with leaves not borne close together, unlike the situation in extant cycads in which leaves are densely crowded at the apex of the plant. There is evidence that these earliest cycads were deciduous. Megasporophylls of Mesozoic cycads are essentially like those of extant cycads. The megasporophyll of the Triassic Palaeocycas is like that of Cycas. Jurassic megasporophylls are like those of most other cycads. Extant cycads are now limited in geographic distribution to the warmer parts of the earth.

Coexisting with the cycads during the Mesozoic was another group of gymnosperms, the cycadeoids (division Cycadeoidophyta--sometimes called the Bennettitophyta). Although they are superficially similar in habit to the cycads, with a squat trunk and often pinnately divided leaves, their reproductive structures were different, and their actual relationship is not close. Typically seeds were borne on the surface of a fleshy receptacle. Among the seeds were sterile structures, called interseminal scales, that held the seeds tightly together. Pollen organs were quite similar among the forms in the sense that all had a whorl of modified leaves (microsporophylls) on which were borne compound microsporangia.

Conifers (division Coniferophyta) appeared first toward the end of the Late Carboniferous epoch (320 to 286 million years ago). Some of the earliest conifers (class Cordaitopsida) were trees with long, strap-shaped leaves. Trunks were similar to those of extant conifers, with dense, compact wood; small, thick-walled tracheids; and narrow vascular rays. Reproductive axes were slender, bearing narrow bracts in the axils of which were small, budlike shoots with helically arranged scales. On some of the topmost scales were borne elongated microsporangia. Buds on other axes bore ovules instead of microsporangia.

By the late Paleozoic there came into existence another group of extinct conifers, the Voltziales (class Coniferopsida). In general habit they must have resembled some of the extant araucarias (e.g., Norfolk Island pine), with whorled, flattened branches bearing helically arranged, needlelike leaves. Reproductive axes were generally homologous with those of the Cordaitales, but they were more compact, with the bracts on the ovule-bearing axes obscuring the axillary fertile buds. During the end of the Paleozoic and in the early Mesozoic, these axillary buds underwent further transformation. The sterile, non-seed-bearing part became flattened, with the scales fused together. The ovule-bearing portion was situated toward the upper surface (away from the bract). The ovuliferous scale of a conifer seed cone, then, may be interpreted as an axis bearing bracts in the axils of which are modified woody ovuliferous scales derived from lateral buds.

Modern families of conifers began to appear in the Mesozoic era. Members of the Taxodiaceae, the family to which redwoods and bald cypress are assigned, appeared first in the Jurassic period. Metasequoia, the dawn redwood, is also a member of this family. Discovered first as fossils in Miocene (23.7 to 5.3 million years ago) deposits, it was assumed to have become extinct until it was discovered growing in Szechwan province in China. Its distribution in the late Mesozoic and Tertiary (66.4 to 1.6 million years ago) was throughout the Northern Hemisphere. The plant has since been introduced to a variety of places in the world.

During late Triassic times there existed a type of conifer (Compsostrobus) that had many features of the Pinaceae. Seed cones had woody ovuliferous scales subtended by bracts with two ovules on the upper surface of each ovuliferous scale. More typical pinaceous remains occurred later in the Mesozoic. Coniferophytes were the dominant vegetation just before the appearance of the angiosperms.

The division Ginkgophyta, represented today by only one living species, Ginkgo biloba, was much more widespread in past ages. Gymnosperms that were presumed to be ginkgophytes existed as far back as the Permian period. In Mesozoic rocks, Ginkgo leaves are commonly found throughout the world. The oldest fossil ginkgophytes had leaves much more dissected than the typical Ginkgo leaf, resembling more closely the leaves found on new growth in extant ginkgoes.

The fossil record of the division Gnetophyta is obscure, and its origin is not clear. Pollen grains similar to those of Ephedra and Welwitschia are found as far back as the Permian period. Megafossil remains of possible gnetophytan plants occur in Late Cretaceous (97.5 to 66.4 million years ago) deposits. The plant is unlike any existing one, but venation of the foliage is similar to that of leaves of Welwitschia. Pollen grains are typically gnetophytan.





Cycadophytes

Although some botanists prefer to restrict the term cycadophyte to the members of the division Cycadophyta, three groups of primitive seed plants are discussed here, of which the seed ferns (division Pteridospermophyta) and cycadeoids (division Cycadeoidophyta) are represented only by extinct forms. A third order, Cycadales (cycads), is today represented by 10 or 11 living genera and some 130-160 species.


The cycadophytes encompass a diverse collection of mostly extinct primitive seed plants that probably had their origins among the progymnosperms of the Devonian period (408 to 360 million years ago), possibly among a primitive, long-extinct group of non-seed-bearing plants, the Aneurophytaceae, in which disposition of fertile structures and patterns of branching bear some resemblance to those of seed ferns.




GENERAL FEATURES

Diversity.
Seed ferns.
A number of lines of seed-bearing gymnospermous plants are discernible among fossil plants of the late Paleozoic era (570 to 245 million years ago) and early to middle Mesozoic era (245 to 66.4 million years ago). Among them a rather loose assemblage of forms, referred to as seed ferns, or pteridosperms, is well represented. The Carboniferous period (360 to 286 million years ago) especially has been called the "age of ferns" because of the abundance of fossilized fernlike leaves. In time, many of these "ferns" were recognized as seed plants, and it has been determined that seed ferns were a dominant vegetation in the late Paleozoic. Seed ferns generally are characterized as having been slender trees or, in some cases, woody, climbing vines, but generally with large, fernlike fronds.


Characteristic seed-fern foliage consisted of large compound leaves composed of second- and sometimes third-order branches (Figure 6). The latter bore fernlike leaflets, hence the name seed fern, although they are only remotely related to true ferns. Seed-fern stems generally possessed variable amounts of soft, loose wood and relatively large zones of cortex and pith; in this respect they resembled the stems of cycads and differed considerably from the stems of conifers, which have compact wood and relatively small zones of cortex and pith.


Reproductive organs of seed ferns were borne upon the foliage; single ovules and seeds were borne in place of pinnae, while male organs often occurred as compound pollen organs composed of partially or wholly united microsporangia. As in other gymnosperms, the ovule consisted of one megasporangium within a single integument. It is believed that, as the reproductive cycle progressed, the megasporangium, also called the nucellus, probably gave rise first to a quartet of megaspores. One of these then produced a large fleshy female gametophyte bearing several archegonia, each with a single egg. Following pollination and fertilization, the ovule developed into a seed with an embryo nested in the fleshy female gametophyte, which served as a food source during germination and seedling growth.



Cycadeoids.
Although a few groups of pteridosperms persisted from the late Paleozoic era well into the Mesozoic, the common cycadophytes of the latter ages were members of the Cycadeoidophyta (also known as Bennettitophyta). They are well represented in the later Mesozoic era, well into the Cretaceous period (144 to 66.4 million years ago), by members of the genus Cycadeoidea, which had rather squat, barrel-shaped, unbranched trunks and once-pinnate compound leaves (Figure 6). The stems were armoured with the persistent bases of leaves; internally there was a thick pith surrounded by a narrow zone of vascular tissue from which vascular strands extended directly into the leaf bases. The fossilized trunks of these plants display scattered strobili among leaf bases of the characteristic armour. Fossil cycadeoids are widespread but are especially abundant in the Black Hills region of South Dakota.


Earlier in the Mesozoic era, cycadeoids of a more slender, branching form, exemplified by Williamsonia, were abundant (Figure 6). As in Cycadeoidea, the fronds were single pinnate compound leaves.


The feature that set the cycadeoids apart from other cycadophytes was the compound strobili, which some, but not all, possessed. These strobili were composed of both male and female sporophylls, in some cases subtended by a system of bracts. Although often described as flowerlike and indeed sometimes depicted as having a floral, rosette form, cycadeoid "flowers," unlike true flowers (found in the angiosperms), were composed of sporophylls bearing "naked" (i.e., gymnospermous) ovules. They are not now considered to have given rise to any group of the true angiospermous flowering plants.

Although cycadeoids flourished for millions of years, and must therefore be considered as a highly successful line of plants, they eventually became extinct in the Cretaceous period.



Cycads.
The living cycads are for the most part palmlike, cone-bearing plants, generally of low stature (Figure 6). Although few genera, species, and individuals exist, they are extremely important plants in terms of the information that can be gained from studying them. Their reproduction is very primitive in that they rely on flagellated, motile male gametes (spermatozoids), a feature linking them with other plants fertilized by motile flagellated sperm (zooidogamous), such as ferns, club mosses, and other vascular cryptogams. Without knowledge of fertilization in the cycads and Ginkgo, it is highly unlikely that scientists would have more than remote theories as to the reproductive modes of seed ferns and other extinct groups of seed plants. Research on cycad reproduction is also providing information on the early origins of insect pollination, long thought to have evolved along with the relatively more recent angiosperms, or flowering plants.



Distribution and abundance.
Seed-fern fossils are found in both the Northern and Southern hemispheres, but many more have been described from Europe and North America than from other regions, primarily because many of the paleobotanical studies are concentrated there. Pteridosperms have been identified in Australia and India in recent years. In both hemispheres, seed ferns are common in coal measures, from which it may be inferred that, ecologically, they were plants of warm humid climates.


Abundant fossils of cycadeoids and cycads have been discovered and described from the Mesozoic era. The oldest remains of undisputed cycads date from the Triassic period, 245 to 208 million years ago (e.g., Leptocycas, Antarcticycas), but some problematic forms (e.g., Primocycas, Archaeocycas) are of Paleozoic age. Most Mesozoic cycads resembled extant genera (e.g., Cycadites, Pseudocycas, Cycadospadix), and some are referred to present genera (e.g., Macrozamia zamoides, Zamia coloradensis). Fossil forms have been found in many places where they are now extinct (for example, Greenland, Antarctica, Alaska, Argentina, France, Austria), testifying to much milder climates in now temperate and even subarctic regions.


Ten genera of cycads are widely recognized. There are three endemic Australian genera--Macrozamia (14 species), Lepidozamia (two species), and Bowenia (two species); four American and Caribbean genera--Microcycas (one species), Zamia (about 35 species), and Ceratozamia and Dioon (10 species each); and two African genera--Encephalartos (about 40 species) and Stangeria (one species). The genus Cycas, with about 24 species, is the most wide-ranging, extending from eastern Australia westward across the Pacific and Indian oceans to Madagascar and the east coast of South Africa. In addition to the above well-known genera, a recent collection of cycad specimens from northwestern Colombia included a new genus now described under the name Chigua.
Chigua reveals features hitherto undescribed in any American genus or species, for the specimens, which in most respects resemble Zamia, are unique in having leaflets with midribs and lateral veins, a characteristic formerly known only in Stangeria.



Ecology and habitats.
Cycads are plants of subtropical habitats, where they occupy a variety of ecological situations ranging from rain forests, to mesophytic savannas, to near-desert scrublands. Now nowhere abundant in nature, wild populations of cycads in many regions are endangered. Only recently have Australian cycads been removed from the noxious weeds list (because of certain toxic properties dangerous to cattle) to a protected status.



NATURAL HISTORY

Sporophyte phase.
As in other gymnosperms, the large, woody plant is the sporophyte phase of the life cycle and typically is diploid in chromosome number. All cycads may be called "functional conifers," for all species bear strobili; these strobili are of a simple type, unlike those of true conifers, which bear more complex, compound strobili. It is not considered that this feature of cycads indicates anything other than a parallelism in evolution.


Cycad males and females are morphologically alike except for their sporophylls. Male sporophylls (microsporophylls) are spatulate organs bearing large pollen sacs (microsporangia) in clusters (sori) on their lower (abaxial) surfaces (Figure 7). Up to 200 cubic centimetres of pollen are produced by a single cone of Cycas rumphii, and some other species produce similar volumes. It was once estimated that one pollen cone of Encephalartos produced seven billion pollen grains having a total volume of about 300 cubic centimetres. While this enormous production would seem to be consistent with a system of wind dispersal, observations and controlled experiments strongly suggest that in most, or perhaps all, cycads, insect pollen vectors are necessary for effective pollination of ovules. The Mexican cycad Zamia furfuracea, for example, is pollinated by a small snout weevil, Rhopalotria mollis, which lays its eggs and completes its reproductive cycle in male cones. Emerging adults then carry pollen to female cones and pollination of ovules and subsequent fertilization of eggs occurs.



Gametophyte phase.
As in all other gymnosperms, male and female sporophytes of cycads produce, respectively, male and female gametophytes. The male gametophyte phase of the life cycle begins in the microsporangium with meiotic production of tetrads of microspores followed by the division of each haploid microspore into a three-celled pollen grain. Because it is multicellular, the pollen grain is considered to be an immature male gametophyte, but its further development into a sexually mature organism occurs only after it has been shed from the microsporangium and transported as a pollen grain to a megasporophyll--specifically, to an ovule, within which the male gametophyte grows to maturity.


Concurrently with pollen development, the ovule differentiates, and at the time of pollination it consists of a large megasporangium (nucellus) enclosed within a fleshy integument. At this time an opening at its distal end (the micropyle) permits pollen to enter the ovule. Over the next three to five months, the male gametophyte develops into a haustorial pollen tube, which eventually penetrates the nucellus and partially projects into an archegonial chamber.


Meanwhile in the nucellus, a single megaspore mother cell undergoes meiosis, forming a tetrad of haploid megaspores, only one of which survives to divide mitotically many times and form a large fleshy female gametophyte. The female gametophyte grows at the expense of nucellar tissue but remains enclosed within its remains. At its micropylar end, this gametophyte develops from one to many archegonia (commonly one to six in most cycads and up to 100 in Microcycas, only five or six of which are functional). Each archegonium is composed of a quartet of neck cells beneath which is a large egg. This egg is the largest known in the plant kingdom, being about three millimetres in length.


The development of male and female gametophytes is synchronized, and during the final week or so before fertilization, the male gametophyte forms large, multiflagellated spermatozoids. In all species but Microcycas, there is just one pair of sperm per pollen tube; in Microcycas, spermatozoids number about 12 to 16 per tube. What actually triggers sperm release into the archegonial chamber is unknown, but when it happens, the spermatozoids quickly move through the archegonial neck into the egg cytoplasm. One sperm loses its flagellature, and fusion of egg and sperm nuclei takes place. Subsequently, the zygote forms a single large embryo, other eggs meanwhile aborting. In the Florida cycad, Zamia pumila, the reproductive cycle occurs over a period of about 14 months, cones first becoming visible in October, pollination occurring in December, fertilization taking place in late May and early June, and embryogenesis and seed maturity being completed the following December. Similarly slow reproduction is typical also for other genera and species.


As far as is known, cycad seeds have no dormant period or after-ripening requirements and in some cases actually begin germinating while still attached to sporophylls. Possibly some germination inhibitors are present in the outer fleshy layer of the seed, because its removal often accelerates germination, and treatment with scarifying agents also may enhance germinability. The germinating embryo remains attached to the female gametophyte for as long as two years, absorbing nutrition through its cotyledons, which remain embedded in the female gametophyte. The seedling rapidly develops a flesh taproot and root growth.


The outer layer of the seeds of Cycas circinalis and C. rumphii are thick and somewhat fibrous, and experiments which show them to be capable of long immersion in brine suggest that long-distance dispersal by ocean currents may account for the presence of these species on remote Pacific islands. Little is known of natural seed dispersal of other cycads, but their bright red seed coats suggest a visual signal to animals. Mockingbirds, squirrels, and coatis are reported to disperse them. In general, however, cycad seeds, which are rather heavy, are poorly dispersed, and most germinate at the base of the parent, where they often languish and die.




FORM AND FUNCTION

Stem.
Stems of cycads are characteristically short and stout, and while most genera have some species with subterranean, tuberlike stems, a majority of species are arborescent (Figure 6). The taller cycads include Microcycas calocoma (up to 10 metres high), Macrozamia moorei (up to 18 metres), Dioon spinulosum (up to 16 metres), Lepidozamia hopei (up to 18 metres), and Encephalartos altensteinii (up to 20 metres), but most of the arborescent (treelike) species have trunks only two to three metres high. The stems of most arborescent species are covered with an armour composed of the hardened leaf and cataphyll bases, but internally they are rather soft and fleshy, with a thick parenchymatous cortex, a large pith, and scanty woody tissue (Figure 8). In most cycads, the woody tissue is on the order of five to 10 millimetres wide, but Dioon spinulosum has an exceptional amount of wood, in some specimens up to 10 centimetres wide. This may constitute evidence of the primitive nature of the genus, because seed ferns also generally had stems with considerably more wood than those of most living cycads. Even in Dioon, there is no evidence of annual growth rings, so that age estimates must rely on other evidence, most often on counts of the whorls of leaf scars, which can be related to annual or biennial production of new leaf flushes. On this basis, it has been estimated that some cycads (notably Dioon and Macrozamia) may be as much as 1,000 years old; however, it is doubtful that most cycads are that old.


Species of Macrozamia, Encephalartos, and Cycas often develop additional cylinders of vascular tissue, apparently formed from vascular cambia originating in the cortex. The result is a condition in which concentric rings of xylem and phloem are present, often two or three, but in exceptional cases, as many as 14. The xylem of cycad seedlings and that of some subterranean stems (Stangeria, Zamia) is composed of scalariform tracheids; in older stems, the tracheids exhibit primitive, multiseriate, bordered pits.


Another feature of those cycad stems in which terminal cones are produced is the presence of "cone domes" in the pith (Figure 8A). In longitudinal sections, the pith appears partitioned horizontally at intervals by vascular tissue. Each cone dome represents the displacement of a cone axis to one side as a result of the initiation and growth of the new vegetative apex.


The cycad stem grows from the tip (apically); the only lateral buds and branches are those unusually placed (adventitious) stems, whose buds arise by regeneration after the apical growth tissue (meristem) has been destroyed or as a result of wounding. Apical dominance and lack of branching bring about an apparent single-stemmed (monopodial) growth form, so that older plants become quite palmlike. This appearance, however, is deceptive, because in more than half the genera the apical meristem is converted from a vegetative to a reproductive function in that it is transformed into a strobilus (cone). A new vegetative meristem arises to one side of the cone meristem; subsequent growth and enlargement further displace the cone or cones to the side, so that the monopodial appearance is maintained even though the type of growth is actually sympodial (Figure 8). Only members of three genera (Macrozamia, Lepidozamia, Encephalartos) have cones initiated to the side and are truly monopodial; the remaining eight are considered sympodial.


Cycads have such thick stems that rearrangements of internal vascular connectives are not externally apparent. The cycad trunk is about as thick at its crown as at its base, thus furthering the resemblance to palms. Such stems, termed pachycaulous, result as in palms from activity of a primary thickening meristem (PTM) lateral to the apical meristem (Figure 8), which produces much greater increments of cortical parenchyma than would result if only an apical meristem were present. This is an important difference between cycadophytes and coniferophytes, for in the latter there is no PTM and the stem at its apical end is relatively smaller than at its base.


A further characteristic of cycad stems not occurring in cycadeoids, seed ferns, or coniferophytes is the presence of girdling leaf traces. In cacad stems, the vascular strands follow a circuitous route to the leaf bases, which is clearly seen in cross sections of stems. Girdling leaf traces are an important means of distinguishing between cycad and cycadeoid fossils (Figure 8).



Roots.
Cycad seedlings initially form a stout, fleshy taproot that persists in subterranean forms for many years but is augmented by secondary roots which also are quite thick and fleshy. The taproots, larger secondary roots, and, in some cases, underground stems, have contractile elements in the pith and cortex that draw the stem more deeply into the ground.


Branch roots are of two kinds: long-branching geotropic roots and short-branching apogeotropic roots, which are referred to as coralloid because of their irregular, beady appearance. The coralloid roots contain symbiotic cyanobacteria (blue-green algae), which fix nitrogen and, in association with root tissues, produce such beneficial amino acids as asparagine and citrulline.


The taproot does not persist long in arborescent cycads but is replaced by large adventitious roots, which obscure the basic taproot system of the seedling. In all cycads, young roots are diarch with a parenchymatous cortex and an outer cover of epidermal scales. In this aspect they also resemble seed ferns. Older roots become triarch or tetrarch, eventually developing substantial amounts of wood and an outer covering of periderm.



Leaves.
The leaves of cycads are for the most part once-pinnately compound; however, in the genus Bowenia, the leaves are bipinnate and quite fernlike. Stangeria also has fernlike leaves, and before cones were found to be associated with them the plant was described as a fern in the genus Lomaria. Stangeria leaves and those of the recently described Chigua are unique in possessing pinnately veined leaflets with midribs and side veins. Cycas pinnae also have midribs, but these lack side veins altogether. Pinnae of all other cycads have dichotomously branching, more or less parallel veins. The size of the cycad leaf is variable; Zamia pygmaea, the smallest cycad, has leaves about 20-30 centimetres long, while some species of Macrozamia, Lepidozamia, Ceratozamia, and Cycas have leaves three metres in length.


In cross section, the pinnae of most cycads are rather thick and sclerophyllous. The stomata are sunken and are of the type known as haplocheilic; that is, the guard cells arise directly from the mother cell, as contrasted with the syndetocheilic type, in which the guard cells are one division removed from the mother cell. The haplocheilic type is found in living conifers, pteridosperms, cycads, Ginkgo, and some others but not in the Cycadeoidea.



Sporophylls and strobili.
Cycads are universally dioecious. Male plants produce pollen by leaf homologues called microsporophylls, and female plants produce ovules by leaf homologues known as megasporophylls (Figure 7). In all cycads, the microsporophylls are arranged spirally about a cone axis; in all cycads but Cycas, megasporophylls are similarly arranged. Megasporophylls of Cycas do not form a true cone but are arranged in two to three whorls at the stem apex. Later the stem resumes vegetative growth, and the megasporophylls then are interposed between whorls of foliar leaves and cataphylls; the usual arrangement is two to three whorls of leaves, then several whorls of cataphylls, followed by megasporophylls, but variations in this sequence are not unusual.


The megasporophyll of the Asian Cycas revoluta is considered to most typify the ancestral seed-fern condition. Each megasporophyll consists of a stalk, a fertile portion bearing two to six ovules, and an expanded terminal blade having fringelike "pinnae" (Figure 7). An evolutionary series of plant forms probably led toward the biovulate, peltate megasporophylls of such forms as Encephalartos, Ceratozamia, Microcycas, and Zamia (Figure 7). Microsporophylls similarly vary among cycads; those of Cycas are the more leaflike, those of Zamia less so (Figure 7). Microsporangia, which are found on the abaxial surface of microsporophylls, are usually numerous--several hundred in Cycas, several dozen in Zamia--and arranged in small clusters of two to five. They are the equivalent of sori of ferns and of pteridosperms. The cycad microsporangium resembles a clamshell, being somewhat flattened with an elongate suture (Figure 7).




CLASSIFICATION

Many botanists believe that extant gymnosperms represent at least two evolutionary lineages: one that leads to the extant conifers, taxads, and possibly Ginkgo and the Gnetales; and another that leads to the cycadophytes, represented today by seed ferns, cycadeoids, cycads, and perhaps others. Cycadophytes probably had their origins among the Devonian progymnosperms (Progymnospermopsida), although the particular antecedents are unknown.



DIVISION CYCADOPHYTA
Gymnospermous plants possessing compound leaves, ovules have 1 integument; seeds borne on either the foliage or megasporophylls; soft, loose wood contains scalariform tracheids and tracheids with multiseriate bordered pits; stem cross sections show wide zones of pith and cortex.


DIVISION PTERIDOSPERMOPHYTA
(seed ferns)

Primitive, primarily Paleozoic, primarily small trees or woody vines; large compound fronds; leaf-borne ovules; and microsporangia more or less united as synangia; subdivided into several groups; two orders, Caytoniales and Glossopteridales, persisted into Cretaceous, the latter sometimes included with pteridosperms, but commonly ranked separately and thought to be closely related to certain primitive angiosperms.


DIVISION CYCADEOIDOPHYTA (BENNETTITOPHYTA)
Mesozoic; common and cycadlike; differ from cycads in having direct leaf traces, in sometimes being monoecious, and sometimes having bisexual cones.


DIVISION CYCADOPHYTA
Late Paleozoic? to the present; woody, coniferous plants with compound leaves, simple cones; flagellate motile male gametes; stout, fleshy stems; 4 families currently are recognized.


Family Cycadaceae
Generally restricted to species of Cycas; foliar, multiovulate megasporophylls arranged in an indeterminate strobilus; pinnae with a single midrib but lacking lateral, branch veins; 24 species defined.


Family Zamiaceae
Singly pinnate compound leaves, bearing leaflets with parallel, dichotomously branching veins (Chigua, if included, would be an exception); simple cones; female cones with biovulate megasporophylls; a total of about 112 species includes Macrozamia, Lepidozamia, Ceratozamia, Encephalartos, Zamia, Microcycas, and Dioon.


Family Stangeriaceae
Fernlike leaves bearing pinnae with a prominent midrib and numerous dichotomously branching lateral veins; simple cones; female cones with biovulate megasporophylls; includes only Stangeria paradoxa, a southern African cycad.


Family Boweniaceae
Differ from other cycads in possessing bicompound leaves; one genus, Bowenia, with 2 species.

This page hosted by get your own free home page