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About the book

This transdisciplinary work proposes a cross-fertilization between cognitive
science and theoretical physics, within a framework inspired by systems theory.
Cognitive science concepts are applied in an epistemological analysis of
physical theories, considered as representations of change.

This analysis leads to the basic concept of distinction conservation, which
appears necessary and sufficient to demarcate classical representations (classical
mechanics) from non-classical ones (quantum mechanics, relativity theory and
thermodynamics). It is observed that the most important cognitive and physical
processes are non-classical (i.e. do not conserve distinctions), whereas the
paradigms used for modelling and interpreting them are basically classical. This
anomaly produces conceptual problems, exemplified by the paradoxes of
quantum mechanics. The construction of an adaptive metarepresentation is
proposed in order to solve these problems. This is a general framework for the
representation of not distinction-conserving processes and representation
changes. Finally a first sketch of a metarepresentational formalism is presented.

The book is addressed to a broad audience of researchers from different
backgrounds. It is written in a style which avoids technicality, explaining
difficult mathematical and physical concepts in the most simple way. It will be
especially stimulating for philosophers and systems theorists interested in the
integration of theories, for cognitive scientists involved in the application of
ideas from physics, and for physicists wishing to understand the epistemological
foundations of their models.
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PREFACE

The present work is the result of the personal exploration of a domain which at
first seemed vague and unlimited, but which then gradually developed a clear
and distinct shape. My first systematic research efforts were directed towards
the conceptual problems of quantum physics. However, I soon became aware of
the fact that the traditional conceptual framework of physics is too restricted to
tackle problems which are essentially of an epistemological nature. On the other
hand, the fact that these problems subsisted for over half a century without any
clear sign of progress in the attempts to solve them, made clear that no better
conceptual framework was available in classical epistemology either. This
insight led me to direct my attention to the most diverse theories and disciplines
which seemed to propose an alternative set of concepts able to disentangle these
fundamental problems.

From this confusion of models and ideas there slowly emerged a coherent
framework: the Òcognitive paradigmÓ. It became clear to me that all the different
problems which had subsequently attracted my attention were basically
problems about the nature of cognition: how can we know, i.e. get information
about and construct a representation of, external phenomena? However, the
discipline which studies these problems, Òcognitive scienceÓ, is very young (as
far as I know, the first time the term Òcognitive scienceÓ appeared was in 1975;
see Bobrow and Collins, 1975; however the main concepts of the approach
began to emerge some twenty years earlier). Therefore its theories and models
are still confuse and incomplete, though their development is very rapid.

The most fundamental shortcoming seemed to be the relation between the
cognitive concept of ÒrepresentationÓ and the problem of change: how to
represent change, and how to change representations? No existing cognitive
formalism seems able to answer these questions. On the other hand the
representation of change (i.e. dynamics) is basically the aim of physics. In this
way I was led back to my original domain of interest. I then attempted to make a
synthesis of the fundamental ideas of physical and cognitive science. The result
is the concept of an Òadaptive metarepresentationÓ, which provides the guiding
framework for the present work (see sect 3.5).

Although the problems touched in this work are often of a philosophical
nature, I would not like this research to be classified as mere philosophy. We
should remember that the basic ideas of most of the actual scientific theories
(including physics) were once considered to be purely philosophical
speculation. However, the development of new techniques can lead very rapidly
to a transition from philosophy to science. The most recent example is the
transition from epistemology and philosophy of mind to Artificial Intelligence,
which is due to the introduction of the computer as an instrument for the
simulation of mental phenomena. The criteria that I would use for distinguishing
science from philosophy are ÒformalizationÓ and ÒoperationalizationÓ (see
chapter 3). How the present approach leads to a formalization and
operationalization is explained in chapter 11.
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ÒIf this research does not belong to the field of philosophy, then to what
field does it belong?Ó, you might want to ask. I would answer that it cannot
belong to one of the traditional scientific disciplines, since its purpose is just to
unify or to integrate existing disciplines. In this sense it is really
ÒtransdisciplinaryÓ (see sect. 3.4).

However if you would insist, and ask under which label it should be
classified, then I would choose the label of ÒsystemicsÓ or Òsystems theoryÓ (see
von Bertalanffy, 1968; Mesarovic and Takahara, 1975), which is closely related
to the more application-oriented field of ÒcyberneticsÓ. Both the objective (a
domain-independent theory of how to represent evolving systems) and the
conceptual tools (information, adaptation, system vs. environment, state vs.
structure,É) of systems theory are very similar to those of the present research.
However, I have tried to incorporate some more specific ideas from theoretical
physics and cognitive science in order to enrich the conceptual framework of
classical systems theory.

The overall ideal of transdisciplinarity has placed me for several problems
during the elaboration of this work. First, I had to discuss different fields in
which I am not an expert. This means that I shall probably be found guilty of
some inaccuracies by the people who are experts themselves. I hope this will not
detract them from reflecting on the general ideas I propose.

The second difficulty is to communicate the concepts of these various
disciplines to an audience of people who cannot be experts in all the fields
involved. Since I hoped my audience would encompass researchers from a very
broad range of disciplines, I had to assume that my readers would have only a
limited background knowledge about most of the topics discussed. Moreover
many of the subjects I wanted to treat (e.g. the interpretation of quantum
mechanics, the structure of relativistic space-time, the formalization of
intelligence) are reputed to be very difficult to understand or to explain.

In orde to tackle this problem, I have tried to keep my formulation as
didactic as possible. In particular, I have provided each new topic with a long
introduction, where its relation with the previously explained concepts is
defined. People who are well-acquainted with the topic might be tempted to skip
the introduction. However, I think it would be better to read it, because the
problem is generally introduced in a way different from the traditional one, with
a particular emphasis on those transdisciplinary concepts which form the
backbone of my approach.

A second technique to promote readability is to limit the use of
mathematics. However, certain ideas are very difficult to express without using
a formal language. I have tried to place the mathematical sections at the end of
the different chapters, so that they could be skipped without too much harm by
the readers whose mathematical background is limited. The readers who would
like to see a more mathematical approach, on the other hand, are referred to the
last two chapters, where I show how the basic ideas of my work can be
formalized without too much effort.(A second, more down-to-earth reason to
limit the use of mathematics was that my text processor had only limited
capabilities for treating formulas; this explains why the notation is sometimes
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unconventional: I had to replace certain conventional symbols by alphanumeric
characters.)
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PROLOGUE: The conceptualization of change

The philosophical conception of change as the very fabric of reality can be
traced back to Heraclitus, who is considered one of the first of the classical
tradition of Greek philosophers. For him, all things and the universe are in a
continuous, ceaseless flux, nothing exists as a static entity, only change is real.
In order to show that no two experiences can be identical, he compared this
endless process to a river, and remarked that Òyou can never step in the same
river twiceÓ. A similar awareness of the pervasiveness of change and
impermanence of things was at the base of Eastern philosophy, as expressed by
Buddhism and Taoism.

Western thought, however, developed in a different fashion. The alternative
view was expressed by the generation of Greek philosophers following
Heraclitus. Its most radical proponents were Parmenides and his disciple Zeno,
who maintained that change is an illusion, that there is just one timeless
ÒBeingÓ, in contrast to the ÒBecomingÓ of Heraclitus.

It is this view which guided the beginning of Western science, first in its
discovery of the Òtimeless truthsÓ of logic and geometry, then, in the application
of those mathematical truths to the description of mechanical motion. In order to
apply these static descriptions to motion, i.e. a form of change, a more general
mathematical framework had to be constructed. This was mainly due to Newton,
who introduced the concept of Absolute Time as a one dimensional geometrical
space, which could be coupled to the three dimensional space of positions by
using the concepts of velocity and acceleration.

In order to describe velocity and acceleration in a mathematical fashion, and
in this way to overcome the paradoxes proposed by Zeno to demonstrate the
impossibility of motion, Newton (and independently of him, Leibniz) invented
the differential calculus. This was the origin of the mechanistic paradigm, which
dominated science for centuries.

Although now the existence and representability of a certain form of change,
mechanical motion, were acknowledged, the fundamental concepts of the world
view still emphasized permanence: the elements of the world which underwent
this motion were seen as atoms or particles, i.e. as permanent pieces of matter;
the movement itself took place in Absolute, unchanging Space and Time,
according to the predetermined, eternal Laws of Nature. In this deeper sense,
change is still an illusion: every event that will happen is determined a priori
and could be said to already exist in some transcendental realm beyond our
limited field of experience (call it the Mind of God, or the Four-dimensional
Space-Time Continuum, or whatever you like).

The past century has seen a gradual erosion of this image of the universe which
is based on absoluteness and permanence: the emphasis of scientific enquiry has
moved back from ÒBeingÓ to ÒBecomingÓ (cf. Prigogine, 1979; Prigogine and
Stengers, 1979). A more profound analysis of the fundamental concepts of the
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mechanistic framework has revealed that their apparent permanence is only
approximate.

Elementary particle theories have shown that the microscopic constituents of
matter are not permanent at all: particles are continuously created and destroyed
through mutual interactions (or even, in the case of virtual particles, through
Òfluctuations of the vacuumÓ). On the macroscopic level, recent advances in
fields such as thermodynamics, and biology point out that larger systems
(crystals, stars, organisms, É) can and do undergo drastic transformations,
which alter their most basic structures. According to the theory of general
relativity, even the geometrical structure of space is continuously changing, and
this leads to cosmological models in which the Universe itself and its ÒLaws of
NatureÓ are periodically reprocessed (Misner, Thorne, Wheeler, 1974).

This reintroduction of change into the conceptual models of the world was
paralleled by an increase of the rate of change in culture and society as a whole.
It is well-known that the rate of innovation in our present-day society is faster
than it ever was, and this has a profound influence on the psychology of the
people who live in it (Cf.. Toffler, 1970). It is no surprise then, that we can no
longer find people such as Parmenides, who would deny the reality of change.

But does this mean that there is not anything left that is permanent at all? In
orde to get convinced about that, it suffices to study any given phenomenon, and
to analyze it deeply enough so that its underlying dynamics becomes apparent.

Take for example a billiard ball (which is a classical illustration of the
mechanistic model) at rest. As you look at it, it appears completely static,
unchanging. Yet we know from solid-state physics, that it is composed of
coupled molecules which are continuously vibrating and exchanging energy
under the form of waves. This hidden thermal motion may become apparent
when the temperature reaches some threshold so that the ball melts, or when the
stress on the ball is raised so that it breaks apart. In both cases, the relative
motion of the molecules becomes so large that their coupling is undone.

The pervasiveness of these hidden, internal processes becomes even clearer
if we consider a more complex system, such as a human being. Physiology tells
us that everywhere in our body, even when it does not move, continuous
chemical processes are under way. Molecules are transported between the cells,
are destroyed and created through chemical reactions, are exchanged with the
outside world through eating or breathing. On the biological level, cells die and
reproduce, organs direct and control physiological processes. So, inside the
human body everything is in a ceaseless change. Yet, we still recognize the
individual John Smith, even though we may guess that approximately every
molecule in his body has changed since the last time we saw him.

What about more abstract entities? Consider for instance the concept of
ÒtruthÓ. If it is acknowledged that some assertion, e.g. 2 + 2 = 4, is true, does
this not mean that it remains true once and for all? In modern epistemology, the
view was advanced that truth is a relative notion, that it depends on the larger
framework or conceptual system in which the assertion is formulated. For
example, mathematical truth is established by a ÒproofÓ, which is a sequence of



- 7 -

deductions, following certain Òrules of deductionÓ, from a set of axioms. Hence,
the truth of an assertion will depend on the axioms and rules which were
postulated at the beginning. If the framework, and thus the axioms or rules, are
changed, then also the truth of a given assertion may change. That in practice
conceptual frameworks do change, is clearly shown by the history of science.

These examples, and their underlying ideas, that I have sketched, point to a
world view which is radically different from that of Parmenides or Newton. In
this world view nothing is permanent, everything is changing and the closer you
look at it, the more it appears to change.

This world view may be frightening to many people. It seems that
everything is confused, unpredictable, uncontrollable, that nothing can be
trusted anymore. That a great amount of change in the life of an individual can
lead to feelings of inadequacy or anxiety, to stress and hence to all kinds of
mental and physical illness, is well-established (Toffler, 1970). On the social
level, this phenomenon can lead to a generalized pessimism, to a crisis of belief
and values, to a mentality which is expressed by the slogan: ÒNo futureÓ.

On the other hand, this injection of change in our society and its (scientific)
world view is greeted with enthusiasm by certain people. This view of the
universe as a complex, evolving network of processes and interactions, reminds
them of ancient Eastern and Western philosophies and mystical traditions. They
consider the new scientific world view as the basis for an Òemerging science of
wholeness and becomingÓ (Briggs and Peat, 1984; Ferguson, 1980). The
growing awareness of the dynamic and interactive character of the universe is
for them the first sign of a new evolutionary transition, which will take mankind
to a higher level of consciousness and integration with the changing universe.

Although both the pessimistic and the optimistic viewpoints, as sketched
here, are directly inspired by scientific and technological innovation, none of
them has a real scientific underpinning. Both are based on vague intuitions,
rather than on a clear conceptual framework. In order to build up a new science
of becoming you need more than an intuitive awareness of holistic and dynamic
principles.

This leads us to a first formulation of the problem with which this work is
concerned:

if the evolution of science and society compels us to reject the classical
conceptual framework based on permanence, then how are we to replace
it?

Although this question may sound rather metaphysical, it is really very
pragmatic. To do things, to solve problems efficiently, to tackle new situations
in an adequate way, you need some kind of understanding of the world around
you, some framework to guide you in your decisions and in your planning. The
more your environment is changing, the more difficult it will be to find such a
guidance on which to rely, but also the more you will need one.

- 8 -

The success of the classical, Newtonian framework was that it allowed to
plan, to anticipate certain processes in a very accurate way. The most
spectacular illustration of that is that you can use it to put a man on the moon.
Yet we know that its basic principles: the permanence of matter, of geometry
and of natural law, can no longer be sustained. But does this mean that we have
to throw it away completely?
The problem is the same as with our friend John Smith: if we know that all the
matter in his body has changed since the last time we saw him, then must we
conclude that he is no longer John Smith? What is happening here, is that if you
conceptualize some phenomenon,Ñe.g. the geometry of space, John Smith, or
the mathematical truth that 2 + 2 equals 4Ñthenou necessarily idealize it, you
consider only a certain aspect of it which remains more or less invariant while
you are using it, even though the phenomenon as a whole is continuously
changing.

It is this process of idealization, of the extraction of certain invariant features
from a changing situation, which allows the construction of a guiding
framework for solving different kinds of problems in an efficient way, that is to
say without getting lost in chaos and confusion. The result of this process may
be called a ÓrepresentationÓ: a model, an abstract structure which represents
changing phenomena in a stable way. The aim of science is just to construct
such representations, and to make them as efficient as possible.

What was missing in the Newtonian paradigm was the awareness that it was
nothing more than a representation, that it did not express Absolute and Eternal
Truths, but that it just provided one way to represent rather accurately a very
specific kind of change: mechanical motion. If you want to represent more
radical types of change, such as those which determine the evolution of the
present-day society, then you must look for an alternative for the mechanistic
framework.

We can now formulate the basic research problem in a better way:

how can we generalize the classical mechanistic representation so that it
can be used to represent more profound types of change?

In order to approach this problem we shall have to formulate it more explicitly.
This means that we shall have to clarify the concepts which are used in its
formulation. The two fundamental concepts are ÒchangeÓ and ÒrepresentationÓ.

The concept of ÒchangeÓ was discussed in this chapter. As we have shown,
change is always and everywhere. Therefore I will not try to define it, but
consider it as a primitive term. As was argued, the absolute negation of change,
ÒpermanenceÓ, does not exist. However, to contrast different levels of change, I
will use the concepts of ÒstabilityÓ and Òinvariance, which are defined in a
relative way: one phenomenon will be said to be stable relative to another
phenomenon (e.g. its environment), if it does not change as rapidly or as easily;
alternatively, it will be said to be invariant relative to a set of transformations or



- 9 -

processes, if none of these particular transformations makes it change. What this
means in practice, will become clear through its use.

This leaves us with the second basic concept to define: representation. This
problem will form the subject of the following two chapters.
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CHAPTER 1: The concept of representation in physical and
cognitive science

1.1 Physical science

The birth of modern science is traditionally traced back to Galileo. What
distinguishes the work of Galileo from that of his predecessors, is that he
combined consequently two approaches: empirical observation and formal
(mathematical) description. This allowed him to model physical phenomena in a
general and controllable way: the principles he inferred could be applied and
checked in an accurate way by other people in quite different settings.

His approach can be seen as the beginning of physical science, which may
be defined as the (scientific) representation of universal types of change, that is
to say of those external processes which are general enough so as to be
independent of the specific internal organization of the systems that undergo
them. For example, the principles that Galileo derived concerning the motion of
falling objects, are the same, independently whether the falling object is a stone,
an apple, or a man.

Now in what sense does this approach lead to a ÒrepresentationÓ? First, there
is the mathematical structure, formulated for instance as an equation relating
certain parameters, which provides a clear, explicit and manageable description
of the phenomenon. Second, there is the operation of observation, which tells us
just how this abstract structure is related to the phenomenon it describes. For
example, it could state that a certain parameter in the equation corresponds to
the distance measured with a meter stick, between the point where an object
began to fall and the point where it reached the ground. So, in general we can
say that a representation is an abstract structure which is related through certain
operations with external, physical phenomena.

What is interesting about such a structure, is that it can be used to anticipate
certain observations. For example, if you have measured the distance between
the top of a tower, and the ground level below, then you do not have to use a
clock in order to know how long it will take for an object to reach the ground.
By using Galileo's equation you can deduce the duration of the fall from the
height of the tower. What the representation tells you is that if you would
measure the duration, then you would get the same result as the one deduced
from the known height by using the equation. So, what the equation represents
is the dynamical relationship between certain observations of physical
phenomena.

The concept of representation defined in this way can of course be applied
to the whole of physical science from Galileo until now: all theories and models
of physics are representations, are mathematical structures relating empirical
observations. This characterization is still quite vague, and not very practical. In
mathematics and physics itself, the concept of representation is often used in a
more specific sense.
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For example, a mathematical physicist may speak about the representation
of a vector, of an operator or of a group (see e.g. Saletan and Cromer, 1971).
Abstracting from the purely technical definition, this means that he has some
abstract concept which can be used to describe a dynamical phenomenon, but
that it first has to be given a detailed form so that its relation with the concrete
phenomenon can be clearly specified.

For example, the state of a system can be described by an abstract vector,
but if you want to construct a manageable model of this system, then you must
first express or ÒrepresentÓ this vector as a column of numbers. These numbers
are called the components or coordinates of the vector in a certain basis, and can
be interpreted as the empirical values obtained by making certain measurements
on the system. As long as those numbers are not specified, the operational
relation between the algebraic structure formed by the vectors and the concrete
system cannot be established.

The same remark can be made about representation of groups: a group is an
algebraic structure that can be used to describe possible changes of the state of a
system. Yet, to make this description operational, this structure has to be
embedded in a coordinated space, so that the action of each element of the group
can be specified by a matrix, which transforms one column of coordinates into
another one.

In order to differentiate this more restricted sense of the word
ÒrepresentationÓ from the general concept, I would rather use the word
ÒindexationÓ instead. Indeed, what happens here, is that the abstract concept
(e.g. vector or group) is indexed: it is labeled by coupling it to a set of indexes
or pointers (e.g. coordinates) so that it can be easily located and related to the
concrete phenomenon it is supposed to represent. The importance of this
indexing function will become clearer when we shall discuss the concept of
representation in the context of computer science.

There is yet another way in which the word ÒrepresentationÓ can be used in the
physical sciences. This third signification is somewhere in between the first,
very general sense, and the second, rather restricted sense. As such, it comes
closer to the sense we are looking for. It is the sense intended when scientists
speak about the Òdynamical or state-space representation of a systemÓ
(Mesarovic and Takahara, 1975; Gille and Clique, 1975). This approach is often
used for the study of engineering systems, such as electrical circuits, or
mechanical devices, but it can be applied to all kinds of physical systems.

The basic idea is that a certain system is changing, partly autonomously,
partly under the influence of its environment. The scientific observer now wants
to make a model of this evolution, so that he can anticipate what will happen if
the system is subjected to a certain environmental input (which may be
controlled by him). He supposes that this evolution can be represented as a
sequence of states, such that at each time t, the system is characterized by a state
s(t). This parameterized sequence forms a trajectory in the space of all possible
states.

The Òrepresentation problemÓ can now be formulated as follows:

- 12 -

what form should be given to the states so that this trajectory and its
observable manifestations can be easily computed?

In order to explain how this is done it is necessary to give a definition of
ÒbehaviorÓ and ÒstateÓ of a system. In this approach a system's behavior is
characterized by the way it reacts (output) to the actions exerted upon it (input)
by the environment or by the observer. Output and input are in general
processes, i.e. Òphenomena-in-timeÓ. The relation between input and output
which defines the system as a dynamic entity, is in general not a function, i.e.
for a given input process several different output processes are possible. This
means that if one wants to predict unambiguously how the system will react to a
determined input, he needs some extra information. This extra information,
which summarizes in a certain sense the past history of the system before the
prediction is made, is called the state.

More precisely: if one knows

(1) the general dynamical laws which constrain the behavior of the system, and
(2) the external actions to which it is submitted (input),

then the ÒstateÓ will be the set of characteristics whose knowledge must be
added to the knowledge of (1) and (2) in order to determine the further behavior
of the system (Gille and Clique, 1975). The ÒstateÓ in this sense is a conceptual
construct, which is itself not directly observable, but which allows us to specify
the relation between the observable input and output processes.

ÒRepresentingÓ the system then means that you introduce an intermediate
formal structure, the state space, together with a dynamical law, so that with its
help the observable reaction of the system to a known input can be efficiently
computed. In practice, the problem amounts to a choice of state variables which
makes the expression of the dynamical law, and its connection with the input
and output variables, as simple as possible. The dynamical law then takes the
form of a set of equations relating input, output and state variables as a function
of time. If the equation can be easily solved, and if for a given input function
and initial state, the solution (state and output function) is unique, then the
representation may be called adequate.

Summarizing we can say that as yet the concept of representation has no clear
and generally accepted meaning in physical science, but is used in several more
specialized senses, depending on the context. Nevertheless, these different
significations are sufficiently similar so that we can propose a definition which
integrates them all:

a representation is a formal structure relating observable phenomena;
as such, it provides a mechanism for deriving anticipated observations (output)
from actual observations (input);
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its efficiency depends on its mathematical form, which must be sufficiently
detailed to embody all information needed for an unambiguous solution of the
problem, but not so complex as to make the search for this solution needlessly
difficult;
the dynamical character of a phenomenon, i.e. the way observations change in
time, is expressed in this formal structure by using a trajectory in a space of
states.

1.2 From physical science to cognitive science

Whereas physical science can be defined as the study of nature, cognitive
science might be characterized as the study of mind. However, this
characterization is rather vague, and the mind-nature dichotomy is no longer
adequate to categorize the objects of scientific enquiry. For example, should a
machine, designed by man, be considered as a natural or as a mental
phenomenon? (One way to avoid this dilemma, is to classify it as ÒartificialÓ, cf.
Simon, 1979). It will be shown later how the concepts of representation and
change can be used to transcend this dichotomy.

For the moment, it suffices to call a science ÒcognitiveÓ if it attempts to
explain mental phenomena, such as perception, memory, thought, language, and
even emotion and motivation (although this is seldom acknowledged as being
dependent on cognition). The word ÒcognitionÓ derives from the Latin verb
ÒgnoscereÓ which means Òto get knowledge ofÓ, hence Òto grasp mentallyÓ.
There are two aspects in this definition: a static (or stable) one, knowledge; and
a dynamic one, the process through which this knowledge is acquired. Hence,
the proper domain of cognitive science could be specified as:

the relations between the stable organization of the mind (cognitive
structures), and the changes to which it is subjected through its interaction
with the changing environment (cognitive processes).

Once again, we encounter the fundamental tension between stability and change.
Historically cognitive and physical science have evolved in a quite different

manner. Physical science managed to acquire a clear, elaborated and reliable
framework very early. Although this conceptual framework, which first
appeared with Newton, has undergone several changes since, it is still generally
acknowledged that all models of physical phenomena are in principle reducible
to a few fundamental concepts and laws, which are formulated by theoretical
physics. Thus theoretical physics, with its basic concepts such as space, time,
particles, dynamical laws, É, appears as a central paradigm for all physical
sciences.

Until recently, nothing of this sort existed for the sciences of the mind.
Mental phenomena were investigated by such various disciplines as philosophy,
psychology, linguistics, logic, anthropology, sociology, pedagogy, neurology,
É, which had all their proper concepts and methodologies. Only a few decades
ago some new ideas began to appear which seemed capable to create models of
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mental phenomena characterized by a clear theoretical structure with operational
implications. The tools which made this development possible, were the
mechanical computer, and the simultaneously evolved concepts from
cybernetics and information theory. The vagueness and ambiguity which
characterized the existing conceptualizations of mental phenomena, could now
be replaced by exact formalizations, which could be tested through experiments
and computer simulations.

The synthesis of these new concepts and methods, inspired by the physical
sciences, with certain more traditional ideas of the sciences of the mind, led
recently to the emergence of an integrating framework, which may be called the
Òcognitive paradigmÓ (De Mey, 1982), and which provides the foundations for
the new interdisciplinary field of Òcognitive scienceÓ (Bobrow and Collins,
1975).

Two of its basic concepts are Òinformation processingÓ and
ÒrepresentationÓ. Whereas the first one stresses the dynamical aspect, the fact
that external stimuli undergo complex transformations before their eventual
ÒmeaningÓ is extracted by the cognitive system, the second one points to the fact
that in order to be efficient this processing needs some stable structure, called a
ÒrepresentationÓ, to guide it. It is this representation which embodies the
knowledge used by the cognitive system to interpret stimuli, to make decisions
and to solve problems.

We will now try to analyze what this cognitive ÒrepresentationÓ concept
means in practice, and how it is related to the ÒrepresentationÓ concept that was
defined in the context of physical science.

1.3 The philosophical theory of ideas as representations of external
objects

Historically, the study of cognitive phenomena began with philosophical
speculations on the nature of mind and knowledge. One of the fundamental
questions was how Mind and Matter are related. At first, the debate seemed to
be a struggle between those people who maintained that only mental
phenomena, ÒideasÓ, were real (idealism), and those who stated that only
material objects were real (materialism). As a way of synthesis (or rather of
compromise), Descartes proposed a dualistic philosophy, in which both Mind
and Matter were accorded independent existence.

The remaining problem was to specify how these two realms can interact.
Clearly, our mind can sense, can think about, can act upon material entities.
With respect to action, Descartes gave no clear solution to the problem, but with
respect to sensation and thinking, he proposed that the mind does not know its
objects directly but only through the mediation of ideas which represent them.
This theory of Òrepresentative ideasÓ had followers among such different
philosophers as Hobbes, Locke and Berkeley.

The basic intuition is that if we perceive or think about some object, then
what is present in our mind is not the object itself, but an image or
representation, which is a kind of mental or ideal ambassador of the real,
material object. Naively, the process through which these representations come
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into being can be visualized as follows: a material object which is perceived
induces some kind of patterned excitation of the sense organs (e.g. the image
formed at the back of the retina during visual perception); this ÒimageÓ is
apprehended immediately by the consciousness (direct perception), but at the
same time it leaves a trace in memory (engram); if we think about an object
which is not directly present to the senses, then we merely revive this engram,
and so the image of the object reappears before our mind.

The problem with this simplified picture is that it leads to the idea that a
cognitive system is not very different from a photographic camera: the patterns
of light coming from the object (stimuli) pass through some system of lenses
(sense organs), and are projected onto a screen (consciousness), were they leave
a permanent trace in the photographic emulsion (memory).

A first difficulty is that this view implies that our ideas should in some sense
resemble, be isomorphic to the phenomena they are supposed to represent. This
is clearly not the case as far as more abstract ideas are concerned. E.g. if I think
about the number 8673, I clearly do not see 8673 dots before my mind's eye;
there is no structural similarity between the concept 8673 and some collection of
8673 objects I once might have seen before me.

But the isomorphism of phenomena and ideas is not even true for concrete
visual imagery. This can be illustrated by an anecdote reported by the
philosopher Alain:

once a friend of Alain told him that if he closed his eyes, he could clearly imagine a
view of the Parthenon. Alain answered that if this mental image were so vivid, then his
friend should have no trouble counting how many columns were in front of the
Parthenon. Since his friend obviously was unable to do that, Alain concluded that
whatever mental representation of the Parthenon his friend seemed to experience, it
clearly was very different from a photographic image.

A second, even more serious difficulty raised by the Òphotographic cameraÓ
view of the mind is that of the homunculus. If perception is nothing but the
projection of images onto a screen, and memory not different from a set of
photographic prints of those projections, then who is looking at the screen, and
shuffling through the photographs? The only way to answer this question is by
introducing a little man, a ÒhomunculusÓ, who is sitting somewhere in our brain,
looking at different incoming and stored mental images in order to decide what
they really mean, what should be done with them, to which aspects should be
paid attention. This leads us to postulate a mind within the mind, and that, of
course, does not bring us one step closer to solving the problem of how the mind
really works.

These difficulties, together with other criticisms, led to a decline in popularity of
the theory of ideas as representations of the outside world. This trend was
reinforced by the appearance of behaviorist psychology, whose basic doctrine is
that mental phenomena can only be studied indirectly, as associations between
externally observable stimuli and responses; hence any speculation about the
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structure of internal representations or ideas should be regarded as meaningless.
This had as a consequence that by the middle of the twentieth century, the
concept of representation had virtually disappeared from the existing theories of
mind. Its reappearance was mainly due to the discovery of the computer as an
instrument for the simulation of mental phenomena.

1.4 Artificial intelligence and knowledge representation

The fundamental belief characterizing the field of Artificial Intelligence (AI) is
that the computer as a mechanical, information-processing device can be used to
simulate processes which are usually associated with human intelligence, such
as perception, understanding, learning, reasoning and problem solving. This
belief is founded on the idea that all mental activities can be reduced to some
form of information processing, and that, since information is a purely abstract
quality, this process is independent of the detailed physical structure of the
information processing system. Hence, electronic computer and organic brain
alike can undergo basically the same kind of information processes.

In order to model an abstract entity such as information with the help of a
concrete object such as a computer requires the use of symbols, i.e. phenomena
which refer to something else than their purely physical substance. Here we
already encounter the concept of representation in its most basic form: the
symbol (e.g. a certain state of an electronic memory) represents a unit of
information (e.g. the number 8673).

But to process complex information in an efficient way you need more than
a collection of elementary representations (corresponding to information units),
you need some global framework to guide the process at each decision point. It
is this awareness which has gradually developed through the subsequent
attempts to build intelligent computer systems, and which led to the concept of
knowledge representation. This development was clearly summarized by De
Mey (1982), who distinguishes four subsequent stages:

Ò- a monadic stage during which information-units were handled separately and
independently of each other, as if they were single, self-contained entities;
a structural stage which considered information as a more complex entity consisting of
several units arranged in some specific way;
a contextual stage where, in addition to an analysis of the structural organization of the
information-bearing units, supplementary information is required to disambiguate the
meaning of the message;
a cognitive, or epistemic, stage in which information is seen as supplementary or
complementary to a conceptual system that represents the information processor's
knowledge or model of his world. Ò

These stages can be illustrated by the problems encountered in the computer
simulation of perception and language understanding. Both these approaches
attempt to model how an intelligent system interprets, i.e. attaches meaning to
stimuli (sensory or linguistic):
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In the first, monadic stage, the stimulus is decomposed into simple units (e.g.
spots of light, or separate words), to which some fixed meaning is attached.

In the second stage, it is recognized that meaning resides not only in the
separate units, but also in the structure or pattern they form (e.g. a sentence
formed according to syntactical rules, from separate words). But in practice this
analysis still does not seem sufficient to attach meaning to certain more
ambiguous stimuli.

Therefore, in the third stage, another factor is taken into account: the context
in which the stimulus is received, that is to say that extra information is needed,
which is not in stimulus itself, but which helps to situate it, to determine to what
it is referring (e.g. to understand the meaning of the sentence ÒHe is niceÓ, you
must know from the context to whom the pronoun ÒheÓ is referring). The
problem with a contextual approach is that it is very difficult to define the
context, to make explicit what is in the context and what is not.

This leads to the fourth stage, where each stimulus is situated within a
conceptual system or model that specifies which meaningful signals can or
cannot be expected in the given situation.

This system is called a ÒrepresentationÓ of the information processor's
knowledge of his environment or situation. The basic idea is that the meaning is
not so much in the stimulus itself, but in the representation. The stimulus only
selects or activates certain prearranged categories, whose meaning is determined
by the way they are interconnected. Whether the information processor has
correctly interpreted or understood the stimulus can then be tested by asking
questions about the perceived situation: if the information provided by the
stimulus has been processed in an adequate way, the system should be able to
give correct answers.

There are several reasons why this fourth, cognitive stage of information
processing is much more powerful than the previous stages. The main advantage
is reduction of complexity: in a realistic situation an intelligent system such as a
human being is bombarded with stimuli, with information units; since the
information processing capacity of the system is limited, it is unable to process
in depth all these signals; therefore it needs some stable framework to organize
these stimuli in categories so that only the most important stimuli will be
processed.

The stimuli to which the system effectively pays attention are very few with
respect to the whole. In order to carry out this selection the system needs a
certain knowledge of the world in relation to itself, which allows it to anticipate,
to infer from a few input data what important phenomena are to be expected.
Then it can concentrate its attention or processing activity upon those aspects of
the expected phenomena where a choice has to be made, and neglect all other
stimuli which have no direct bearing upon these expected decisions.

To take a classic example from cognitive science: suppose that you enter a
restaurant with the purpose of having a dinner. Then your Òknowledge
representationÓ of restaurant situations tells you to look for an empty table, to sit
down, and to expect the coming of a waiter. Normally you will not pay much

- 18 -

attention to other people who have no waiter's clothes, or to other stimuli such
as the color of the chairs, or the brightness of the lights. When the waiter
appears, your attention will shift to the menu card he offers to you, and your
knowledge of the tastes of different dishes will come into play to help you reach
a decision about what to order. In the meantime the other stimuli impinging
upon your senses (sounds from the traffic, other people talking, the hardness of
your chair, É) will barely be processed.

When, however, something unusual happens, i.e. something which does not
fit into the set of expectations generated by your knowledge representation of
the actual situation (e.g. someone cries ÒFire!Ó) your attention to these other
stimuli is reactivated, and another representation of a situation (e.g. the
representation of what to do in case of emergency) takes over control.

Now, how does this concept of ÒrepresentationÓ as it is used in the context of AI
and the cognitive paradigm relate to the general definition of representation we
are trying to construct? In fact when someone speaks about a knowledge
representation he uses the word ÒrepresentationÓ in two different but
simultaneous senses. These two senses can be illustrated by two quotations from
Bobrow (1975), where he uses the two different senses on the same first page of
his introduction:

ÒWorkers in cognitive science have worried about what people know, and how to
represent such knowledge within a theory.Ó
ÒI propose here a framework where representations are viewed as the result of a
selective mapping of aspects of the world. Suppose we take a ÒsnapshotÓ of the world in
a particular state at some instant in time. Call this state world-state-1. Through some
mapping M, a representation (call it knowledge-state-1) is created which corresponds to
world-state-1. This corresponds with world-state-1 in the sense that an understander has
the alternative of answering questions about world-state-1 by directly observing the
world state or by questioning the corresponding knowledge state.Ó

In the first quotation the thing which is represented is some abstract entity,
ÒknowledgeÓ, and the way it is represented is by giving it a formal, theoretical
structure which is sufficiently detailed and unambiguous to allow some
inferences or computations whose results can be checked by observation. In the
second quotation, the thing which is represented is a concrete situation, the state
of the world at a particular instant, and the way it is represented is by
associating it with another concrete phenomenon, called the knowledge state of
a particular cognitive system.

This ambiguity of the word representation here is the same as the one we
encountered in the context of physical science: there is one formal, or
mathematical sense where representation means that you give some efficiently
manipulable structure to an abstract concept (e.g. ÒknowledgeÓ or a ÒgroupÓ),
and there is a concrete sense where representation means that you construct
some model or image of a concrete phenomenon (e.g. an external situation, or
the movement of a falling body) (this ambiguity in meaning is similar to the one
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encountered for the word ÒmodelÓ which has a quite different formal meaning in
formal logic, compared to its ordinary use in science).

Apart from this difficulty, the representation concept in cognitive science is
clearly related to its counterpart in physical science, though the technical
meaning is not quite the same. This relation will be further elucidated by the
analysis of a last specialized sense in which the concept of representation is used
in cognitive science.

1.5 AI and problem representation

In the first computer systems there was no intention to provide the system with a
perception or understanding of the outside situation. Rather the purpose of the
first computer scientists was to construct systems which could efficiently solve
complex problems which were introduced by the programmer, and had no direct
relation to the concrete environment in which the system was working. E.g. if
the programmer asked the system to compute 9231: 17, the system was not
supposed to understand what those numbers meant, what they were referring to,
but just to bring forth a new number which was the solution to the proposed
problem.

At first these problem solutions were carried out by a programmed set of
functions or algorithms, i.e. sequences of elementary operations on data or
information units stored in memory which would lead unambiguously from the
initial data (9231: 17) to the final result (543).

In a later stage one became aware that for more complex problems there was
no determined sequence or path of operations which led directly from the given
data to the result. Algorithmic methods had then to be replaced by methods of
heuristic search: since for each step in the problem solving process different
sequences of operations could be attempted, the system, to be efficient, should
be provided with a set of rules (heuristics) which specified which path of
operations should be tried first. There was however no guarantee that the
application of the heuristic rules would lead to any solution at all. Therefore
problem solving could be viewed as a search, guided by heuristic principles or
rules-of-thumb, through a space of potential solutions or problem-states
(Nilsson, 1971).

Here again we encounter the problem of complexity: if the space to be searched
through is very large (possibly infinite) it may well be that the computer with its
limited information-processing capacity, will never come up with the required
solution within a practical time interval. This is where the peculiar limitations of
computer science come in: the difference between mathematics and computer
science is that a mathematician may well be satisfied when he has proven that a
certain problem has a solution, whereas the computer scientist will not be
satisfied until he knows some explicit procedure which will help him to
effectively find this solution within a finite time. To a computer scientist, for a
theoretical model to be meaningful it must specify how the problems it is
supposed to describe can be practically solved through a finite sequence of
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operations. (A somewhat similar philosophy lies at the base of ÒConstructive
MathematicsÓ, cf. Beeson, 1985).

This requirement leads directly to the problem of ÒrepresentationÓ in a sense
similar to the one mentioned earlier of ÒindexationÓ. Indeed the main problem of
a computer scientist who wishes to design a practical program for solving
efficiently a certain class of problems, is to translate the abstract
conceptualization of this problem class (e.g. multiplying integers, or proving
theorems in the predicate calculus) into a detailed, indexed program or
information structure, such that the problem solving process can be carried out
in a minimum number of steps and with a minimum of search required at each
decision point. This means in practice that one must introduce:

¥ first, a clearly indexed space of states, such that as well the given data as the
looked for solution belong to that space;

¥ second, a set of operators which can be used to transform one state into
another one; this set of operators must be sufficient to be able to reach the
complete space without having to apply too many operators, but it must not
be so detailed that it would take an excessively long time to decide which
operator to use;

¥ third, a set of heuristic rules or evaluation criteria which give some
indication about whether the chosen search path is likely to bring one closer
to the solution; in particular the criteria must allow us to test whether the
state reached is indeed a solution (or close to a solution).

A problem which can be represented in this way is called a Òwell-structuredÓ or
Òwell-definedÓ problem. In order to solve such a problem it suffices to carry out
a search process through the state space, starting from the initial state
corresponding to the given data, and then applying the different operators,
guided by the heuristic rules, until a solution is found. The efficiency of the
search will of course greatly depend on features such as the size and the
structure (the way its points are connected through pointers, or geometrical
relations) of the state space, the ease of application of the operators, the
reliability, simplicity and exhaustiveness of the heuristic rules, etc. Here we see
that the way a problem is represented is essentially important with respect to its
practical solvability.

This becomes even clearer if we consider so-called Òill-structuredÓ
problems, where no set of states or operators is given as yet. The first step to
solve such a problem is to design some sort of representation, which will allow
you to start a search process. This step is crucial, and the way you carry it out
will determine whether you are able to find a solution in any reasonable time at
all.

A classic example is the Òmutilated checkerboard problemÓ. Suppose you have a
checkerboard consisting of 10 ´ 10 black and white squares. Suppose the two
white squares at the extremities of the diagonal line are deleted. The problem is
now stated as follows: can you cover the remaining mutilated board completely
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with domino blocks, knowing that one domino block covers just two adjacent
squares? At first the problem seems simple and well-defined: the possible states
of the space are the subsets of the board which are covered, the operators consist
simply in putting a domino block so that two more squares are covered. It
appears that you just have to try some combination of covering operators until
you find one which covers the whole.

However, you will never succeed in finding this combination: whatever you
try, there will always remain certain isolated squares that cannot be covered
without uncovering other squares. The reason for this is seen very simply when
the problem is represented in another way: instead of looking at an operator as
just the covering of two squares, you should see it as the covering of two
adjacent squares, which means of one black and one white square. Now since
you cannot cover a black square without covering a white square, it becomes
clear why a checkerboard where there are less white than black squares can
never be covered in this way.

This is an example where a change of representation makes a simple-
looking problem clearly insoluble. In other cases a change of representation can
transform an at first sight very complicated problem into a simple one. Many
more examples of this principle can be found in books and papers on problem-
solving (Nilsson, 1971; Newell and Simon, 1975; Wickelgren, 1974; Amarel,
1968; Burghgraeve, 1976).

Once again we must ask how this concept of problem ÒrepresentationÓ is related
to the other representation concepts we already encountered. On the formal level
there is clearly a similarity between these Òproblem representationsÓ and the
Òdynamical representationsÓ used for modelling systems. Both use the formal
structure of a state space, and of a trajectory through this space determined by
dynamical laws, or by heuristic rules.

But this similarity is more than purely formal. In systems theory one can use
two equivalent descriptions of a system: input-output systems and decision-
making or goal-seeking systems. (Mesarovic and Takahara, 1975). In decision-
making or goal-seeking systems, the dynamical mechanism which allows us to
infer output behavior from input data is supposed to be determined by a set of
internal criteria that the system tries to satisfy or to optimize. The dynamical
relation between input x and output y can then be defined as follows: a system S
will react to the input x with the output y if y is the solution of a problem
specified by the initial data x, and the internal goal or evaluation criteria of the
system.

In practice both dynamical and goal-seeking descriptions are equivalent.
This is easily seen in classical mechanics where the trajectory of a moving
object can be described alternatively as the causal progression of a point in
phase space, continuously determined by the dynamical law, or as the solution
of a Hamilton optimization problem (Mesarovic and Takahara, 1975).

That in practice the concepts and structures introduced for constructing
problem representations are very similar to the ones used in representations of
physical systems is nicely illustrated by the formalism proposed by Amarel
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(1968), for the representation of problems of reasoning about actions. We will
show later, by carefully analyzing the categories and organizing principles used
for constructing representations, that problem representations and dynamical
system representations are fundamentally equivalent.

Now, what is the relation between problem and knowledge representations? In a
certain sense a problem representation is just a special case of a knowledge
representation: it represents the specific knowledge needed to solve efficiently a
certain problem (class). In practice the difference between both representation
concepts is often one of emphasis: in knowledge representation the emphasis is
on the processing of incoming stimuli (understanding, perception) so that an
eventual decision concerning this information can be made; in problem
representations, the information is generally already pre-processed (e.g. by the
programmer), the emphasis is on the solution of a particular problem determined
by this information.

We now come to the point where we have found three more or less elaborated
significations of the word ÒrepresentationÓ: dynamical representations,
knowledge representations, and problem representations. Some other
significations we have encountered (e.g. ideas as representations of outside
phenomena, or matrices as representations of abstract operators), have no
sufficiently broad domain of applicability to be useful on their own in tackling
the problem we have formulated. Besides they can be subsumed under these
more general headings.

We can now try to synthesize these three concepts into one, and to apply it
to the problem of change. This synthetic concept will be called Òadaptive
representationÓ or ÒrepresentationÓ for short, and will be discussed in the
following chapter. The various applications of the representation concept we
have discussed seem to indicate that this concept is very powerful. But in order
to use it efficiently, we must first remove some of the remaining ambiguities
and confusions.
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CHAPTER 2: Adaptive representations

2.1 Representations as an interface between Mind and Nature

Until now our discussion of the various uses of the representation concept has
presupposed the basic Cartesian dualism between Mind, as studied by cognitive
science, and Nature, as studied by physical science. However, this has led to a
basic ambiguity as to what a representation is supposed to represent: the formal
structure that was called a representation could be said either to refer to an
abstract, mental entity (e.g. a problem, an algebraic concept, a piece of
knowledge), or to a concrete physical phenomenon (e.g. an object, a physical
process, a situation).

If we borrow some terminology from logic, we might call the first, abstract
reference the ÒintensionÓ of the representation, and the second, concrete
reference its ÒextensionÓ. If we consider a representation as a special case of a
ÒsignÓ, we can also use the terminology of Peircean semiotics (see e.g. Hawkes,
1977), and call these two references respectively the ÒinterpretantÓ and the
ÒdenotatumÓ of the representation. So, any general representation has both an
extension, i.e. a set of outside, ÒobjectiveÓ, physical phenomena that it denotes,
and an intension, i.e. an internal, ÒsubjectiveÓ, mental meaning or interpretation.

Most confusions with respect to the representation concept arise because
only one of these two basic functions is acknowledged. In order to get a real
insight in the power of this concept you must look at it from both viewpoints.

For example, if you have a mathematical description of a state space
together with a set of dynamical operators and equations that allow you to
compute output functions from input functions, then you can either look at it as
a mathematical representation of a physical system (e.g. an electronic circuit), or
as a representation of the knowledge that you have got about this system. (In
fact it is also a representation of the knowledge that you have not got but might
want to get by solving the problems inherent in the equations).

Therefore, a representation belongs neither to the realm of matter, of outside
objects, of things-in-themselves, nor to the realm of pure mind or Platonic Ideas:
it constitutes an interface, it stands in between Mind and Nature, in between
subject and object, in between Self and World. You could go even further and
say that the concept of representation transcends the classical dichotomy of
Mind and Nature: the only things we have got to work with are representations;
neither pure ideas nor things-in-themselves exist in any operational sense, they
are by definition unreachable ideals.

In a certain sense the subject-object dichotomy is an artifact of
representation: it is the representation itself which creates a distinction between
Òinside selfÓ and Òoutside worldÓ (De Mey, 1982; see further sect. 9.4). In
general a representation can be seen as a mediating system which relates
different domains. The distinctions made within these domains, the way their
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parts are labeled as either subjects or objects, are determined by the structure of
the representation. This means that, depending on the context, the same event
can be represented either as belonging to the internal self or as belonging to the
outside world. De Mey (1982) discusses two simple examples:

When I reach out to touch a pot of coffee in order to find out if the drink is still warm,
the same experience might be framed in either the expression the coffee is hot, or the
expression I burned my fingertips, i.e. two different conceptual representations of the
same bodily experience. One refers to an object in the outside world, the coffee, the
other to an object which belongs to the self, my body. The common mistake is to think
of the cognitive view as applying only to models of the external world. Representation,
however, is prior to segmentation in self and world.

The other example is that of the Copernican revolution in the scientific
representation of the movement of the planets: in the ancient Ptolemaic
representation the apparent motion of the sun was considered as something
belonging to the external world, to the object ÒsunÓ itself; in the Copernican
view, however, the motion was ascribed to the Earth and to the subjects which
stood upon it and looked at the sun.

So, at least in principle the representation concept appears to bridge the gap
between the sciences of Mind and the sciences of Nature. We will now show
that also in practice the need is felt in both physical and cognitive science to
bridge this gap by using concepts related to ÒrepresentationÓ.

The great conceptual revolution that took place in physics in the first half of
this century was centered around two theories: relativity theory and quantum
mechanics. In relativity theory the main new insight was that basic physical
properties such as space, time, mass and energy, are dependent upon the
reference frame of the observer. This reference frame can be seen as a special
case of a representation (see sect. 8.1).

In quantum mechanics too the observer using a representation plays a
predominant role. From the indeterminacy principle it follows that there is
always a finite interaction between the subject and the object he observes; this
induces a perturbation of the Òobject-in-itselfÓ: there is always a remaining
indeterminacy, due to the non-separability of subject and object. Since the
observer cannot have a complete knowledge of the object, he must choose that
representation of the state of the object which is most useful for computing the
variables he is interested in (see sect. 7.1).

For example, if he is interested in the probability of finding a particle in a
certain spatial domain, he will use the Schr�dinger or wave function
representation of the particle state. If he is interested in the possible values of
the particle's spin, he will represent the state as a linear combination of spin
eigenvectors. The peculiarity of the observation process is that an object which
is in an eigenstate of a particular representation (i.e. the observable propertiesÑ
e.g. spinÑcorresponding to this particular representation have determined
values) will in general no longer be in an eigenstate of this representation after
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an observation is made, but in an eigenstate of a new representation
corresponding to the property which was observed (e.g. position).

This strange effect suggests that in quantum mechanics representations are
more than essentially equivalent and purely conventional descriptions of an
invariant physical phenomenon. It appears that subject, object, representation
and observation process can no longer be treated separately: they form one,
indivisible whole (cf. Finkelstein, 1979).

Yet, the traditional physical world view lacks the conceptual tools required
for modelling this basic interactivity. This leads to the appearance of a host of
paradoxes and conceptual problems associated with quantum theory (see e.g.
Jammer, 1974). During the last few decades the awareness has been growing
that the only way to solve these problems is to concentrate not so much upon the
physical mechanisms underlying quantum phenomena, but rather upon the
epistemological (i.e. cognitive) aspects of physical observation and
representation. One important approach which grew out of this trend is the
analysis of the logical structure of theories or representations based on different
types of observations (see e.g. Piron, 1976; Aerts, 1983).

A complementary evolution has taken place in the cognitive sciences. At first it
seemed fruitful to study mental or cognitive phenomena in isolation, without
reference to any outside physical world. For example one would analyze the
abstract structure and properties of logical formalisms, of generative grammars,
or of general heuristics for state-space search.

Later on, it was acknowledged that in order to model practical intelligence,
you should study systems capable of facing real-world problems, of interacting
with concrete situations. One of the domains where this need is felt most clearly
is robotics: an intelligent robot should be able to experience the material world,
to act upon it according to its proper goals, and to correct its actions by
adequately interpreting the feedback it gets.

On a more theoretical level, it was proposed to study the representation of
so-called naive or qualitative physical knowledge, that is to say the knowledge
people use for their everyday interaction with the physical world (Hayes, 1978;
De Kleer and Brown, 1983; Forbus, 1981). This would provide a basis for
constructing AI-programs, which would extend beyond the traditional Òtoy
problemsÓ.

These examples illustrate that in cognitive science too there is a trend towards a
more holistic or interactive approach, in which both the knowing subject and the
known object are encompassed. The purpose of the present work is to carry this
trend to its logical endpoint, and to study the domain where the physical and
cognitive sciences meet. Therefore we must define an integrative concept of
representation, and establish its relation with the fundamental problem of
change.
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2.2 Adaptation as vicarious selection

The representation concept we wish to define should be a characterization of the
dynamical relationship between subject and object, between mind and nature,
between the inner and the outer environments of an intelligent, adaptive system.
We shall suppose that a ÒsubjectÓ or ÒselfÓ is characterized by a stable identity,
and that it continuously tries to maintain this identity by reacting in an adequate
way to all (external) perturbations that might destroy it. Hence, the fundamental
purpose of the ÒselfÓ system is survival: maintenance of its identity.

From this viewpoint all interactions between such a system and its
environment can be reduced to processes of selection: either the system survives
the interaction, i.e. it is positively selected, or it is destroyed, i.e. it is negatively
selected. So, the role of the environment can be conceived as that of a dynamic
selector, which continuously eliminates certain systems while retaining other
systems.

This description is so general as to become tautological: in any complex
process of change it is possible to distinguish phenomena that are stable, i.e.
which maintain some kind of identity during the interval of observation, from
phenomena that are unstable, i.e. which are destroyed during this interval. The
unstable phenomena will be considered as a background (or environment) of
change against which the stable phenomena stand out. As will be discussed
later, the stable phenomena can be categorized in a hierarchical fashion,
according to the way they maintain their stability.

We shall call a high-level stable phenomenon an Òadaptive systemÓ if it can
anticipate in some way the changes to which it will be subjected, so that it is
able to prepare its defense against potentially destructive processes.

A basic example of such a system is a human being. If a person is
confronted with a potentially dangerous phenomenon (e.g. a fire), he does not
have to experience the destructive influence of the phenomenon (e.g. being
burned) in order to take counteraction (e.g. running away); it suffices that he
perceive certain warning signals (e.g. smoke) in order to infer the danger to be
expected, and to conceive of an appropriate plan of action. In order to be able to
make such an anticipation, the system should have some form of knowledge of
the world (e.g. that smoke is an indication of fire) and of its self (e.g. that it can
be killed by fire).

The simplest way to conceptualize such knowledge is by considering it as a
Òvicarious selectorÓ (Campbell, 1974): it selects those possible actions of the
system, which lead to its survival in a given external environment. This
selection is vicarious because it Òstands forÓ, i.e. represents, the selection
effectuated by the environment itself through the destruction of those systems
that behave in an inappropriate way.

Let us illustrate this principle by working out the fire example. Suppose that
different organisms (e.g. people and animals) are confronted with the same
situation of an approaching fire. Suppose that they react in different ways: some
of them run away, some hide, some merely continue the things they are doing.
After the fire has passed, a selection has taken place: only those organisms have
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survived who reacted in an appropriate way, e.g. by hiding in a fire-free place,
or running away far enough. So, the fire can be considered as a selector of
adequately behaving systems.

Consider now an individual. Let us assume for simplicity that just two cases
can be distinguished: either he knows how to react adequately when perceiving
the signals of fire, or he does not know. In the first case he will select the
appropriate behavior from his repertoire of possible actions, and survive. In the
second case he will make a Òblind guessÓ, and adopt a certain behavior without
knowing whether it is appropriate or not. In that case he will have to wait for the
continuation of the events to see whether the choice was adequate or not.

So, we may conceive of knowledge as something that allows us to select
appropriate behavior vicariously, before the environment does so by destroying
(or damaging) the inadequately behaving systems. This concept of a vicarious
selector can be seen as a first step towards the integrative concept of
representation we are looking for. The fundamental idea is that a system can
succeed in maintaining its stable identity in spite of the continuously changing
interactions with its environment by internalizing the Òselective actionÓ of these
interactions upon its behavior, so that it can anticipate which type of behavior
will be adapted to a given situation. In order to do that it should at least be able
to distinguish between interactions that are dangerous (i.e. which select
negatively) and interactions that are not.

The question we must answer now is: how does such a vicarious selector
ÒinternalizeÓ or ÒrepresentÓ the selectivity of interaction with the environment?

2.3 The thermostat as an example of an adaptive representation

We may clarify this problem by considering an example of what De Mey (1982)
calls Òthe simplest model of a world view (or representation)Ó: the thermostat.
Suppose that you have got a tank with tropical fish, and that in order for the fish
to survive, the temperature of the water must be kept above 24¡ C. The
apparatus that is normally used to maintain such a system in equilibrium
consists of a heating element connected to a thermostat, both installed inside the
tank.

The thermostat consists of two parallel metallic plates: one is fixed, the
other one can move, and may or may not come in contact with the fixed one.
The movable plate is bi-metallic, which means that it will react to a temperature
decrease by bending towards the fixed plate. If the temperature falls below some
threshold (e.g. 24¡ C), the two plates make contact. This closes an electric
circuit which activates the heating element, so that the temperature is raised
again. If the temperature becomes high enough, the bi-metallic plate bends back
again and the contact is broken. This stops the heating activity so that the
temperature can decline again.

This is a classic example of a feedback system. But it is also an example of
an elementary adaptive representation. We have indeed a system with two
states: plates in contact, and plates not in contact. The first state of the
thermostat corresponds to the state of the world:
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ÒThe temperature in the tank is too low (below 24¡ C)Ó,

the second one to the world-state:

ÒThe temperature in the tank is high enough (above 24¡ C)Ó.

In that sense the thermostat can be said to have an elementary knowledge of the
world around him: it knows whether the temperature is below or above some
threshold. But it also knows about the adaptive system to which it belongs,
namely that the temperature should ideally be 24¡ C for the system to maintain
its equilibrium.

This Òself-knowledgeÓ is embodied by the fixed plate of the thermostat,
which forms the standard against which the movements of the bi-metallic plate
caused by temperature changes are evaluated. The position of the bi-metallic
plate then is an embodiment of the knowledge about the present interaction
between system and environment, which is arrived at through an elementary
form of perception. So, the subsequent states of the thermostat represent as well
the changes in the external environment (temperature fluctuations), as the stable
identity of the system (its equilibrium temperature).

The thermostat is also a vicarious selector: it selects the right temperature for the
fish tank. Suppose you would not have a thermostat determining the right
temperature, and you would keep different, but equivalent fish tanks at different
temperatures (e.g. 16¡ C, 19¡ C, 24¡ C, 34¡ C, É). In that case the selection
would not be vicarious but direct (i.e. natural): most populations of fishes would
die, except those kept at a temperature close to 24¡ C.

Let us analyze which basic processes and structures (i.e. aspects of change,
respectively of stability) are governing this system. On the stable side we have
the structure of the thermostat: the fixed plate, the moving plate which for a
constant temperature is at a determined distance of the fixed plate, the bending
constant of the moving plate which is such that the distance will go to zero when
the temperature goes to 24¡ C. This structure is a material realization or
representation of the abstract, ÒmentalÓ organization of the system: its goal of
remaining at a temperature near 24¡ C, its ability to perceive or distinguish
whether the temperature is above or below this threshold, its knowledge that to
reach the goal the heating should be activated whenever the temperature falls
below 24¡ C, and should be deactivated whenever the temperature is above 24¡
C, its ability to act upon the situation by opening or closing the heating circuit.

In fact we find here, in its most primitive form, the fundamental qualities
characterizing ÒmentalÓ activity: purpose or motivation, perception, knowledge,
problem-solving, and action. Yet we know that to construct such a system it is
sufficient to have an elementary knowledge of physics: the relationship between
temperature and the differential expansion of metals, the warmth dissipation
through a closed electric circuit. In this sense this extremely simple system is on
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the boundary of physical and cognitive science: it is basically governed by
physical principles, but it adds to this something that is outside the realm of pure
physical theory: a very primitive ÒmentalÓ or cybernetic organization.

Let us now look at the dynamic aspect of the phenomenon: what processes is it
going through? Let us begin with perception: a change in the outside
temperature causes a change in the bending of the bi-metallic plate. We may say
that the system has become ÒawareÓ of the temperature change, it has perceived
it. Now this perception is evaluated: is the temperature below (contact between
the plates) or above (no contact) 24¡ C? After evaluation comes a phase of
inference (cognitive processes or thought): if the temperature is below, then the
heating should be activated, but if the temperature is above, then it should be
turned off. Finally there is the phase of action: the ÒmessageÓ is sent to the
heating element that it should or should not heat.

Suppose the element begins to heat. This adds warmth to the water of the
tank and changes its temperature. The lower the outside temperature, the slower
the inside temperature increases. After a certain time interval, which depends on
these outside contingencies, the inside temperature increases above the
threshold, and a new perception-evaluation-inference-action sequence is
triggered. So, the process proceeds in a circular fashion. This is called a
feedback loop: the external consequences (temperature change) of the systems
action (output) is fed back into the system (input) and re-evaluated so that a
new, corrective action can be initiated.

In fact there is also another aspect in the process which can be called prediction
or ÒfeedforwardÓ. It means that the action is initiated not only by outside
reactions which determine the direction in which the previous action should be
corrected, but also by the anticipation that a particular action will bring the
system closer to its goal independently of any outside contingencies. In general
an adaptive system will as well use feedback as feedforward mechanisms in
order to deal with changes in the outside environment (cf. Simon, 1979, p. 172).

In the thermostat example the feedforward mechanism is very primitive: the
only anticipation made is that if the temperature is below the threshold, then the
activation of the heating element will bring the system closer to its goal. This is
because the representation used by the system has only two states: its only
internal knowledge is that a certain action will transform one state into the other
one.

2.4 The interdependence of feedback and feedforward

If the representation becomes more complex (i.e. has more states) then the
possibilities for anticipative knowledge, and hence for feedforward, become
much larger. Between a given state and the goal state there will now be many
paths of action, and the system will have to decide which sequence of actions is
most probable to lead to the desired goal state. In this case the set of states-of-
awareness will get a much more complex structure, which will allow the system
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to make more detailed and long-term anticipations, so that it can adapt to more
complex and changeful environments.

Yet it will always need a feedback mechanism to correct, or to complete
inadequate anticipations, because a slight error or incompleteness in the
representation of a situation can be greatly enlarged by the active application of
feedforward, so that the system loses its stability (cf. Simon, 1979, p. 173). This
interdependence of feedback and feedforward is crucial to the working of
adaptive representations.

Let us illustrate this principle with an example. Suppose that you are exploring a
region, with only a map and a magnetic compass to guide you. By comparing
the features of the landscape with the contours on the map you have succeeded
in locating your position with respect to the map. This provides you with a
representation of your initial state. Suppose you now wish to reach a mountain
hut which would provide a shelter for the night, and that you look it up in the
map. The symbol on the map that indicates the location of the hut is a
representation of your goal state. You can now draw a line on the map that
connects your actual and your desired position. This line represents your plan of
action, it anticipates the path you are going to follow in order to reach the
mountain hut. In principle, the problem now appears to be solved: it suffices that
you consequently follow the direction indicated by the line on the map to be
sure to reach the hut. Until now, the only adaptive mechanism you have used is
feedforward: with the help of the representation provided by the map you have
simply anticipated the different actions that you have to perform in order to
reach your goal.

However, anyone who has done this type of exploration in reality knows that
this is not sufficient. Even though you may use a compass to guide your steps,
so as to be sure that you continuously follow the direction indicated by the line
on the map, you will always deviate somewhat from the ideal path. This may be
due to different factors: your march is always somewhat irregular so that it is
impossible to walk in a perfectly straight line; you may encounter obstacles on
the road (e.g. rocks, bushes, pools, É) which were not indicated on the map,
either because they were too unimportant to be included in the detail of the map,
or because the terrain has changed since the map was drawn (e.g. because of an
avalanche, or the movement of a river bed).

Unless this deviation is corrected, it will become larger and larger, until you
have lost any idea about your position with respect to the anticipated path. The
only way to tackle this problem is by using feedback, that is to say by regularly
comparing your actual position with the anticipated position as indicated on the
map, and by redesigning a corrected path which takes into account the eventual
difference between both positions.

This method of correction is very general, and the more frequently you
apply it, the smaller the risk of failing to reach your goal. The only
presupposition you must make is that of continuity, i.e. that a ÒsmallÓ action will
have only a ÒsmallÓ effect on your state, so that the deviation between actual
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and ideal state will not grow in a discontinuous fashion. However, this is not
necessarily so. For example, taking one step too much might result in falling
into a precipice, and this would probably eliminate all chances of ever attaining
your goal. The only way to handle this kind of discontinuous changes in the
environment is by using feedforward or anticipation, that is to say by using a
good map on which all precipices and other potentially dangerous phenomena
are indicated.

Let us conclude this discussion of examples by remarking that both feedforward
and feedback as adaptive mechanisms for coping with change are fundamentally
dependent on the representation used by the adaptive system. This fact is
ignored in most presentations of the feedback-feedforward concepts, but it is
essential for the understanding of change and adaptation. It was made clear by
the exploration example that anticipation or planning is heavily dependent on
the map (i.e. the representation of the environment) which is used.

But also the corrective action through feedback requires the use of the map,
in order to recognize how far, and in what direction the actual path has deviated
from the planned path. You cannot take corrective action if you do not know
how to interpret the reactions or signals you get from the environment. The
discussion of knowledge representations has made clear that this interpretation
process (which encompasses perception, inference and evaluation) cannot be
carried out effectively without a representation. This explains why even the
most primitive cybernetic systems, such as thermostats, should incorporate some
representation of their goal state and of the possible states of the environment in
order to be efficient.

2.5 Structures and states of an adaptive representation

Now that we have discussed different examples of representations in order to
get a feeling of what this concept means in practice, it is time to integrate the
different features we have found into a general, abstract model. First we may
characterize an adaptive representation as an abstract organization, which can be
realized or embodied in different concrete media (e.g. electronic circuits or
nervous tissues). These material realizations are not fundamental to the
representation, and will therefore not be discussed.

The function of the representation is to steer or to guide the interactions
between a system and its environment in such a way that the ÒidentityÓ of the
system is maintained throughout the changes occurring within the environment.
This allows the system to adapt, that is to say to change internally in such a way
that the external changes are compensated before they can destroy the identity.

In order to do this, the representation should provide a model of the possible
changes in the environment, of the possible actions of the system, and of the
identity or ÒselfÓ to be maintained (this differentiation between features of the
world (external) and of the self (internal) is determined by the structure of the
representation, it is not determined a priori). This allows the system to explore
the environment (or rather the possible relations between system and
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environment) vicariously, i.e. to test possible strategies for behavior with respect
to the external situations without actually carrying them out, and hence without
running the risk of being harmed because they were inadequate.

The relation of ÒvicariousnessÓ between environment and representation is not a
static mapping or isomorphism, in the sense that a photographic picture is the
(static) result of a mapping of certain (visual) aspects of a particular
environment. Most people who think about a ÒrepresentationÓ tend to conceive
of it as something that has a formal resemblance to the thing it is supposed to
represent. The correspondence between environment and adaptive
representation, however, is not one of structure or form (static) but one of
process or evolution (dynamic). This means that in general there will be no
correspondence between parts (substructures) of the environment, and parts of
the representation.

The idea that a representation should result from the mapping of parts or
elements of an environment onto the elements of an abstract structure, will be
called the ÒdenotativeÓ or ÒisomorphicÓ view of representations. It corresponds
to the view that the meaningfulness of a linguistic description results from the
fact that the different words of the description denote different parts of the
phenomenon that is described, or that the meaning of a picture resides in the
isomorphism between its parts and features, and those of the thing it is supposed
to represent.

This mechanism of representation corresponds to what De Mey (1982) calls
the ÒmonadicÓ and ÒstructuralÓ stages of information processing (see sect. 1.4),
where a stimulus to be processed (or a situation to be represented) is
decomposed into separate units which are related through invariant structural
features. In the later stages (which De Mey calls ÒcontextualÓ, respectively
ÒcognitiveÓ), however, it becomes clear that the interpretation of a situation
generally requires more than an analysis of its (static) structure, it requires
knowledge about how this situation has evolved, and how it may evolve further
on.

It is this emphasis on the dynamics of environments or situations that makes
a representation ÒadaptiveÓ. In this sense a painting representing a still life, or a
poem describing a love affair, are no adaptive representations, they are static
representations.

Now, what makes a representation adaptive, what mechanism allows it to model
actual and potential changes? This mechanism is based on the duality between
state and structure. The structure is the stable part of an adaptive representation.
It is an organization or interconnection of elements that does not change (or
changes only slowly with respect to the information processes that it directs).
The state is the aspect of a representation which changes continuously, in
correspondence with the changes in the environment it is supposed to represent.

The transition from one state to another one is determined partly by the
representation structure (which specifies the possible states and the possible
transitions from one state to another one) and by the actual outside situation as



- 33 -

perceived by the receptors of the system (which singles out one of the potential
states or transitions). For simplicity, we shall suppose for the moment that the
distinction between state and structure is sharp, although we shall see later that
for certain representations (e.g. neurological networks) the distinction is only
gradual, in a way similar to the distinction between short-term and long-term
memory.

As an example, consider a language, characterized by a vocabulary or lexicon, a
grammar or syntax, and an internal logic. Lexicon, syntax and logic correspond
to the structure of the representation, which must be known in order to use it
effectively. A language user who knows this structure possesses what Chomsky
calls ÒcompetenceÓ: he is able to produce well-formed sentences.

The sentences he will produce, however, are not completely determined by
this structure, but will depend upon his intentions and the situation he is in.
These actually produced sentences are what Chomsky calls the ÒperformanceÓ
of the speaker; they correspond to the state of the language system viewed as a
representation. (A similar correspondence exists between de Saussurean
concepts of ÒlangueÓ respectively ÒparoleÓ, and the concepts of ÒstructureÓ,
respectively ÒstateÓ of a representation).

The flexibility of a language system results from the fact that the number of
possible sentences (i.e. states) is unlimited, whereas the number of words and
logical-syntactical rules (i.e. structures) is finite. This allows the language user
to adapt his verbal utterances to describe the most diverse situations. The only
thing which is missing in this characterization of a language to make it a full-
fledged adaptive representation, is the aspect of dynamics: the transition from
one linguistic utterance to another one, is not specified within the language, but
is dependent upon the user.

This example gives us some clues about what is needed to build a representation
structure. First, a representation structure must provide some generative
mechanism for producing different states. As in a language, a state can be
conceived as a combination (e.g. a sentence), determined by specific constraints
(e.g. syntactical rules) of units (e.g. words), chosen from a predetermined set
(e.g. a lexicon). The set of allowed states, together with their interrelations,
forms a state space. The set of units will be called the unit space. In the trivial
case where the maximum number of units to be combined is one, state space and
unit space coincide. In the case where the number of units that may be combined
in a single state is unlimited, the state space will be infinite, even though the unit
space may be finite.

The selection of one combination of units from the set of all possible
combinations, can be conceived as an ÒactualizationÓ or ÒactivationÓ of the
chosen units. Hence, the situation where a representation is in a particular state
can be viewed as a selective activation of units from the representation structure.

Beside the constraints which determine the allowed or potential states
(generative constraints), there must be constraints which determine the allowed
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transitions between states. This may be called the dynamical part of the
structure.

The third type of constraints determines which transitions are in accordance
with the goal (self-maintenance) of the system. These may be called purposive
constraints.

It should be noted that this subdivision of representation structures into unit
space, generative constraints, dynamical constraints and purposive constraints is
purely conceptual: there is no reason why these different aspects of the
functioning of an adaptive representation structure should also correspond to
actually distinct substructures. As we shall see (chapter 4), the explicit
representation structures exemplified by scientific models are indeed
constructed according to this pattern, but this is no longer obvious for the
implicit representations exemplified by neural systems (e.g. human brain
systems).

We should also remark that the things which were called static
representations, such as a spoken utterance, a painting or a poem, can be viewed
as (externalized) states of an adaptive representation, whose structure is
determined by the skill or competence of the one who created them. This skill
needed for constructing adapted static representations is sometimes called
Òmode of representationÓ (Blatt, 1984) or Òrepresentation technologyÓ (Cohen,
1979; 1982). In the present terminology, these terms are equivalent to
Òrepresentation structureÓ

2.6 Information-processing in an adaptive representation

The interactions between the stable structure and the changing environment can
be subdivided into input, i.e. changes of the representation state resulting from
the external situation, and output, i.e. changes of the external situation resulting
from the representation state. In a higher-order cognitive system the input
process corresponds to perception, the output process to action. The process
which leads from input to output is determined by the representation, and can be
called ÒfeedforwardÓ. The process which leads back from the output through a
change in the environment to a new input, is called ÒfeedbackÓ.

The interaction process as a whole can be conceived as a loop, leading from
the representation, through the environment, back to the representation. The
process, however, is not periodic, since each time the cycle has been completed,
the representation is in a different state.

This process can be further conceptualized as a transmission and processing of
some abstract substance, which may be called ÒinformationÓ. The information
concept is confuse, and has many different significations (Nauta, 1972). The
signification we will use here is very simple, but general. The basic idea is that
the acquirement of information implies the selection or distinction of a subset of
actual or probable cases from a larger set of potential cases.
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For example, if I throw a coin, there are two possible outcomes to be
expected, but I do not know yet which one will show up: I lack information.
Now, when I look at the result, and see that the coin has fallen with the face up,
I have received one bit of information: the actual event (face up) has been
selected from a set of potential events (face up, or face down).

The quantitative measurement of information (bit measure) is studied by
information theory, and is based on the probability measures of the different
potential events from which a subset is selected (Nauta, 1972; see further sect.
9.2). In practice, it is very difficult to introduce such quantitative measures, and
we will use the information concept primarily in a qualitative fashion.

In the sense we will apply it, any process of selection whereby a distinction
is made between phenomena which are retained, and phenomena which are
eliminated, is basically a transfer of information from the selecting agent to the
set of phenomena to be selected. The set of retained phenomena (e.g. events,
systems, or states) can be said to incorporate or to store the transferred
information.

Let us apply this scheme to the interaction between environment and
representation. The input stage can be viewed as a selection of potential states of
the representation by the environment: only a part of the potentially activated
elements of the representation are actually activated by the signals passing
through the perception apparatus. Hence, the representation has received
information about the environment: it now knows which of its potential states is
an acceptable representation of the actual outside situation.

However, the adaptive representation is not merely undergoing the selective
influences of the environment in a passive way, it is itself actively selecting the
information-carrying signals it receives. This internal selection is carried out by
the knowledge embodied by the representation (see sect. 1.4).

This ÒknowledgeÓ can be seen as Òstored informationÓ, whereas
ÒinformationÓ can be seen as Òtransmitted knowledgeÓ. So, the knowledge
inherent in the representation structures selects, and hence, in a certain sense,
ÒaddsÓ information to the passing signals from the environment. This
phenomenon is called Òinformation processingÓ: the information is transformed,
partly through the loss of information which was filtered out, or has dissipated
spontaneously, partly through the addition of new information coming from the
processing structure. The Òend productÓ of this representational information
processing may be called ÒmeaningÓ.

This can be conceived as follows: the (selective) influence, or signal, coming
from the environment activates a certain state of the representation; this state
embodies the received information; it will undergo an internal evolution
(information processing), determined by the constraints of the representation
structure until a (provisional) ÒequilibriumÓ state is reached (i.e. a state which
does not have to be processed further); this state represents what the signal
ÒmeansÓ with respect to the representation and its inherent goal; from this point
on, a new process can be set in, which uses this interpretation or meaning of the
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external signal in order to construct a plan designed to solve the problems
defined by the discrepancy between the goal state of the system and the actual
state resulting from the interpretation of the perceived signal; this plan can then
be realized as a series of actions performed by the system through the use of
effectors (e.g. muscles, or tools).

These actions, which constitute the output of the system, can still be viewed
as information transfers from system to environment, because they select one
out of several possible situations in the environment, namely this situation
which is most likely to lead to the fulfillment of the systems goal. The
information associated with this situation, which is partly determined by the
system's action plan, partly by the reaction of the environment, can then be fed
back into the system through the mediation of the receptors (i.e. sense organs),
and so the cycle continues.

This sequential model of information processes is simplified in the sense that it
neglects various intermediate feedback loops, which lead back from one stage of
the information processing to a previous stage without passing through the
complete input-system-output-environment-input cycle.

For example, there may be a feedback from the Òequilibrium stateÓ to the
phase of immediate perception, because the Òequilibrium stateÓ is inconsistent
with other informations, so that the perception stage must be checked and
possibly corrected (e.g. you may hear someone speaking and reconstruct the
sentence he spoke from the sounds you thought to hear, and then find out that
this sentence is nonsense to you. In that case you normally direct your attention
back to the sounds he uttered, and try to understand them in a different way).

These intermediate feedback loops contribute to the efficiency and stability
of the overall information processing, but since they make the modelling often
unnecessarily complex, we will neglect them most of the time.

Summarizing sections 2.5 and 2.6, we may say that a representation can
simultaneously incorporate two types of knowledge (or information):

1) the stable knowledge inherent in the representation structure, which directs
the processing of incoming signals and the planning of actions (in psychology
this would correspond to the Òlong-term memoryÓ),
2) the changing knowledge or awareness of the present situation, which is
carried by the representation state, and undergoes continuous transformations
determined by new perceptions and by internal processing (this corresponds to
the Òshort-term memoryÓ).

We know from psychology that short-term memory or knowledge can be
transformed to long-term knowledge. This process corresponds to a change of
representation structure (cf. Korf, 1980), and is very difficult to describe since
the model is based on the stability of this very structure. The only way to model
this type of change is by transcending the state « structure or short-term «
long-term dichotomies, and by seeing representation structures as the states of a
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higher-order ÒmetarepresentationÓ. How this could be done will be discussed in
some of the following chapters. But first we shall have to analyze some existing
representation structures more explicitly, in order to uncover their implicit
organizing principles, and to construct a detailed, formal model of a
representation.
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CHAPTER 3: Making representations explicit

3.1 Scientific theories as explicit representations

We have described representations as the dynamic structures which form the
backbone of knowledge. But how does science as an enterprise of knowledge fit
into this framework? Clearly scientific theories and models are special cases of
adaptive representations. But what distinguishes a ÒscientificÓ representation
from a general knowledge representation, such as the one you or I use when
ordering a dish in a restaurant?
For over a century, this problem has been the focus of philosophy of science.
Unfortunately, there seems to be little agreement among the different
philosophers of science about the right solution. However, the concept of
representation provides a useful framework for the integration of the different
approaches (cf. De Mey, 1982).

A simple classification of the activities of science might look as follows:
observation, explanation, problem solving, prediction and testing. These
functions correspond to the basic information processes occurring in an adaptive
representation: a phenomenon is perceived or observed, an interpretation or
explanation of this perception is generated; the problems arising from the
discrepancy between the perceived situation and the desired situation are solved
and a plan of action is conceived; this problem solution or action plan
incorporates an anticipation or prediction of the future changes of the perceived
situation; the actual changes are fed back through the perceptual system and
compared with the predictions; if the prediction is not confirmed, a corrected
interpretation and action scheme is generated.

The difference between these subjective, individual processes, and the
social, intersubjective processes of scientific research, is that the latter processes
must be made explicit in order to communicate them efficiently among the
members of a scientific community. One way to exteriorize the structures and
processes of internal knowledge representations is through the use of language
as an external symbol system.

As was remarked earlier, however, language is not a complete adaptive
representation, since it misses the dynamic, interactive features of such a
representation: feedback and feedforward processes are not incorporated in the
system of verbal language, but must be provided by the language user. Although
language can be viewed as a social representation, i.e. a representation of the
possible interactions or communications between two subjects (instead of
subject and object), it is in itself not adaptive, it provides no goal or direction for
the communicative processes which use it.

Therefore to have a social or intersubjective representation which is also
adaptive, you must add to the language system, which determines the state space
of the representation, a set of methods, procedures and evaluation criteria, which
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can determine the direction or the trajectory of the processes occurring in the
state space.

Such a system of values and procedures is normally provided by the culture
in which the social interaction takes place. It is however seldom made explicit in
the form of laws, rules or regulations. Moreover there is generally no explicit
feedback mechanism: there are no intersubjective rules for checking whether the
problem solution or action plan derived by feedforward from the social
representation is indeed adequate with respect to the actual situation. As such
most intersubjective representations proposed by social entities such as religion,
culture, tradition, mythology, moral, etc., are incomplete and difficult to test or
to correct.

Science can then be defined as the attempt to construct intersubjective,
adaptive representations in which both feedforward and feedback mechanisms
are made as explicit as possible. (It should be remarked here that the
explicitation of problems and goals in science is only local or short-term; the
global, long-term aim of science, the growth of knowledge, remains rather
vague. In this respect science is less explicit than many other cultural systems,
such as ethics, art, religion, and politics, which propose more general values and
goals).

3.2 Formalization and paradigmatic structures

The methods used by science for making implicit representations more explicit,
are formalization and operationalization. Formalization means that the
representation structure is brought to the surface, so that ÒcontentÓ is changed
into ÒformÓ. In a perfectly formalized theory or representation there is no more
hidden meaning or content to be uncovered, all relations between the elements
of the representation are explicit and unambiguous. The classic example of a
formalized representation (or formalism) is an axiom system. This consists of a
set of semantic elements which can be combined into propositions through the
application of syntactical rules. The semantic relations between the elements are
specified by the axioms, i.e. a set of basic propositions which are supposed to be
always true. The dynamics of the representation is specified by a set of
deduction rules, which allow us to derive true propositions (theorems) from true
propositions (theorems or axioms).

The meaning or content of a proposition is supposed to be completely
determined by the set of axioms and deduction rules. Therefore, there should be
no ambiguity about whether a proposition is true or not, if the axioms and rules
are explicitly known (as shown by the G�del theorem, and the lack of decision
procedures for more general formalisms, however, this is not true in practice).

Outside of mathematics, this type of rigorous formalization of scientific
theories is almost never achieved: there always remains some ambiguity about
the meaning of the terms used to describe the object of study, and their
interpretation requires a certain intuition. In general, the more complex and
changing the domain of study, the more difficult it is to achieve a certain
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formalization. Yet the scientist will always strive to define his terms rigorously
and to state their interrelationships explicitly.

In so far as this attempt at formalization is successful, the intersubjective
scientific representation becomes more or less well-defined or well-structured
(see section 1.5). This means that there are definite procedures for solving the
problems formulated within that representation. In general only a fraction of the
problems considered relevant by the researcher are formulated and solved within
the formalized part of the representation structure.

These explicit parts of the representation (well-defined concepts, rules,
evaluation criteria, É) together with the examples of solved problems, form
what Kuhn (1962) calls a ÒparadigmÓ (see also De Mey, 1982). The problems
which are not yet solved but can be formulated within the representation,
correspond to what Kuhn calls ÒpuzzlesÓ. They will be more or less easy to
solve, depending upon the degree of well-structuredness or formalization of the
representation.

The already solved problems may function as prototypes or exemplars, from
which heuristic rules can be derived by generalization or analogy. For example,
in quantum theory the calculation of the energy levels of the hydrogen atom
functions as an exemplar of a solved problem. More complex problems, such as
the computation of the energy levels of the helium atom can then be solved
through analogy with the hydrogen case. It is interesting to note that although
quantum theory is considered a completely formalized and hence well-
structured representation, it still needs exemplars such as the hydrogen atom or
the one-dimensional harmonic oscillator in order to guide the search for problem
solutions.

This should remind us that only for the most simple problem domains (e.g.
addition or multiplication of integers) the sequence of operations needed to
solve a problem can be completely determined beforehand, as a function or as
an algorithm. In all other cases a certain amount of trial-and-error is necessary,
and the less well-structured the representation, the larger this amount becomes.

We may conclude that the normal scientific models have the form of a
paradigm, i.e. a partially explicit, intersubjective representation, in which the
lack of general and definite rules for problem solving is compensated by the
reliance upon exemplars which provide heuristic information.

Besides Ònormal scienceÓ Kuhn (1962) distinguishes two non-paradigmatic
stages of scientific development: pre-paradigmatic science and revolutionary
science. The former is said to occur before an intersubjective representation
structure is established, the latter after this representation has become obsolete.
This obsolescence is normally due to the fact that problems which belong to the
domain of the representation (i.e. which are well-defined within this
representation) cannot be solved, or that their proposed solutions are
inconsistent with empirical facts or logical principles (this is called anomaly). In
that case the need is felt for the replacement of the obsolete representation by a
new, revolutionary one, but which is still to be constructed.
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Both non-paradigmatic stages are characterized by a great confusion and
lack of directionality or guiding principles. This is typical for the absence of a
stable representation structure. In these stages scientific research will no longer
consist of a search for the solution of well-structured problems (puzzles), within
the representation, but of a search for a new, explicit representation of the
problem domain.

The creative process of formulating a new representation is traditionally
called ÒdiscoveryÓ (see e.g. Simon, 1977). Since there is no overall set of
explicit rules to guide this process, its only guides will be the implicit (i.e.
intuitive) representations of the individual scientists, combined with some
partial representations (i.e. exemplars, methodologies, concepts, É) taken over
from other disciplines or problem domains. This explains why the discovery
process is so difficult to understand, since no coherent representation seems to
guide it. The modelling of discovery requires a more profound understanding of
what a general representation is, and how it is constructed, i.e. how state and
structure interact in its evolution.

3.3 Operationalization and empirical tests

The second characteristic which distinguishes scientific, explicit representations
from ordinary, implicit representations, is operationalization. Whereas
formalization aims to make the representation structure, and hence the
feedforward mechanism, more explicit, operationalization aims to make the
feedback mechanism more explicit. This means that the relation is specified
between the states of the representation and the outside situations which they are
supposed to represent, in such a way that the state which has evolved through
feedforward can always be compared with the actual phenomenon to which it
corresponds. For example, suppose that we have a representation of a physical
system, which consists of a state space and a dynamical equation determining
the possible trajectories of the state as a function of time. In principle, given a
state s1 at time t1 we can then compute the state s2 at a latter time t2. State space
and equation determine the representation structure; the computation of s2 (t2)
from s1 (t1) is an application of the associated feedforward mechanism.

In order to apply this result to the concrete situation, and hence to check its
correctness, however, we must specify how the symbolic entities s1 (t1) and s2

(t2) are related to the actual process occurring in the system. This means that we
must establish a correspondence between s1 (or s2) and the results of a set of
observations of the system at time t1 (or t2). If the same set of operations which
yields the empirical values corresponding to s1 at t1 , also yields the results
corresponding to s2 at t2, we may conclude that the feedforward process is an
adequate representation of the systems evolution between t1 and t2, and that no
correction is needed.

The representation can be said to have been confirmed or (partially) verified.
However, if the results of the empirical operations at t2 do not correspond to the
state s2 as derived from the state s1 observed at t1, the representation has been
not confirmed or falsified.
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Therefore, operationalization of a representation means that the community of
scientists working in a specific problem domain or representation agree upon a
set of operations which allow us to establish the correspondence between the
states (or propositions) of the representation and the phenomena to be
represented. Following the input-output scheme we may classify these
operations as either detections, or preparations.

Detection means that a phenomenon is observed or measured, and that the
results of these observations (e.g. coordinates) are coded and mapped upon a
state of the representation (e.g. a vector in a state space). This is an explicit or
intersubjective counterpart of the process of perception.

Preparation means that a system is acted upon in such a way that it evolves
to something corresponding to a given symbolic state. For example, a particle in
an accelerator may be subjected to an electromagnetic field until it reaches a
certain level of energy. It is then ÒpreparedÓ in the state corresponding to this
energy level. The operation of preparation is an explicit version of the action
process.

The explicit version of the feedback process is called an Òexperimental testÓ
of a representation, and is usually carried out according to the Òpreparation-
detection schemeÓ.

This means that a system is prepared so that it corresponds to a certain state
s1 (or the system is observed to be corresponding to a state s1). Through
feedforward the state s2 is derived from s1. (The relation between s1 and s2 may
be static-logical or dynamic-causal: in the first case the property of the
phenomenon corresponding to s1 ÒimpliesÓ the property corresponding to s2 (at
the same time), in the second case the property corresponding to s1 ÒcausesÓ the
property corresponding to s2 (at a later time)). The correctness of this prediction
is then tested by observing or detecting whether the state of the actual system at
the given time corresponds to s2. If it does, the prediction is ÒverifiedÓ. If it does
not, it is ÒfalsifiedÓ.

The representation as a whole cannot be verified in this manner since this
would suppose that you test all possible predictions derived by using the
representation and this of course is impossible. (On the other hand, as Popper
(1968) would argue, a representation is falsified as soon as only one of its
predictions is falsified. In practice, however, this criterion is never applied: a
representation is accepted if most of its tested predictions are verified; a few
exceptions can always be tolerated).

The difficulty with this procedure of operationalization is the same as that with
formalization: the operational definition of a property or representation state is
never complete, or unambiguous. A part of intuition remains in the decision
whether a particular operation is, or is not, a good characterization of a
representation state.

For example, in psychology we might have a representation which predicts
that children who are raised in a stimulating environment will become more
intelligent than children raised in a less stimulating environment. In order to test
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this prediction, we must first operationalize the terms ÒintelligenceÓ and
Òstimulating environmentÓ. Intelligence is usually defined operationally by the
scores attained on an IQ test, which consists of a list of problems whose solution
is supposed to require intelligence. This allows us to detect the IQ or Òdegree of
intelligenceÓ of an individual.

In order to test the prediction we must now prepare children in a state
corresponding to more, respectively less stimulating environments. This might
be done by supposing that Eskimo children who live in the polar region are less
stimulated than Western children living in a big city. It now suffices to compare
the IQ scores of Eskimo children with those of Western children of the same
age.

However we may find that on the tests used the Eskimo children score better
than the Western children. Does this imply that the hypothesis is to be rejected,
or that the representation is falsified? Not necessarily: it may be that the
intelligence concept was defined too narrowly, and that by using different IQ
tests, the scores of the Western children would be better than those of the
Eskimo children; it could also be that the preparation was not sufficiently
definite, that the differences between Eskimo children and Western children
other than those related to their degree of stimulation influence the process (e.g.
the Eskimo race might be intrinsically superior in intelligence to the Caucasian
race, or the Eskimo education might be superior to the Western education).

In the latter case the experiment should be redesigned for different
populations, e.g. Western children from big cities compared to Western children
from the countryside. But this would not eliminate all possible factors
influencing the difference in IQ test performance: e.g. children from the
countryside might be healthier because of less pollution.

We may conclude that although the scientist will always try to make the relation
between his representation and the external world as explicit as possible through
the use of operational definitions and tests, this operationalization is in the best
case only partial. The degree of operational determination will in general be
smaller if the domain to be represented is complex and changeful, and if the
degree of formalization of the representation (its well-structured or paradigmatic
character) is small. We must keep in mind that in such ill-structured domains it
is often dangerous to formalize or to operationalize too rapidly: it is much more
difficult to change a formalized and/or operationalized representation.

If the knowledge to be represented as a scientific model is still in a state of
flux, it is better not to make this model very rigorous, since this would reduce
the possibility to integrate new insights, or to change the concepts and
principles. In such a case the function of formalization and operationalization is
primarily that of directing attention to the insights that are still missing from the
representation. Such a formalization or operationalization is therefore only
provisional.

For example, from the experiments about the correlation between
intelligence and stimulation, we might conclude that our knowledge about
intelligence and its relation with the environment is still insufficient for

- 44 -

constructing an explicit representation of it. Yet in order to reach this conclusion
we had to make a provisional operationalization of intelligence through the use
of IQ tests. So, in a certain sense, the only result of this operationalization was
to show that it is too early to operationalize, but on the other hand the analysis
of the experiment might provide valuable clues about how to correct this
situation.

3.4 The problem of transdisciplinarity

A major problem facing present-day science is its lack of integration: it appears
as though scientific knowledge is fragmented into ever more disciplines and
subdisciplines, which are ever more difficult to co-ordinate. The historical
origin of the distinction of disciplines, is a distinction of problem domains.

The Òproblem domainÓ of a scientific representation corresponds to what we
have called the ÒenvironmentÓ of an adaptive system. This environment might
be defined as that part of the universe with which the system is interacting. This
means that for the system, the rest of the universe can be ignored, i.e. it does not
have to be represented, since it has no direct implications for the eventual
survival of the system. (The concept of environment defined in this way is
similar to the concept of ÒUmweltÓ which is used for biological systems).

For example, the nitrogen in the air an animal is breathing, does not belong
to the animals environment, since it does not interact with its physiological
system. Hence, it is neither perceived nor acted upon by the animal, and there is
no need to have any knowledge about it. However, we may state that in
principle everything in the universe is interacting with everything else, albeit in
a very indirect way. For example, the nitrogen in the air is assimilated by certain
plants, and these plants are eaten by certain animals, so that the nitrogen is
indirectly transferred to the biochemical substratum of the animals body. Yet the
animal is completely unaware of this process.

We may conclude that the distinction between the parts of the world which
belong to the environment, and those which do not, is not objective or absolute,
but dependent upon the representation characterizing the system, which selects
those features of the world which appear directly relevant to the systems
survival, and hence are worth to be perceived and represented, and ignores the
rest.

The same is true for scientific representations, i.e. paradigms or disciplines,
which single out a particular part of the universe, i.e. their problem domain, and
consider it as important, while neglecting the rest. The community of scientist
working within a specific paradigm can be considered as a system whose
survival depends on the solution of the problems lying within the domain.
However this system is not distinct and independent as a biological system: its
boundaries are not well-defined, and different scientific communities are
generally overlapping. Therefore it is better to consider it as a part of a larger
system, which is the community of all scientists, or even better, society at large.
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Whereas the problem domain of the smaller community centered around a
paradigm may have a well-structured representation, the problem domain of the
larger system of society has a rather ill-structured representation, made up of an
incoherent and often inconsistent collection of subrepresentations. This is due to
what Kuhn (1962) calls the ÒincommensurabilityÓ of paradigms. This means
that different paradigmatic representations are generally incomparable, and
untranslatable, so that it is impossible to establish definite relations between
them, or to arrange them in an integrated whole.

This can be easily understood by remarking that one of the basic functions
of an intersubjective representation is to allow communication between the
individuals who share this representation. So, each social representation
functions as a communication code or language, by providing intersubjective
symbols, and rules for the combination (syntax), interpretation (semantics) and
application (pragmatics) of those symbols. Since different representations use
different symbols or rules, there is no direct communication possible between
individuals who use different representations.

For example, the words ÒtimeÓ and ÒmassÓ are subjected to different rules in
the Newtonian and Einsteinian representations of physics, and thus have a
different meaning, even though their symbolic form is the same. Two scientists
who know only the Newtonian, respectively the Einsteinian paradigm, will have
great difficulty to communicate about the physical phenomena denoted by the
symbols ÒtimeÓ and ÒmassÓ.

In practice, however, different individuals dispose each of a set of
representations, some of which are completely different, whereas others overlap
largely. Therefore, there will always be a communication at a certain level of
intersubjectivity (i.e. shared representation), although only a part of the intended
meaning will pass through the communication code. For example, the
Newtonian and Einsteinian scientists may communicate about physical
phenomena on the level of the English language instead of using a shared
scientific representation, but it is clear that this communication will be much
more ambiguous and confused, since the meaning of the words ÒtimeÓ and
ÒmassÓ is rather ill-defined in ordinary English, compared to the languages of
classical mechanics or relativity theory.

This difficulty of communication across the boundaries of paradigms or
disciplines explains the lack of integration of the scientific world view: indeed,
how is it possible to coordinate different views of the world if there is no
unambiguous common language in which those views can be expressed and
compared?
This difficulty is more than purely theoretical: in general the tackling of a
complex, social problem (e.g. famines) requires the collaboration of specialists
from different fields (e.g. agronomy, meteorology, sociology, anthropology, É).
Due to the lack of an integrating framework, however, such multidisciplinary
approach will generally produce a mere aggregate of partial solutions which
cannot be applied to the problem in a coordinated way.
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These problems explain why presently such a sharp need for
transdisciplinarity is felt. In practice, however, only lip service is paid to the
advancement of the transdisciplinary ideal: it is much more difficult to really
integrate different scientific approaches than to talk about the need to do so.

Moreover, the issue is confused because of a misconception about scientific
representations, namely the idea that such a representation would provide an
isomorphic image of a part of the world. This implies that different
representations of the same problem domain be mutually isomorphic, and hence
should be equivalent. On the other hand it should be possible that
representations of different problem domains be stuck together, like the pieces
of a puzzle.

The only problem seems to be that you need a universal language which is
able to express all aspects of the world. All the equivalent and non-equivalent
representations together could then be expressed in this language, and the
resulting description would provide a unified scientific world view. This
philosophy was at base of the movement for the unity of science, which was
inspired by logical positivism. It has become clear, however, that this program
has failed. The reason for this failure is that there is no fundamental
isomorphism between representation and environment, and hence there is no
universal method for synthesizing two different representations of the same
environment.

3.5 The need for a metarepresentation

We have emphasized several times that the relation between a representation
and its environment is not one of structural similarity or isomorphism, but one
of adaptation, that is to say of correspondence between the feedforward
processes guided by the stable representation structure and the actual changes in
the environment. The same goes for scientific representations. Therefore, the
way to integrate different representations is not to analyze their isomorphisms
with the outside world, but to analyze the mechanism through which a stable
representation structure can be adapted to a changing environment.

If this mechanism is sufficiently understood, we shall be able to compare
different representations, to see in what aspects they differ, to see what is still
missing in their organization to make them adapted to a particular domain, and
thus to organize, coordinate and construct different representations in order to
apply them to a given domain.

This problem is sometimes called the representation problem:

how to find the representation that is best suited for tackling a given
problem domain?

It is also related to the problem of representation changes (Korf, 1980):
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how to transform a given representation so that it is better suited for a
given problem domain?

A solution to this problem would require the construction of a
metarepresentation, i.e. a representation of all possible adaptive representations,
and the way they work. This metarepresentation would express what all
different representations have in common, and would thus provide a framework
for their integration.

According to this philosophy, if you want to achieve transdisciplinarity, you
must not look for a universal language for describing the world as it, but rather
for a metalanguage for expressing, comparing and redesigning the existing
partial descriptions. The basic argument for this idea is the fact that there does
not seem to be a representation structure which can be efficiently applied to all
problem domains. This conclusion was reached independently by different
approaches, such as artificial intelligence, and philosophy of science.

We come now to the point where we can reformulate the basic research problem
with which this work is concerned:

how can we achieve a universal metarepresentation, that is to say, a
representation of all the possible ways through which a changing
environment can be represented so as to allow for adaptation?

Although our analysis of the representation concept has contributed much to a
better formulation of this problem, the problem domain remains rather ill-
structured. Translated in the language of philosophy of science, this means that
the study of this problem is still in a pre-paradigmatic stage. This implies that
there are as yet no explicit rules or evaluation criteria to guide the search for a
solution. In particular, there is not any general formalization or
operationalization available which could be applied to the Òtheory of
representationsÓ (cf. Simon, 1979) we are looking for.

Until now the most explicit approaches to this problem can be found in
Artificial Intelligence (Korf, 1980; Amarel, 1968), but as we have shown the
problem transcends computer science proper by its transdisciplinarity. From my
point of view, what is missing in the existing AI approaches is the emphasis on
change and adaptation. It is here that the physical sciences, in particular
theoretical physics and systems theory, come in. What we need is a synthesis of
the cognitive approach (internal structures and processes of a representation)
and the physical approach (adaptation to external change). Therefore we must
first analyze as profoundly as possible the existing theories and concepts of
these two approaches.

This will be carried out in two stages: first, we will analyze what will be called
the Òclassical representation frameÓ, second, we will criticize this classical
frame by reviewing a number of more recent attempts to go beyond it.
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The main difficulty here is that this review of the literature must encompass
a very large range of disciplines and models, so that it can at best be very
incomplete. In particular, since it is impossible to be an expert in all these
different domains, it cannot be guaranteed that the topics chosen from those
different fields are the most important, or that their description is the most
accurate. The best one can do is to make a subjective selection of those aspects
which seem to fit best to the general problem, and to hope that the way they are
rendered will not be too much criticized by the experts.

In parallel with this analysis and overview of existing ideas, we will begin to
construct a new metarepresentational framework, which is more general than the
classical framework, while integrating the various new approaches which were
reviewed. As was argued, in this pre-paradigmatic stage of research, it is too
early to attempt a complete formalization of the theory. Yet, where possible, we
will indicate how the ideas may be expressed in a formal way, so that the
number of misconceptions due to vagueness or ambiguity can be restricted as
much as possible.

An even more difficult problem is operationalization. It is clear that the
traditional procedures of operational testing (quantitative agreement of
theoretical and experimental results) are inadequate for evaluating a
metarepresentational theory. Yet the theory is supposed to be applicable to
concrete situations. Therefore we must look for alternative means of testing the
adequacy of the theory. A possible approach to operationalize the theory will be
sketched in sect. 11.7.

The basic thrust of the present approach, will, however, remain theoretical. This
is in accordance with Kuhn's (1962) observation that pre-paradigmatic or
revolutionary science is characterized by a philosophical questioning of the very
foundations of the knowledge involved, and by an attempt to synthesize the
available data in a new, integrative framework.
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CHAPTER 4: A reconstruction of the classical
representation structure

4.1 Introduction

If we wish to study the fundamental structures of adaptive representations, it is
best to begin with those representations which are most explicit and most
generally used. These representations can be found in what I would call
ÒclassicalÓ science. The prototype of such form of science is the theory of
classical mechanics. I hope to show, however, that the same basic structures
which can be found in classical mechanics are also used in very different
scientific representations, such as logic, computer science and linguistics.

Science was defined as an attempt to construct explicit representations.
However there remain many presuppositions in scientific theories which are
implicit. Usually these have the form of principles which are so evident that no
one makes the effort to think about them, to question them, or even to formulate
them. But science can only progress if things which were first intuitively
evident, are later carefully expressed and examined, so that they can be
integrated in a more general predictive model.

The traditional illustration of this principle is the story of the discovery of
gravitation by Newton. Before Newton, everybody knew intuitively that heavy
things tend to fall to the ground, and there seemed to be no reason to search for
an explanation for this fact. Newton's basic insight, however, was that there
must be something, a force, which attracted heavy bodies towards the center of
the earth. This concept of gravitational force then allowed him to construct a
theory which not only explained falling bodies, but also the movement of the
planets around the sun. This was the first step in the formulation of the paradigm
of classical mechanics.

What should be done here, however, is to go one step further, and to formulate
and examine explicitly those intuitive principles which determine the structure
of the classical representation, and so to uncover its hidden constraints and
limitations. This would be the first step in the construction of a new framework
which would be more explicit, more general and more flexible, and hence
applicable to a much larger range of problems.

This analysis will be undertaken as a reconstruction of the more advanced
representation structures from their most simple elements. So, the study will
follow an approximately historical or developmental sequence, proceeding from
the most primitive to the more elaborated cognitive structures. This approach is
somewhat similar to the Ògenetic epistemologyÓ program initiated by Piaget
(1972), and which was applied to the development of artistic representations by
Blatt (1984). The structural analysis of classical science will make use of certain
formalisms used by logical empiricists (e.g. Carnap, 1958) and by researchers in
the field of problem solving (e.g. Nilsson, 1971; Amarel, 1968).

- 50 -

After analyzing these structures, we will try to demonstrate what the use of
these particular cognitive structures implies for the domain of applicability of
the classical representation. In other words: what view of the world is associated
with these classical representation structures (see chapter 5). The purpose is to
show that if you wish to change your world view or metaphysics (i.e. the
content of your representation), then you must also change the form of your
representation.

We will now begin the reconstruction of the classical frame by studying its
most basic level, that of its primitive elements: objects and predicates.

4.2 The generation of elementary expressions

The roots of the scientific representation frame lie in the representations
provided by verbal language. The mechanism of verbal language is typically
human: no other species of animals disposes of a system of signs which is at
once discrete and infinite. Signs used for animal communication are either finite
in number (e.g. a finite set of warning signals for different situations of danger)
or continuous (e.g. the continuously varying speed of the movement of a bee can
indicate the variable distance of a source of food).

This feature of discrete infinity results from a finite set of generating
elements (words) which may be combined in unlimited sequences by generative
rules (grammar) (Chomsky, 1972). The mechanism presupposes that the
generating elements are stable, that they do not change in form or content during
the operation of combination (i.e. sentence formation). These elements are units
of representation or meaning: each element has a given, invariant meaning
which cannot be analyzed further.

The combination mechanism, governed by grammatical rules, is basically
reducible to a linear concatenation of elements. (The linearity of verbal
expressions can be understood by the limitations of human speech: it is
impossible to utter several sounds at once, so the different signals must succeed
each other in a sequential fashion).

The most simple linear concatenation consists of an ordered pair of
elements:

a.b, or a (b).

This is a model of an atomic proposition or sentence: something (a) is said about
something else (b).

Concatenations consisting of only one element (e.g. b), are not really
assertions; they only direct attention to the phenomenon denoted by b, but they
do not relate it to other phenomena. Therefore, a language consisting of only
unary expressions (e.g. a, b, d, É) is unable to represent change: it is impossible
to describe any (dynamical) relationship between the different expressions of
the language. Such a language would lack the coherence and continuity required
for the organization of adaptive representations.
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The simple binary coupling of two elements a(b) is sometimes called
ÒpredicationÓ: a is predicated over the subject b. Remark the basic asymmetry
of the relation between a and b: a(b) is different from b(a). Therefore, a and b
have different functions in the expression. The function of a can be called
ÒpredicateÓ, ÒattributeÓ or ÒpropertyÓ, that of b can be called ÒsubjectÓ,
ÒindividualÓ, or ÒobjectÓ. In order to visualize this difference we will use capital
letters for the predicates. Therefore, we get: A(b). The simplest interpretation of
this expression is: object b has the property A.

In a more complex type of proposition, the subject of the predication
consists of several elements: e.g. A(b, c). In that case the predicate A is
interpreted as a relation between the objects b and c: e.g. if b and c represent
numbers, then A(b,Êc) may signify: Òb is smaller than cÓ.

These predicative propositions form the basis of the formal languages used in
classical science (see e.g. Carnap, 1958). They also form the skeleton for
sentence formation in natural language. This may be illustrated by the examples
of two prototypical sentences:

1) ÒJohn is a farmerÓ can be reconstructed as: Farmer (John) (monadic
predication)

2) ÒJohn beats the dogÓ has the form: Beats (John, dog) (dyadic predication, or
relation).

There is also reason to believe that this predication scheme forms the basis of
conceptual thought and representation. As such it is used in the existing AI
models of knowledge representation (see e.g. Charniak and McDermott, 1985).
We will now try to analyze how this scheme can be used in the representation of
change, and what are its qualities and limitations. First we must analyze the
functions of objects and predicates.

4.3 The function of objects and predicates

As we have said, to be useful the elements of the representation we are studying
must be stable with respect to form and content. The form is determined by the
words or the symbols of the language we are using. The content or meaning of a
representation has two dimensions: the extension (i.e. the external phenomena
that are denoted) and the intension (i.e. the concept or interpretation of the
phenomenon). A representation is defined as a relation between intension (self)
and extension (world) (sect. 2.1). Therefore, an elementary expression should
connect an extension with an intension.

Since a separate element is stable, change must be represented by the variable
combination of invariant elements. But if we wish to adapt to change, that is to
say make anticipations, we must suppose that there is always something
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continuous in the process, something which establishes a relationship between
the present and the future. Therefore, the transition from the present state of a
representation to the next one should conserve certain features of the state.

The simplest way to do this in the object-predicate scheme is by varying the
predicate, while keeping the object constant. This corresponds to the basic
principle that in the environment there are certain invariant ÒentitiesÓ, which can
be represented as objects. The changes in the environment can then be reduced
to changes in predicates, i.e. transformations of the ÒpropertiesÓ or ÒrelationsÓ of
those entities.

The supposed invariant external entities constitute the stable extension of
the representational objects. The predicates on the contrary have no stable
extension since the phenomena they are supposed to represent (i.e. properties
such as velocity, relative position, color, etc.) are variable. As a way of
ÒcompensationÓ, the predicates have a more invariant intension than the objects:
the same predicate can be attributed to different objects, while retaining the
same internal meaning. In this sense they are ÒuniversaliaÓ rather than
ÒparticulariaÓ like the objects. Hence, we may postulate that an object expresses
a stable extension, and a predicate a stable intension.

This allows us to reduce the distinction between objects and predicates to
the subject-object dichotomy or the self-world duality. An object is indeed
supposed to be completely determined by the external world. As such it is
ÒproposedÓ to the self or subject who will try to describe it by attributing
predicates to it. But these attributions presuppose a perceptual system able to
interpret the signals coming from the object, and to organize them in distinct
categories. Hence, the attribution of a predicate depends on the representation
state and structure of the perceiving subject.

Let us illustrate these abstract considerations by means of a few examples. Let
us begin with two different phenomena, a billiard ball and a cloud of gas
molecules, and check whether they can be adequately represented as objects.

In the case of the ball there seems to be no problem: its physical structure is
quite stable, and it can undergo different manipulations (e.g. translations,
rotations, É) without loosing its recognizable identity. Hence, it is easy to
describe different processes involving billiard balls (e.g. the different strokes
occurring during a billiard game) by a sequence of propositions, which are
constituted by an invariant object (the ball) and a variable predicate (e.g. the
position, the velocity and the spin of the ball).

This is no longer true for the cloud of gas molecules. Unless the cloud is
confined in a box, all processes involving the cloud will be accompanied by a
natural diffusion of the gas molecules. This means that at any moment form and
volume of the cloud are changing. The individual molecules will be scattered in
all regions of space and will get mixed with other molecules of the same or of
different substances. Within the shortest time interval it will become practically
impossible to separate or to distinguish the original cloud from its background.
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Clearly the extension of the ÒobjectÓ cloud is not stable: after a very short
time it is impossible to check whether a particular phenomenon (e.g. an isolated
gas molecule) belongs to the original extension denoted by the representational
object ÒcloudÓ. Therefore the representational element ÒcloudÓ cannot be used
in an object-predicate scheme of representation: it is operationally meaningless
to attribute predicates (e.g. volume, or mass) to the cloud, since there is no way
to observe in what way these particular attributes change, without interference
from other phenomena (e.g. other clouds which exchange molecules with the
original cloud and in this way influence its mass and volume).

From this example you may conclude that if you wish to construct a
(classical) representation of a certain environment, then you must be careful in
distinguishing the phenomena occurring in that environment that will be
represented as ÒobjectsÓ.

The same thing can be said about the predicates. The basic requirement for a
representational element to function as a predicate is to have a stable intension.
This means that there must be an invariant perception and interpretation scheme,
which categorizes different phenomena which are similar in a particular respect,
in one and the same category. In particular, two phenomena which are identical
in all respects relative to the representation should be attributed the same
predicate.

For example, two cars which were manufactured following the same
fabrication procedure should have the same length. This means that you or I
when measuring our cars with a meter stick, should get the same results.
Therefore, we may say that the cars can be attributed the property of being e.g. 4
meters long. There is no ambiguity about the observation and interpretation
operation necessary for establishing this fact.

This is however no longer true for e.g. the predicate ÒBeautifulÓ: whereas
you may consider that the car is beautiful, I may think it is ugly. Clearly, the
predicate ÒBeautifulÓ has a different intension for you and me. Moreover,
whereas you may find the car beautiful when seeing it exposed in a nicely
arranged showroom, you may find it ugly after you were almost knocked down
by it in a dark street.

Apparently the intension of the representational element ÒBeautifulÓ is
rather variable. Therefore it can only be used in restricted cases, and is not very
well suited for general descriptions of processes.

What we have called the stability or invariance of extensions and intensions
means in practice that different phenomena are mapped onto the same
representation unit, and hence are considered equivalent or identical with
respect to the representation: they are ÒassimilatedÓ (see further sect. 6.2).

In the case of extensions it means that an external phenomenon is
represented as an object with an invariant identity, even though the phenomenon
passes through different states. From the viewpoint of the identity of the object,
these states are considered equivalent.
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In the case of intensions, it is an internal process of perception or
interpretation that is represented as an invariant predicate, even though different
phenomena which trigger this process will differ in certain aspects. Here too
these aspects are neglected, so that the representations become equivalent. In
general each representational state or unit represents an equivalence class of
phenomena which are mapped onto it.

The fundamental problem here is to determine the boundaries of this class:
when does a phenomenon belong to that class, and when does it no longer
belong to it? For example, if a billiard ball breaks in two, must it still be
represented by the same object Òbilliard ballÓ? If the rod functioning as a
measuring unit is deformed, then can it still be used to attribute the predicate
ÒHas a length of one meterÓ?
Clearly there are limits to the stability or invariance of representational
elements, beyond which the element loses its adequacy for representation. In the
classical representation frame there is an implicit presupposition that the
phenomena which are represented, always remain within these limits, so that the
same representation units (objects and predicates) can be used throughout the
process of change that is represented.

We must now analyze the structure of the domain enclosed within those
limits. Later on we will study what happens when the boundaries of these
domains are transgressed.

4.4 The generation of compound expressions

We have seen that an elementary (or primitive) expression can be generated by
the coupling of a predicate to one or more objects. In general however, the
description of an outside situation requires a more complex representation. This
can be achieved by combining different primitive expressions into a compound
or ÒmolecularÓ expression by means of connectives.

The fundamental connective is the operator of conjunction: it expresses the
fact that two expressions are both true descriptions of the given situation. We
will symbolize the conjunction operator by a point (.). For example:

Farmer (John). Beats (John, dog)

signifies that John is a farmer and that he is beating the dog.
The relation between two expressions connected by a conjunction is

symmetrical: a commutation of the sub expressions does not change the
meaning of the compound expression. The number of atomic expressions that
may be connected by conjunction is unlimited. Hence, it can be used to
construct arbitrarily complex descriptions of a particular situation by listing all
of its relevant features (as far as they can be expressed within the predicative
language).

The second basic operator for making compound sentences is negation. The
underlying idea is that either an expression of the language is an adequate
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description of a certain aspect of a situation, or it is not. There are no
intermediate cases where a representation would be partially correct. This
principle derives from the basic presupposition of invariance of the
representational elements. This invariance defines a domain of equivalence, in
which all phenomena can be represented by the same invariant representation,
whereas the phenomena which fall outside this domain cannot. Hence, we get an
absolute distinction or dichotomy between correct an incorrect, or between true
and false, instead of a continuous sequence of degrees of adequacy.

This distinction can be used to associate any expression s with its negation s'
or NOT s, which would represent all those situations for which s would be
incorrect. Remark that this procedure is rather artificial since there is in general
no positive way to characterize the set of situations represented by s'.

With the help of the connectives Ò.Ó and ÒNOTÓ other connectives can be
defined:

disjunction:
a OR b is defined as NOT (NOT a. NOT b);

implication:
a Þ b is defined as (NOT a) OR b;

equivalence:
a Û b is defined as (a Þ b). (b Þ a).

These derived connectives can be used to simplify compound expressions, but
they do not add anything fundamentally new to the representation. The
properties and applications of the different connectives can be found in any
book on formal logic (e.g. Carnap, 1958). What interests us here, are not so
much the formal properties, but the cognitive implications of this representation
structure.

4.5 From Boolean algebra to state space.

The set of objects (O), the set of predicates (P) and the connectives for
constructing compound expressions together determine a set of possible
expressions (E). This set is defined recursively:

an expression e belongs to E, if it can be constructed by the combination with
the help of the connectives, of the expressions e1, É en, with e1, É en belonging
to E.

the primitive expression A (b) formed by the combination of a predicate A,
belonging to P, with an object b, belonging to O, is an element of E.

If the connectives used can be reduced to the conjunction and negation, as
defined above, E has the structure of a Boolean algebra or Boolean lattice (Mac
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Lane & Birkhoff, 1967; Halmos, 1974). This means that you can define a
preorder < on E such that:

e < f iff (if and only if) e Þ f is always true, for every possible truth value of e
or f.

Intuitively this means that you can derive or deduce f from e: if you know that e
is a true description of a situation, then you also know without further
observation that f is a true description. You could say that the information about
the situation carried by f, is already contained in e, f does not add anything new
to your information. For example, if you know that a. b is true, then you also
know that b is true, hence a.b < b.

The operations of conjunction and disjunction function as greatest lower
bound, respectively least upper bound for the partial order determined by the
implication. Both operations are related by the property of distributivity. These
algebraic properties are typical for the logical structure of the classical
representation. They allow us to relate different expressions in a static way.

Within this framework we may now discuss the concept of ÒstateÓ. According to
the general definition that was formulated earlier (sect. 2.5), any expression
belonging to E can be a state of the representation, i.e. an actual combination of
representation units selected from a larger set of potential combinations. As
such it represents the information we have got about a particular outside
situation. Therefore, the state characterizes the actual features of the subject's
awareness of the object.

In the classical representation, however, one tends to think about the state
concept as a characterization of the object itself, independently of the subject.
(These ÒobjectiveÓ features of the environment at a particular moment, are what
we call a ÒsituationÓ). This means that the limitations implied by a subjective
viewpoint (incomplete information, biased perception of features) are ignored.

Therefore the information carried by a ÒclassicalÓ state is supposed to be
maximal: in principle, the state should completely determine or characterize the
object(s) belonging to the domain of study. This is exemplified in classical
mechanics by the position of a system in phase space: if you know this position,
then you can deduce all observable features (energy, velocity, momentum, É)
of the system, and find a unique solution for the dynamical equation
determining its evolution.

If we translate this requirement into the language of logic, we get that the
expression corresponding to a classical state should be such that the truth or
falsity of all the other expressions can be derived from it. In a Boolean lattice,
this corresponds to the property of ÒatomicityÓ of the state expression (Piron,
1976):

the expression s is an atom, iff (if and only if) 0 < s implies that 0 is a minimal
element of the lattice (this means that the expression 0 is never true).
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It has the property that for any expression a we have:

either s < a, or s < NOT a.

(This property is no longer valid for atoms in a non Boolean lattice, see sect.
7.2).

The < relation can be interpreted as an ordering of expressions according to
the amount of information they provide. The states or atomic expressions are
then the expressions incorporating the maximal amount of information. As such
they are mutually incomparable; there is no logical or informational order
relating them. This leaves us with an unstructured set S of state expressions,
which will be called the state space.

The remaining expressions can be reduced to combinations (classically
disjunctions) of state expressions or atoms. As such any expression e from E
corresponds to a subset Se of S (cf. Piron, 1976):

Se = si ÊÎÊS such that si < e.

Thus we see that the introduction of a state as a maximally determined
expression in a Boolean lattice allows us to reduce the lattice of expressions to a
state set, and its subsets. The remaining problem of how to represent change can
now be restricted to the introduction of a dynamical structure on the state space.

Let us first illustrate these concepts with the help of the billiard example. The
representation of the billiard situation starts with the selection of one (or more)
billiard balls lying on the table as basic objects. As basic predicates we can
distinguish different positions for the ball. The expression s: P(a) means Òthe
ball a is in that part of the table that is labeled PÓ. A compound expression t
might be P(a). Q'(a). NOT R(b), i.e. Òthe ball a is in the intersection of the
regions P and Q, whereas the ball b is outside the region RÓ. Clearly we have
the implication t < s.

The atoms or states of the billiard game representation are those expressions
where all the balls are localized with maximal precision on the table. This
precision depends of course on how fine-grained the system of predicates (or
regions) is. In the ideal case, where the precision is maximal, each ball would be
localized at a particular point. The set of all points within the boundaries of the
billiard table would then determine the state space for one billiard ball. The state
space for several billiard balls may in this case be obtained by taking the
Cartesian product of the individual state spaces. An enlarged set of predicates,
and hence of states, could be obtained by including the momentum or velocity
as descriptive features of the balls. In that case the resulting state space would
be equivalent to the phase space of classical mechanics for the system of billiard
balls.
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4.6 Topology, time and trajectories in state space.

The interesting feature of a classical state space is that you have a set of
descriptions of possible situations which are mutually exclusive: for s, tÊÎÊS,
sÊ¹Êt, you have that either s or t is an adequate description, but not both of them;
s.t is never true.

If s and t would be completely written out as conjunctions of primitive
expressions and their negations, we would normally find that one of the positive
sub expressions in s, would occur in t in negated form (this is a general property
of Boolean algebras). Therefore, to go from s to t we must at least negate one
proposition which was true for s, but is no longer true for t.

This replacement of a primitive expression describing part of a situation, by
its negation can be conceived as the basic mechanism for representing change
within the classical frame. Therefore, any process of change is basically
decomposed into a sequence of elementary, discontinuous transitions, in which
a primitive proposition is exchanged for its negation.

Yet a fundamental property of change as we experience it, is its generally
continuous nature. This continuity can basically be formulated by saying that for
time intervals which are not too large, the smaller the interval, the smaller the
change occurring within that interval. In order to state this more explicitly we
must define what is meant by Òsmall changesÓ. A small change could be said to
be a change which does not take its object Òtoo far awayÓ from its original
characterization, so that its new state is still in the ÒneighborhoodÓ of the
previous state.

This concept of neighborhood is the fundament of topology, which is a
mathematical framework for the study of continuity. Therefore, if we want to
describe change more realistically, we should begin by providing the state space
with a topological structure. This can be defined alternatively by a family of
ÒneighborhoodÓ sets, a family of ÒopenÓ sets or a family of ÒclosedÓ sets. A
function is then defined to be continuous if it conserves this topological
structure.

In practice, however, the Òcontinuity structureÓ of a classical state space is not
logically build up from the foundations provided by topology. The possible
structures characterizing such a space are complex and diverse: topological
structures, projective structures, linear structures, metrical structures, É

The historical origin of these different spatial structures can be traced back
to the Euclidean model of 3-dimensional geometry. This structure is very rich
and elaborate, and could be viewed as the structure of the state space of a
Òmaterial pointÓ or ÒatomÓ, which is an extreme idealization of the concept of an
ÒobjectÓ. The historical evolution of geometry, starting from the Euclidean
model, has gradually analyzed, generalized and decomposed this model into
ever more primitive substructures, which were elaborated independently. The
result is that the present state of geometry is rather complex and confuse, and
incorporates notions from algebra, calculus, topology, and so forth.
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One of the issues leading to confusion is that the concept of space is as well
applied to the network of relations between actual objects, as to the network of
relations between potential states of one or more objects. The latter concept is
what we call a state space, the former corresponds to our intuitive notion of
space, as experienced through visual and bodily perception. We will focus here
on those aspects which are directly connected to dynamics.

The classical way of viewing change is to reduce it to ÒmovementÓ, i.e. the
continuous evolution of the position in (state) space of the observed system. The
structure of the space is then determined by the structure of the set of possible
ÒmovementsÓ. Traditionally, however, the geometrical structure of space is
supposed to be given beforehand, i.e. before change is introduced. In order to
make the transition from the static representation of space, to the dynamic
representation of movement or change, the classical frame needs one more
representational structure: time.

Classical time is basically a linear order relation between different actual
states. This relation will be denoted by P:

si P sj or P (si, sj) (si, sj ÊÎÊ S) reads: Òthe state si precedes the state sjÓ.

P has the relational properties of antireflexivity, antisymmetry, transitivity and
completeness. (completeness: for all si, sjÊÎÊS: si P sj or sj P si).

This means that the different states of the changing system you wish to represent
can be ordered in a linear sequence. This sequence can be indexed by labeling
the consecutive elements of the sequence with numbers (integer or real) from a
number system. These numbers correspond to the chronological time you read
from a clock when the particular state that is labeled, takes place.

In order to describe the evolution of the state it now suffices to give a set of
states as a function of time:

s1(t1), s2(t2), s3 (t3), É with si ÊÎÊ S, ti ÊÎÊ T,

where T is a number system (integers or reals) symbolizing time. The constraint
is that:

s(ti) P s(tj) iff the number ti is smaller than the number tj.

The parameterized sequence s(t), tÊÎÊT is called the trajectory of the system in
state space.

The order relation on the set T of moments determines a topological structure;
the neighborhoods of this topology are the open intervals ]t1, t2[:

" tÊÎÊT, t1 < t2ÊÎÊT: tÊÎÊ]t1, t2[ iff t1 < t and t < t2
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This topology can be ÒcoupledÓ to the topology of the state space by demanding
that the function from T to S, which maps a time tÊÎÊT onto the state s(t) at that
particular time, be continuous. This means that for any neighborhood O(s0) of a
state s0 = s (t0) in S, there must be a neighborhood O(t0) of t0ÊÎÊT, such that if
t1ÊÎÊO(t0) then s(t1)ÊÎÊO(s0).

Intuitively, it means that for a time t1 Òclose toÓ t0, the corresponding state s(t1)
must be Òclose toÓ s(t0); if s(t1) would be Òfar awayÓ from s(t0) then we could
find a ÒsmallerÓ neighborhood O'(s0) such that s(t1) does not belong to it, even
for t1 arbitrarily ÒcloseÓ to t0 (i.e. for O(t0) arbitrarily ÒsmallÓ).

This requirement of continuity of trajectories determines a direct coupling
between the temporal order relation and the topological structure of state space.
It signifies basically that before a large change can take place (i.e. the trajectory
crosses the boundary of a large neighborhood of the initial state s(t0) at time t2),
a smaller change must have occurred (i.e. the trajectory must have crossed the
boundary of a smaller neighborhood of s(t0) at a time t1, with t0 < t1 < t2).

Once again we will illustrate these concepts with the example of the billiard
game. The states sÊÎÊS of the billiard game are the Cartesian products of the
positions of the individual balls on the billiard table. The evolution of the game
can now be modelled by a parameterized sequence s(t), tÊÎÊT, of states. Each
time-dependent state s(t) represents the position of the different balls at the time
t. Remark that this presupposes that the exact positions of two separate balls can
be established in one and the same instant, i.e. the parameter t is the same for all
the different balls. This is called Òabsolute timeÓ.

The continuity of movement requires that the balls cannot jump over finite
distances in an infinitely small time interval. In order to express this you need a
topology on the set S of states. This is traditionally derived from a metric or
distance function on S:

d: S ´ S ® R: (s1, s2) ® d (s1, s2),

which is itself constructed from the metrics on the component spaces of S which
represent the possible positions of the individual balls. These component metrics
are determined by the postulated Euclidean geometry of the component spaces.

The neighborhoods needed for defining the topology are the open balls in
state space:

Br(s0) = sÊÎÊS: d (s, s0) < r, rÊÎÊR0.

Continuity of evolution is now expressed by demanding that for any distance r
however small it may be, you can find a time interval t1-t0 sufficiently small
such that:

d(s(t1), s(t0)) < r.
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In other words, how shorter the time the billiard balls are observed to move,
how smaller the distance they will have traveled.

4.7 The group of dynamical operators

We have seen how a given evolution of a system can be represented as a state
space trajectory parameterized by time. We now also wish to represent the way
such evolution can be brought about or manipulated. The actions causing a
change of state will be called operations. Their formal representations in the
state space framework will be called transformations or operators. These are
basically functions mapping a part D of the state space S onto another part C. In
the classical frame the functions fÊÎÊF are one-to-one: C = D = S. The basic idea
is that a state s is transformed by an operator f in a state s':

f: S ® S: s ® s' = f(s)

f can represent an action, force or influence exerted by the observer or the
environment upon the system, causing it to change in a specified way.

The interesting feature of these operators is that they can be composed: the
composition of two operators f, g produces a new operator h = f * g which
represents the action consisting of carrying out the action represented by f after
the action represented by g. The composition operation introduces an algebraic
structure into the set of operators. Classically this structure is that of a ÒgroupÓ.
This means that you have four special properties:

1) composition is everywhere defined in the set F of operators:

"f, gÊÎÊF, $ hÊÎÊF: h = f * g.

This signifies that the carrying out of an action or operation is independent of
the history of the system, i.e. of the previous operations carried out on the
system. A given operator f is applicable to any state s1 of the system, whatever
the way it was brought about. The resulting new state s2 can be subjected to any
other operator g, leading to a third state s3. The succession of the two operators f
and g can then be represented by another operator h, which leads directly from
s1 to s3.

2) composition is associative:

" f, g, hÊÎÊF: f * (g * h) = (f * g) * h = f * g * h

This property signifies basically that if more than two operators are to be
composed, then composition can be carried out sequentially: first you compose
g with h, then you compose f with the result of that composition; it does not
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make a difference if f is first composed with g and their composition is then
coupled to h. This sequentiality corresponds to the linear order of time.

3) there is an identity element iÊÎÊF such that:

i * f = f * i = f, "fÊÎÊ F.

This property corresponds to the idea that one possible action is to do nothing at
all. The operator i representing this action maps every state onto itself:
"sÊÎÊS: i(s) = s.

Carrying out an operation f and then doing nothing at all, is equivalent to
only carrying out f.

4) every operator fÊÎÊF has an inverse f'ÊÎÊF such that:

f * f' = f' * f = i

This property presupposes that every action can be undone. Carrying out f and
then carrying out its inverse f' is equivalent to doing nothing at all. All operators
are reversible, nothing has been irrevocably lost or damaged, you can always get
back to the situation you started from.

The group F containing all operators defines an equivalence relation on the state
space S:

Òs1 is equivalent to s2Ó iff there is an fÊÎÊF with f(s1) = s2

This relation is reflexive, due to the identity property, and symmetric, due to the
reversibility property. It is transitive because two operators can always be
composed. Therefore, it is an equivalence relation which partitions S into
disjoint equivalence classes.

A further presupposition of the classical representation frame is that if you
consider F as the group representing all physically possible operations, then
there is only one equivalence class, which is S itself. This property signifies that
any state can be transformed into any other state of S by applying the right
operator. Therefore, it suffices to start with only one state s0 in order to construct
the whole state space by applying all operators fÊÎÊF to this one state.

You can say that the group F defines the state space of the system, and
hence the system itself. Carrying out an action which is not represented by an
operator fÊÎÊF would mean that the state would be sent upon something
ÒoutsideÓ the state space, i.e. the resulting situation would no longer be
represented as a state of the system, but possibly as a state of another system.
So, the only ÒinvariantÓ of the transformation group F is the system itself.

Although the operators belonging to F represent possible changes of the
systems state, these changes are clearly not the most general. The changes
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represented by the group F may be called Òchanges of the first kindÓ (cf.
Watzlawick, Weakland and Fisch, 1975), i.e. changes which leave the system
itself invariant (the system is here defined as the set of objects, whose properties
and relations determine the space of possible states). ÒChanges of the second
kindÓ, i.e. changes of the components or structures of the system, are not
represented by elements of the group.

This feature of changes Òremaining within the systemÓ, in contrast to
changes Òwhich jump out of the systemÓ, is a consequence of the property of
ÒclosureÓ which characterizes groups: anything happening in the group remains
within the same group, it can never ÒleaveÓ or Òget out of controlÓ. Indeed, any
possible combination of operators of the group, representing a complex of
actions performed on the system, can be reduced to a linear sequence of
elements by associativity. This sequence can be simplified by composing its
first element with the second element, then taking the resulting operator and
composing it with the third element, and so forth, until we are left with just one
operator, representing the whole complex of actions. Because of the reversibility
property we can find an inverse of this operator. This means that whatever
complex combination of actions we perform on the system, there is always one
operator which is sufficient to bring the system back to its initial state.

Hence, any state produced by any combination of operations from an initial
state, can always be directly retransformed in this initial state. The state space
and the corresponding group of state space transformations, are closed; they
form one separate, indivisible whole, an equivalence class.

Let us now go back to the billiard game example. If our representation of the
game consists of a set of N balls (objects), characterized by their positions on a
two dimensional, infinitely extended billiard table (predicates), the possible
actions in the game will be represented by changes of position of the balls, i.e.
translations in the two dimensional space of individual positions, corresponding
to translations in the 2N-dimensional space of states of the system of balls.

These translations form a group: 1) the composition of two translations is
another translation, 2) the composition of three translations in a row is the same,
whether we begin by composing the two first translations and then adding the
third one, or by composing the two last translations and then composing the
result with the first one, 3) there is an identity translation, which does not move
the balls at all, 4) for any translation there is an inverse translation, which moves
the balls over the same distance but in the inverse direction.

Remark that if we had a regular billiard table with a finite length and
breadth, the possible translations of the balls on the table would not form a
group. Indeed, if we would compose ten translations which would each move a
ball by 50 cm in a specific direction, the resulting translation would move the
ball by 5 m, and hence transgress the tables boundary. In this case the ball
would literally Òjump out of the systemÓ.

If we nevertheless wish to define a transformation group for a finite billiard
table, we must introduce operators which are no regular translations. (These
operators may for example be characterized by requiring that when the
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trajectory of a ball which is being translated reaches the edge of the table, its
direction should be reflected in such a way that the reflected trajectory forms an
angle with the edge equal to 180¡ minus the angle of the original trajectory).

As we have already discussed, this ÒkinematicalÓ representation of the
billiard game way be extended to a ÒdynamicalÓ representation by including the
velocities or momentums of the balls as supplementary predicates. We then
have to define operators acting upon these new components of the state. These
operators can be thought of as accelerations or forces, which change the
velocities of the balls. The actions represented by these operators could for
example be the different strokes exerted on the balls with the help of a billiard-
cue.

The set of accelerations has again a group structure: the composition of two
accelerations is an acceleration, composition, is associative, there is an identity
acceleration, and each acceleration can be inverted.

The transformation group of the billiard game as a whole, is given by the
Cartesian product of the translation (possible with reflection) groups of the
individual balls and the acceleration groups of the individual balls. This group is
sufficient to represent all possible changes of state occurring in a regular billiard
game (if we ignore for the moment the spin properties of the balls).

However, we can easily imagine changes of the billiard system which,
although improbable, are physically possible, but cannot be represented by
operators of this group. For example, one of the balls might break in two. This
would change the number of objects needed for the representation of the system,
and thus would add another two (or four) dimensions to the state space by
increasing the number of degrees of freedom. In a certain sense the billiard
game would Òjump out of its state spaceÓ. There is no way to recuperate this
change by extending the group, since the process of breaking in two is clearly
not reversible, hence cannot be imbedded in a transformation group.

Another example of such a change of the second kind would be the
introduction of an obstacle on the table-cloth. This would change the geometry
of the state space and hence of its corresponding invariance group. An even
more drastic change would be the melting of the balls. This would change the
representation from one corresponding to the mechanics of material points or
rigid bodies, to one corresponding to continuum mechanics, characterized by an
infinite number of degrees of freedom.

4.8 Dynamical constraints

We have analyzed the basic mechanisms used in the classical frame for the
representation of possible changes occurring in a system. For a representation to
be adaptive, however, it should allow us to make predictions, i.e. it should not
only model possible changes, but also the actual changes which are to be
expected. In order to do this, we need some mechanism for restraining the
number of changes to be expected in a given situation. Such mechanisms may
be called dynamical constraints or laws. In the ideal case they allow us to select
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a unique trajectory, i.e. a time-parameterized sequence of operators. In general,
from a given initial state s(t0) several subsequent states si (t0+T) can be reached
by applying different operators fiÊÎÊF:

fi (s0) = si.

The only constraint given as yet is that of continuity: for a small interval T, the
subsequent states si (t0 + T) should be in a small neighborhood of s0 (t0). This
already restricts the number of operators applicable for representing the changes
in a given time interval T. In order to make useful predictions, however, we
need a further reduction of the set of applicable operators.

There are two basic types of constraints for selecting the right operators:
conservation (or invariance) principles, and variation (or optimization)
principles.

Those of the first kind express the requirement that a given property of the
system should be conserved during the system's evolution. An example of such
a principle is the conservation of energy in classical mechanics. Affirming that a
system has a certain property, which is invariant, means that there is a certain
proposition, consisting of a combination of objects, predicates and connectives,
which is implied by all states the system can reach during its evolution.

This proposition e0 (which is for example equivalent to Òthe system's energy
is equal to E0 Ò) will in general be true for a certain set S0 Ì S of states, and false
for all the other states. The conservation principle demands that only states
belonging to S0 can lie on the system's trajectory. Therefore, this constraint
amounts to a reduction of the state space.

Since all states of the original space S can be reached from a given initial
state s0ÊÎÊS0 by applying the appropriate operator fÊÎÊF, this implies that also the
set of operators should be reduced to F0 Ì F, such that:

" fÊÎÊF0: f(s0)ÊÎÊS0.

It is easily shown that F0 is again a group, hence a subgroup of F:

1) composition is internal in F0: f, gÊÎÊF0 means that f and g conserve the
property e0. Clearly then f * g will also conserve e0, hence f * gÊÎÊ F0.

2) composition is associative in F0 since it is in F.

3) the identity element i conserves all properties, hence it conserves e0 and
belongs to F0.

4) if f conserves e0 then its inverse f' will also conserve e0, hence "fÊÎÊF0, f'ÊÎÊ
F0.
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We may conclude that, in a certain sense, the introduction of a conservation
principle simply reduces the representation to a smaller representation,
determined by a state space S0 which is a subset of S, and a transformation
group F0 which is a subgroup of F. This may seem rather trivial. You might be
tempted to ask: why bother about the conservation principle? Why could we not
simply begin with the smaller representation characterized by S0 and F0? In
general, however, the derivation of (S0, F0) from (S, F) is not trivial at all. The
reason is that the invariant property e0 does in general not correspond to a
simple expression which is directly contained as a conjunctive factor in the
expression of the state.

For example, in classical mechanics the primitive properties determining the
state are the position and momentum variables. The conserved property of
energy, however, depends on these variables in a rather complex way. The
introduction of energy conservation will reduce the state space of the system to
one of its constant energy hypersurfaces, but these surfaces have generally a far
from trivial shape.

In general the introduction of a conservation principle will produce an
equivalence relation on the state space, leading to equivalence classes of states
characterized by a common value for the property which is to be conserved.
State-transitions will only be allowed by the conservation principle if both states
belong to the same equivalence class. In the technical language of mathematical
physics these equivalence classes are called Òirreducible representationsÓ of the
corresponding subgroup F0 of operators for which the property is invariant.

The second type of dynamical constraints, the variation principles, will not
introduce equivalence relations on state-transitions, but order relations. The
basic idea is that even after all (practically computable) conservation principles
were applied to reduce the set of operators and the corresponding set of states
which can be reached from a given state, there still remains a rather large choice
of possible transitions. These transitions will now be ordered according to some
evaluation criterion. The variation principle states that that transition will
actually take place which corresponds to the maximum of the ordering (or the
minimum, depending on the convention used for computing the evaluation
function).

Intuitively, this may be understood as a selection of the ÒbestÓ transition
among the available alternatives. This is basically an optimization problem. It
requires that different states, trajectories or operators be mutually compared,
according to a given evaluation criterion, so as to determine which one is the
ÒbestÓ for this criterion.

If the things to be evaluated and compared are the individual states, then the
evaluation function is usually called a ÒpotentialÓ function. In this case every
point s of the state space is accorded a numerical value P(s) which is called its
ÒpotentialÓ. The dynamical principle constraining possible evolution is that for a
given time interval T the transition from an initial state si which will actually
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occur is that which results in a final state st which has the lowest potential of all
the states in a neighborhood O(si):

"ÊsÊÎÊO(si): P (s) > P (st).

If si is already a local minimum of the potential, then si = st, and no change of
state will take place.

Remark that the use of a potential principle presupposes the existence of a
continuity principle: if no continuity or neighborhood structure existed in the
state space, then every initial state would be transformed immediately in that
state of the space with the minimal potential (i.e. the global minimum of the
potential function); all evolutions would stop immediately, and have the same
result. This is clearly not a useful model of actual physical processes.

The local minima of the potential function are sometimes called
ÒattractorsÓ: they indeed attract trajectories passing in their neighborhood
towards their center. Once a system has reached an attractor state it remains
there, it cannot evolve further.

For many systems a potential principle is not useful for representing their
dynamical behavior. These are for example systems for which there are no
attractors: their evolution never stops. The periodical movement of a planet
around the sun is an example of such a never ending movement. In such a case it
is meaningless to attribute absolute potential values to static states. Yet we can
still use variation principles for comparing different trajectories.

The classic example of such a representation is the Hamilton principle in
classical mechanics. Here it is supposed that two states, an initial state si (ti) and
a final state sf(tf), are given, and that a trajectory connecting both:

{s(t), ti < t < tf with s(ti) = si(ti) and s(tf) = sf(tf) }

is to be determined. All possible trajectories are evaluated by means of a
function which is called the ÒactionÓ. The Hamilton principle now states that
that trajectory will be actually selected by the system for which the action is
minimal.

In general any system whose behavior can be expressed by a dynamical law or
equation relating input variables, state variables and output variables as a
function of time, can be equivalently represented as a decision-making or
optimizing system (Mesarovic and Takahara, 1975). This means that all
dynamical constraints governing the trajectory can be viewed as requirements
that the trajectory be optimal with regard to a particular evaluation function.

In this study we have preferred the formulation with conservation or
optimization principles to the more conventional formulation with dynamical
laws or equations, because a dynamical equation does not give a very explicit
analysis of how states, operators and time are coordinated in the determination
of a trajectory.
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Besides, the formulation with conservation or optimization principles is
more general since it does not presuppose that you have complete knowledge of
the dynamical constraints. In practice you often know only part of the conserved
properties or ordering functions which allow you to select expected state
transitions. In that case anticipation of the system's trajectory becomes a
question of guessing or of heuristic search.

The classical representation frame, however, makes the supposition that the
trajectory can be completely determined, without any uncertainty left. As we
have already noted, this implies that the state be a complete characterization of
the system at a certain time. Moreover it implies that the dynamical constraints
(equation, conservation or variation principles) leave only one solution to the
problem of which trajectory passes through a given initial state.

The billiard game example may help us to clarify some of the newly introduced
concepts. Suppose we have a billiard game representation with predicates
expressing besides the positions, also the colors of the balls. Clearly, during a
regular game the colors of the balls will not change. Therefore, the property of
the system expressed by the different color predicates is conserved, invariant or
Òa constant of the motionÓ.

The operator group F characterizing this game might be the product of the
translation group F0 for the positions of the balls with the permutation group F1

for the colors of the balls. Clearly we only need the subgroup F0 for describing
the possible state-transitions in the game.

In this example the reduction of the representation by the introduction of the
principle of color conservation is trivial, because, variable (position) and
invariant (color) properties can be easily factorized. This becomes less trivial if
we use the dynamical representation with positions and momentums as
primitive predicates. Here we might want to introduce the energy conservation
principle. If there are no outside forces, the energy is purely kinetic and hence
directly proportional to the sum of the squares of the momentums of the
individual balls. The determination of a subspace of states and a subgroup of
operators for which this property is invariant, is clearly not trivial.

For an example of a potential principle we may consider a kinematical
representation of a billiard-game where the friction on the balls is so large that a
moving ball on which no outside force is exerted stops almost immediately. This
means that we can ignore all effects of inertia. In such a game the trajectories of
the balls will be completely determined by the relief of the table on which they
are moving. Gravitation will pull the balls towards lower regions while pushing
them away from the higher regions. The lowest points of the table will function
as attractors: in general, any ball will move towards one of its neighboring
attractors, and it will stop its movement only when it has reached the attractor.

A simple example of a variation principle applied to trajectories instead of
states can be seen in a regular billiard game (on a flat table-cloth). If you want a
ball to move from one point of the table directly (i.e. without scattering) to
another point, then what trajectory will be selected? Physical intuition tells us
that the normal trajectory in the absence of outside forces is a straight line,
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connecting initial and final positions. Yet a straight line can be characterized as
the shortest path connecting two points. Therefore, the dynamical constraint
determining the trajectory can be represented as an optimization principle with
an evaluation function defined by the length of the proposed trajectory.
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CHAPTER 5: The world view of the classical representation
frame

5.1 Introduction

A basic principle of the cognitive paradigm is that perception is necessarily
selective: not all information inherent in the environment can be processed in
depth by the cognitive system. The adaptivity of the system is determined by its
representation or cognitive structure, which selects those features of the
environment which appear relevant to the general adaptation strategy of the
system. These subjectively relevant features of the environment will be called
the world view of the system.

It is clear that each representation structure will select a specific set of
features of the world as focus of attention or awareness, while ignoring other
features. The coordinated whole of these perceived features will form a kind of
philosophy about how the world really is, how it evolves, and how it is related
to the perceiving subject. We will now analyze the specific philosophy implied
by the classical representation frame.

This will be subdivided in two sections: first, the ontology of the classical
frame, i.e. the view of how things exist, independently of the observing subject;
second, the epistemology of the classical frame, i.e. the view of how the subject
can know these objective features of the world. The first philosophical domain
corresponds to what we have called Òphysical scienceÓ, the second to Òcognitive
scienceÓ.

Traditionally, one distinguishes a third philosophical domain, ethics, which is
the theory of how the subject should behave in the world. This, however, is the
domain where the classical representation frame is the least explicit.

We can here only indicate the most general ethical presuppositions which
can be derived from the classical representation. The actions of a subject can be
represented with the same conceptual structures as the evolution of a physical
system: each action corresponds to an operator which maps a given state of the
world onto a new state. The sequence of allowed actions is constrained by
certain principles, which can be variational or conservational.

Conservation principles correspond to rules of prohibition: certain features
of the world must not be changed. For example, the moral principle ÒThou shall
not killÓ, can be interpreted as a principle of conservation of the number of
living human beings, constraining the sequence of actions of an individual.

Variation principles correspond to the establishment of moral values, of a
distinction between good and evil, or, more subtly, of a distinction between
better and worse. For example, the utilitarian ideal of the greatest happiness for
the greatest number of people is a moral principle of the variational kind.
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The whole of ethical constraints should in principle allow us to select one action
as being the most appropriate, or the ÒrightÓ one, for a given state of the world.
There is however a basic difference between this ethical determinism and the
ontological or physical determinism, implied by the classical frame. In both
cases there is exactly one right solution to the problem of Òwhich state-transition
should occur next?Ó
In the physical domain, however, the transition which should occur is also the
one which will occur. The choice we seemed to have between different
operators to apply to the given initial state, is only apparent; the actual transition
to take place was already determined beforehand.

In the ethical domain, the action which will take place is not necessarily the
one which should take place. The acting subject is supposed to have a Òfree
willÓ, which allows him to actually choose between different alternatives, even
though only one of these alternatives is considered optimal; he has always the
possibility to make the wrong choice, i.e. to act ÒunethicallyÓ (on the other hand
it is clearly impossible for a dynamical system to evolve ÒunphysicallyÓ).

This problem of determinism is one of the areas where the classical world
view appears to lack consistency.

5.2 The ontology of the classical frame

The most basic representation mechanism of the classical frame is the object-
predicate scheme. It presupposes that the world can be cut up in a set of separate
and invariant elements, to be represented as objects. The relations and
interactions between those elements can then be represented by predicates,
whose dynamics are represented by state-space trajectories constrained by
conservation or variation principles.

The philosophy underlying the application of this scheme could be called
ÒreductionismÓ. It presupposes that the complex and changing world that we
experience can somehow be reduced to a combination, according to
predetermined rules, of a set of independent, unchangeable elements.

The problem with this view is that the elements of the representations (objects
or predicates) usually do not correspond with clearly elementary outside
phenomena. If we consider a ÒtableÓ as an object of our representation, then it is
obvious that we can replace this representation by a more detailed one, where
the objects are a Òtable-topÓ and four Òtable-legsÓ, which can be combined with
the help of the two-place predicate ÒSupportsÓ:

Supports (table-leg 1, table-top)

would be a true proposition describing the more detailed structure of the table.
Here we have two representations which both obey the classical framework, but
which use different elements for describing the same phenomenon.
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If we wish to have a consistent world view compatible with the classical
frame, then we must suppose that these two representations are only
approximations or abstractions of a more fundamental representation where the
representation elements correspond to truly elementary, i.e. indivisible outside
phenomena. These elementary phenomena are usually called ÒatomsÓ (in more
recent formulations they are called Òelementary particlesÓ).

This supposition implies that every phenomenon can be reduced in an
unambiguous way to a combination of atoms. This means that every object in a
representation which does not correspond to an atom, can be represented in a
more elaborate way as a system consisting of several, more elementary objects,
related through certain predicates.

Although in the coarse-grained representation the object is supposed to be
invariant, in the fine-grained representation it can in principle change if the
relations between its sub-objects are changed. For example, the object ÒtableÓ
can stop to exist if the table-legs are removed from the table-top, so that the
proposition ÒSupports (table-leg 1, table-top)Ó is negated.

The requirement that the classical frame provide a complete and consistent
representation of the world, implies that this is not possible for atoms: only the
relations between atoms can change, the atoms themselves are permanent.
Different atoms are distinguished by their properties (e.g. position in space)
expressed by predicates. On the level of objects, where no predicates are
introduced as yet, however, all atoms have the same function, hence are
indistinguishable. This leads one to infer that different atoms are just distinct
manifestations or instances of one and the same, unchanging essence or
substance. This substance is called ÒmatterÓ.

If the completeness of the classical representation implies that there be
elementary objects, it also implies that there be elementary predicates. An
elementary predicate should give a complete characterization of an individual
atom. However, the classical representations are not very explicit as to what are
the fundamental properties of atoms. Depending on the theory, different sets of
elementary properties are postulated (including e.g. mass, charge, position,
momentum, energy,É), but one property which appears in all fundamental
representations, is the position of the atom in the three-dimensional, Euclidean
space.

This property is clearly fundamental in the sense that it is sufficient to
distinguish any two arbitrarily chosen atoms: two different atoms can have the
same energy, mass, charge or momentum, but they obviously cannot have the
same position in space. This leads one to postulate ÒAbsolute Euclidean SpaceÓ
as a necessary component of the fundamental state space of an atom.

This absolute space concept has a role analogous to that of matter: the
different elementary predicates of position can be conceived as representing
ÒpointsÓ, i.e. distinct instances or pieces of an invariant substance called
ÒspaceÓ. The difference between atoms, as elementary pieces of matter, and
points, as elementary pieces of space, is that every atom is located in a particular
space point, but not every space point contains an atom. This is because an atom
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corresponds to an (invariant) object to which (variable) predicates, representing
points, are attributed. Hence, an atom should have different potential points of
location.

The classical scheme for representing change is a linearly ordered set of states.
As we have seen, this ordered set can be indexed by a number system. In
analogy with the space concept, the elements of this number system can be
interpreted as denoting different elementary manifestations or pieces, of a
universal substance which is called Òabsolute timeÓ. As in the case of space, the
word ÒabsoluteÓ signifies here Òinvariant, the same for all atoms, objects or
observing subjectsÓ. Hence, every event occurring to an atom is unambiguously
characterized by a unique space point, and a unique ÒinstantÓ or Òtime pointÓ.
The absoluteness of the linear time ordering implies that it is always possible to
establish objectively whether two events are simultaneous (i.e. occur at the same
instant) or not.

Another feature of the world associated with this linearity is causality. The
application of an operator fT to a state s1(t1) can be interpreted as a cause
leading unambiguously to the effect: s2(t1 + T) = fT (s1), i.e. the new state at a
later time t1 + T resulting from the application of fT to s1.

In this conception of causality every cause has a unique effect:

" s1ÊÎÊS, $Ê! s2ÊÎÊS: s2 = f (s1);

every effect has a unique cause:

" s2ÊÎÊS, $Ê! s1ÊÎÊS: s2 = f (s2);

and the cause always precedes the effect. This corresponds to the idea that the
whole of cause-effect relations constitutes a linear sequence, without loops or
bifurcations.

In fact, in this framework the cause of a dynamic change is more than the sole
initial state s1; it also encompasses the whole of values of conserved properties
or evaluation criteria that determine the dynamical constraints. These values
(e.g. the potential energy of the state) usually represent external forces or
influences which are not explicitly represented as objects, but which select the
specific operator f to be applied to s1.

The principle that for a given time interval T there is just one operator fT
transforming s1 in s2 implies that the trajectory of the state be completely
determined. No ambiguity, uncertainty or freedom of choice is left. This feature
of the classical world view is called determinism. It states that for a given initial
state of the world all future states are already determined. There is no chance or
randomness.

From this point of view change is only apparent; the fundamental structures
which completely determine all events that occur, have occurred, or shall occur,
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are absolute and permanent: matter, space, time, the dynamical laws are a priori
fixed. Time should not be seen as a matrix of change or evolution, but as a mere
additional dimension, to be coupled to the three dimensions of geometrical
space for an unambiguous localization of all events.

This geometrical interpretation of time is reinforced by another feature of
the classical world view: reversibility, or time-symmetry. The geometrical or
topological structures of space are symmetrical: the relations between points Òis
in the neighborhood ofÓ, or Òis at a distance d ofÓ, are symmetric. The linear
order relation defining time, on the other hand, is antisymmetric by definition.
In the classical frame, however, this antisymmetry is interpreted as a mere
labeling convention or formality: a trajectory leading from s1(t) to s2(t + T)
could as well have led from s2(t) to s1(t + T); the Hamilton principle determining
the path from s1 to s2, produces the same result for the path from s2 to s1.

The idea that a state-trajectory or dynamical evolution could as well have
been followed in the reversed order, can be traced back to two structural
properties of the classical frame: the reversibility of operators, which is
determined by the group structure, and the time-symmetry of dynamical
constraints. The latter property requires that if a state sequence obeys a dynami-
cal constraint, then also its inverse should obey the constraint. This requirement
is implicit in all conservation principles, but not necessarily so for variation
principles. In the case of a potential principle there is clearly no time-symmetry:
a system can evolve from a state s1 to an attractor state s2, but it cannot move
back to s1, away from the attractor s2. In classical mechanics, however, the
variation principles are of the Hamilton type which is time-symmetric.

The world view implied by time-symmetric representations is one in which
nothing can be really created or destroyed; every change can be undone. One
way to express this property is to say that the information inherent in the state-
of-the-world is conserved: the state itself may change, but its amount of infor-
mation is invariant. In practice this means that the information inherent in a
world-state s0 (t0) is sufficient to compute all earlier states s (t0-T) or later states
s (t0+T').

5.3 The epistemology of the classical frame

The function of the observing subject in the classical frame corresponds essen-
tially to what we have called the Òphotographic camera view of the mindÓ (see
sect. 1.3). This implies that the observer is fundamentally separate from the
phenomena he observes; he does dot interfere with the outside world; he is
merely passively receiving data which he tries to arrange in the correct manner
so as to get a picture of the world which is as complete as possible.

True knowledge, in this view, is a kind of photographic picture or mirror
image of the world. This corresponds to what we have called the isomorphic or
denotative view of representation (sect. 2.5): the representation of the world that
the knowing subject possesses is a structure isomorphic to the structure of the
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world; its parts and elements (objects and predicates) denote separate parts and
elements of the world (systems or atoms and their properties).

The correctness or ÒtruthÓ of a representation in the classical frame is
considered to be absolute: either the elements and relations of the representation
are in a one-to-one correspondence with actual elements and relations of the
world, or they are not; there is no ambiguity or subjectivity involved. This
correctness can be checked in a simple way: it is supposed that for each
predicate describing the state of a particular object there is an experiment or
observation to be carried out on the phenomenon represented by the object
which can have two results: ÒyesÓ, the phenomenon actually has the property
denoted by the predicate, or ÒnoÓ, the phenomenon has not got this property.

If the experiment is carried out well, in accordance with the intersubjective
rules for the operational definition of the property, the answer is determined by
the actual state of the object before the experiment began (cf. Aerts, 1983).
Since the observer is supposed to be separate from the observed object, his
observation should have no influence on the result of the test (however, it might
have an effect on the state of the object after the test, see sect. 7.3). Hence, from
the principle of determinism it follows that the result of the experiment, which
establishes the truth or falsity of the predicative proposition, is absolutely
determined, and could have been predicted with certainty by the observer if he
knew the state of the system at the time the observation was made.

If the observer did not know the state, he could use this experimental
procedure to determine it, by testing the truth or falsity of all predicates needed
to define the state of the system. This would provide him with all the informa-
tion needed for computing the future behavior of the system. This is another
fundamental epistemological assumption of the classical frame: in principle any
observer is able to gather complete information about a certain problem domain,
so that all problems within this domain can be optimally solved by applying the
deterministic inferential mechanisms of the classical frame. This feature of the
knowing subject can be called Òperfect or unlimited rationalityÓ (Simon, 1957).

At the level of action, it implies that, given the ethical or dynamical
constraints expressed as conservation or variation principles, the subject can
always find the optimal sequence of actions in a given situation. This assump-
tion forms the base of the classical theory of economics (Simon, 1957). The
different presuppositions leading to the concept of classical rationality are made
more explicit in the sciences of decision (Despontin, 1986; Roy, 1985).
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CHAPTER 6: Classical and non-classical representations

6.1 Beyond the classical frame

In our search for a general characterization of adaptive representations, we have
made a rather detailed investigation of a special type of representations, which
were called Òclassical representationsÓ. Their analysis has revealed a quite
elaborate structure, functioning as a general framework for the representation of
many more specific problem domains. We have further analyzed how this
structure determines the way a subject perceives the world and his interactions
with it.

Many of the assumptions and implications of the classical frame appear
intuitively evident. For example, the existence of objects, the reality of matter,
space and time, the rules of logic and causality, the distinction between truth and
falsityÉ all seem so natural that it appears difficult to imagine a world where
these conceptions would not apply. Yet we must keep in mind that these
concepts are only principles governing a particular representation of the world;
they do not belong to the Òobjective realityÓ or the ÒDing-an-SichÓ.

In this sense they are analogous to the Kantian categories, which are
supposed to be necessary conditions of experience. The difference between the
present viewpoint and the Kantian view however, is that these principles of
experience and understanding are not supposed to be invariant and necessary a
priori. We will now show that alternative principles exist for the organization of
experience in adaptive representations.

These alternative representation principles will be found in several new
scientific developments, where the complexity and variability of the phenomena
studied makes it clear that you have to go beyond the classical frame if you want
to understand them. As we have seen, the most general precondition for the
efficacy of the classical frame is that the observed phenomena have a stable or
invariant structure. It is to be expected then that phenomena characterized by
instability, rapid change, or relativity will be difficult to fit into this framework.
Since the normal evolution of science leads from simple, invariant phenomena
towards more complex and changeful phenomena, it is clear that at some point
in the development of a scientific discipline a crisis must occur resulting in a
questioning of one or more of the classical presuppositions.

Since the classical framework as a whole appears so basic to our under-
standing of the world that it seems impossible to think without it, the number of
presuppositions which are questioned and eventually replaced by alternative
presuppositions, will tend to be minimal. Furthermore, it will be easier to
change the presuppositions which are of a more technical nature (e.g. the group
structure of the set of operators) than to change those which are really primitive
(e.g. the existence of objects and predicates). Which particular assumption will
be relinquished, will depend on the problem domain of the specific discipline.
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For example, in the physical sciences one will tend to question ontological
presuppositions, such as the absoluteness of space, whereas the cognitive
sciences will witness discussions of epistemological assumptions, such as the
absoluteness of truth.

Therefore, although there is presently a general critical attitude towards the
classical frame, the alternatives proposed in different disciplines appear
heterogeneous, incomplete, and often inconsistent. What is needed is an
integrating framework where the different contributions are placed in the proper
perspective with respect to the representation problem as a whole. We may hope
that the adaptive representation concept, as it was developed until now, will
provide the basis for such a framework.

However, in order to discuss the novel contributions in a more efficient way,
we will first attempt to characterize classical representations in a more
fundamental manner, so that the difference between classical and non-classical
representation structures becomes more explicit.

6.2 Distinctions as basic elements of a representation

Possibly the primary function of a representation is classification. Any
information-processing system divides the stimuli it receives into distinct
classes, which correspond to distinct states of its internal representation. These
states determine the further behavior of the system. The reason why a represen-
tation makes the search for an adequate reaction to a given stimulus more
efficient, is because the classification of the stimuli into a number of classes
which is smaller than the number of stimuli reduces the size of the search space.

If the number of states or classes would be as large as the number of
physically different stimuli or situations the system may be confronted with, the
mental search through the internal representation space would take as long as
the actual search through the physical environment. This means that the system
would be unable to make anticipations, since the internal computation of the
effect of an external process would not be finished before the process itself is
finished. In other words, if the representation of an environment would be as
complex as the environment itself, it would become useless, since it would only
duplicate this environment in a perfect way, without any gain in speed or
simplicity.

Therefore, any process of perception implies a classification or distinction
between phenomena. This classification operation has two aspects:

1) the phenomena which are put together in a class, are considered to be
equivalent with respect to the system's goals, they are assimilated, they belong
to the same equivalence class;

2) the phenomena corresponding to different classes are distinguished or
discriminated, they belong to different equivalence classes.

The operations of distinction, and assimilation of phenomena necessarily go
together. If a cognitive system would make no distinctions, only assimilations, it
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would be unable to perceive different phenomena, it would react to all situations
in a uniform way; hence, it would be unable to adapt to a changing environment.
On the other hand, as we have said, a system which would make no assimila-
tions, only distinctions, would be unable to anticipate; hence it would also be
unable to adapt. Henceforth, we will suppose that every distinction implies an
assimilation, so that we can restrict our vocabulary to the one word Òdistinc-
tionÓ.

6.3 The invariance of distinctions in the classical frame

The fundamental mechanism of distinction comes out clearly in the analysis we
made of the classical frame:

The use of objects as representational elements presupposes that we are able to
distinguish between the object or system and its background or environment. At
the same time it implies the assimilation of different states or appearances as
belonging to the same object (cf. sect. 4.3).

A predicate clearly denotes a class of objects or phenomena (its extension)
which are supposed to embody the same property (its intension) (cf. sect. 4.3).

The Boolean logic of propositions is merely an elaboration of this basic
scheme of distinctions (cf. Spencer Brown, 1969). It is based on the operations
of conjunction and disjunction which correspond to the intersection and union of
the classes of phenomena denoted by the propositions, and on the operation of
negation which corresponds to taking the complement of a class, i.e. the set of
all phenomena which are not in the class, hence are supposed to be distinct from
the phenomena within the class (cf. sect. 4.5).

The states are the propositions with the maximal degree of distinction; every
other distinction between a proposition and its negation can be reduced to it,
since, as we have seen, a state implies either the proposition or its negation. This
means that the states correspond to the smallest equivalence classes, and that all
other equivalence classes can be reconstructed as unions of state classes (cf.
sect. 4.5).

Therefore, the logical part of a classical representation structure can be viewed
as a static coordination of distinctions. The dynamical part of classical
representations, on the other hand, is characterized by the requirement that all
logical distinctions be conserved. Indeed, the basic mechanism for representing
change is the replacement of a state expression by another state expression in
which one (or more) of the primitive sub expressions has been negated. This
means that the state has moved from one equivalence class into another one.
The equivalence classes themselves and the distinction they imply, however,
have remained invariant. Moreover, if two states are distinct and are subjected to
the same operator, they remain distinct:

"s1, s2ÊÎÊS, "fÊÎÊF: s1¹ s2 Û f(s1)¹ f(s2)



- 79 -

(since all operations can be inverted the implication is valid in both directions).
Equivalently:

s1 = s2 Û f(s1) = f(s2)

(the equality sign Ò=Ò should not be read as absolute identity, but rather as
equivalence of s1 and s2 with respect to the representation).

This corresponds to the classical conception of causality:

equal (equivalent) causes have equal (equivalent) effects;
distinct causes have distinct effects (cf. sect. 5.2).

It also corresponds to what we have called the conservation of the amount of
information. Information was defined as that which allows us to make a
selection (sect. 2.6). A selection, however, is nothing else than a distinction
between those things which are accepted and those things which are rejected.
The actualization of a representation state means that for every proposition it
can be established whether the proposition is true or false (i.e. its negation is
true). Therefore, for every distinction between a proposition and its negation one
of both alternatives is selected. The more selections must be made for
completely determining the state, the more information the state embodies.

In the classical frame, a change of state amounts to a different selection of
alternatives. The number of alternatives, or distinctions to be considered,
however, remains invariant. Therefore, the content of the information changes,
but its amount remains the same.

The conservation of distinctions does not only apply to the effects of
specific operators, but also to the choice of a particular operator determined by
dynamical constraints. In the case of conservation principles it is clear that the
selection criterion distinguishing between allowed operators and prohibited
operators remains invariant. For variation principles, the basic distinction is that
between ÒbetterÓ operators and ÒworseÓ operators. As we have seen, this
distinction is supposed to be absolute in the classical frame (even though it
depends on the state to which the operators are applied).

The structure of time is determined by two basic distinctions: that between
simultaneity and non-simultaneity, and that between past and future. Both are
supposed to be absolute: either an event x is simultaneous with an event y (i.e. it
occurs at the same time), or it is not; if x is not simultaneous with y then either it
happens before y or after y. This means that all observers, from all points of
view, will make the same temporal distinctions.

Concluding, we may state that in the classical frame all distinctions, which
determine the structure or form of the representation, are invariant: they remain
the same for all times and for all points of view. The only thing which changes
is the state, which determines the content of the information carried by the
representation. We will now try to analyze how a number of alternative, non-
classical representations transgress this rule of distinction invariance. In

- 80 -

particular we will try to understand how they compensate for the loss of
structural stability resulting from this loosening of distinction invariance.
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CHAPTER 7: Quantum mechanics

7.1 The complementarity of representations

Quantum theory or quantum mechanics got his name from the assumed
existence of a Òquantum of actionÓ, i.e. a discrete unit of energy exchanged
during microscopic interactions (i.e. processes at the scale of atoms or
elementary particles). This assumption arose from the observation by Planck
that electromagnetic radiation had to be exchanged in discrete units in order to
explain the empirical laws derived for black body radiation. This idea was
elaborated by Einstein who introduced the concept of a ÒphotonÓ as a discrete,
particle-like unit of electromagnetism.

Until then, in classical physics it was assumed that electromagnetism was
carried by fields or waves, which spread continuously over space and time. This
wave character could be demonstrated by interference experiments. Yet the
same phenomenon which appeared to be continuous in these experiments,
appeared to be continuous in other situations, exemplified by black body
radiation and the photo-electric effect. Clearly, what everybody had seen as a
wave, sometimes behaved as a particle.

The opposite phenomenon was discovered shortly thereafter. Electrons,
which everybody thought to be particles, appeared to undergo interference,
which is characteristic of waves. This double phenomenon, where particles
behaved as waves, and waves behaved as particles, was called the Òwave-
particle dualityÓ.

In order to explain the signification of this strange result, we must situate the
concepts of particle and wave in the classical frame, which completely
determined the way of thinking of the physicists who were first confronted with
these phenomena. As we have seen (sect. 5.2), a particle is an elementary
instantiation of the concept of object. This means that it can be clearly
distinguished from its surroundings, and that it has no apparent internal
structure. Its definite position in (state) space evolves in a continuous manner,
determined by dynamical constraints.

The concept of a field is an instantiation or materialization of certain of
these dynamical constraints. It is defined by one or more numbers attached to all
points in space. These field variables determine the evaluation function used in
the application of variation principles. For example, in the application of the
Hamilton principle in classical mechanics one uses the expression of the action,
which contains the four components of the electric and magnetic potentials,
which determine the electromagnetic field. If we want the trajectory of the
particle to be continuous, it is clear that the evaluation function, and hence the
field must be a continuous function of space.

A field is generally not constant in time; the values of the field at a given
space point can vary, but only in a continuous manner. The (continuous)
variations in time of a field, continuously extended over space, are called
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ÒwavesÓ. A characteristic of waves is that they can be superposed: if two waves
reach the same point, their collective effect is the sum of the effects of the two
individual waves. E.g. if one wave makes a field variable at point x go up with
an amount a, and the other wave makes it go up with an amount b, then the
superposition of both waves will make it go up with an amount a + b.

In contrast to particles, waves cannot be distinguished from their surround-
ings. They do no occupy a determined position in space, they are spread out
continuously over the whole of space. There is no boundary between wave and
non-wave. On the other hand, particles cannot be superposed, because if two
particles could be superposed, resulting in a third ÒsuperpositionÓ particle, the
original particles would lose their identity, they would no longer be distinguish-
able.

The problem with quantum effects is that we have to do with phenomena
which appear to be both particles and waves! The statement that something is at
the same time distinct from its surroundings, hence discrete or discontinuous,
and continuous, is logically inconsistent. Therefore we are confronted with a
paradox which demands a completely new way of looking at things.

The prevailing attitude towards this problem in physics, which is known as Òthe
Copenhagen interpretation of quantum mechanicsÓ, is based on Bohr's
complementarity principle. According to Bohr, we cannot know physical reality
as it is, independently of ourselves. We can only make certain representations of
the way we can interact with a physical phenomenon. These representations are
necessarily formulated in the language of the classical frame:

Òit lies in the nature of physical observation, that all experience must ultimately be
expressed in terms of classical conceptsÓ (Bohr, as quoted by Jammer, 1974).

The necessity of using classical terminology when discussing observations
followed for Bohr from our inability to relinquish our usual forms of perception
(Jammer, 1974). In the case of the macroscopic entities studied by classical
physics, such as planets or billiard balls, this creates no problems: their classical
representation is well-defined, consistent, and deterministic. In the case of
microscopic phenomena, such as electrons or photons, however, there is no
complete and consistent classical representation: there are only partial repre-
sentations (e.g. the wave representation and the particle representation) which
are complementary.

The complementarity of representations signifies that, although they are
mutually exclusive, they are jointly necessaryÑor complement each otherÑfor
an exhaustive description of the physical situation.

Bohr's reasoning in order to show the necessity of this complementarity of
representations, is based on the role of the quantum of action in the physical
observation process (Jammer, 1974; Bohr, 1958). Since there is an indivisible
quantum of action, the energy and momentum exchanged during an elementary
interaction is necessarily finite or discrete. Therefore, elementary processes are
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characterized by a discontinuous change of state (e.g. from one discrete energy
level of the interacting particle to another one). This phenomenon is sometimes
called a Òquantum jumpÓ.

The same principle must be applied to the observation process, which
should be seen as an interaction between a (microscopic) object to be observed
and a (macroscopic) measuring instrument, manipulated by the subject. Since
the energy of the micro-object is of the same order of magnitude as the energy
of the quantum of action exchanged during the observation process, the effect of
this process on the state of the object cannot be neglected.

This would be no problem if it were possible to precisely determine what the
effect is, that is to say in what way the observation has influenced the state.
However, Bohr has shown by different thought experiments that no observation
apparatus can completely determine this effect. The best one can do is to
measure a certain feature of the process, e.g. the momentum transferred from the
micro-object to the measuring instrument. The experimental arrangement
needed for carrying out this measurement precludes, however, the determination
of another feature of the object at the moment of observation, namely its
position. Therefore, the experimental arrangements for determining position and
momentum appear to be mutually exclusive: it is impossible to simultaneously
determine both features of the object.

On the other hand we cannot gain any additional information by carrying
out one experiment after the other one, since the first observation will perturb
the state of the object in an undetermined way, so that the second observation
will be unable to give information about the state before the first experiment
was done. The measurements of position and momentum are said to be
incompatible. Yet, according to Bohr, the representations of the phenomenon in
terms of position, respectively momentum are complementary: both representa-
tions are needed for characterizing the relevant aspects of the phenomenon, but
they cannot both be determined at the same time.

The complementary features of momentum and position correspond more or
less to the wave nature, respectively to the particle nature of a micro-phenome-
non. When such a phenomenon has a definite position, it can be said to behave
like a particle. On the other hand, if it has a definite momentum, and hence an
indefinite position, it behaves like a wave (with a wave-length inversely
proportional to the momentum).

The impossibility of determining both position and momentum was
expressed mathematically by Heisenberg, in his so-called Òindeterminacy
relationsÓ. These relations show in an explicit manner how a high precision in
the determination of one of a couple of complementary variables implies a low
precision in the determination of the other one: it is impossible to determine
both with infinite precision.

7.2 The structure of the quantum formalism

We have started our discussion of quantum mechanics with the early interpreta-
tions of the quantum phenomena as they were experienced by the experimental

- 84 -

physicist. We shall now turn to the quantum mechanical formalism, that is to
say to the structure of the explicitly constructed representation of these
phenomena. However, we should add a remark here. To quote Jammer (1974):

ÒThis formalism [É] was the outcome of a complicated process of trial and error and it
is hardly an overstatement to say that it preceded its own interpretation, a development
almost unique in the history of physical scienceÓ.

Indeed, the Copenhagen interpretation, which was sketched in the preceding
section, only developed some years after the first formalisms were proposed by
Schr�dinger (Òwave mechanicsÓ) and by Heisenberg (Òmatrix mechanicsÓ).
These initial formalisms were synthesized by von Neumann, who formulated
quantum mechanics as an operator calculus in Hilbert space. He thus laid the
foundations for all subsequent quantum mechanical models.

The dynamical part of the quantum formalism is isomorphic to that of the
classical frame: the evolution of a quantum system is represented as a time-
parameterized sequence of state transitions, generated by an operator group, and
uniquely determined by a dynamical constraint known as the ÒSchr�dinger
equationÓ. The fundamental difference between classical and quantum models
resides in the static, or logical part of the representation. This is expressed by a
number of axioms, which determine the relation between the observations of the
system, and its formal representation:

The states of the system are represented as vectors (or, more accurately, rays) in
a Hilbert space. A Hilbert space is basically a vector space (which means that its
elements can be added) with a positive inner product (which means that its
elements can be multiplied, in such a way that the product of a vector with itself
is a positive number). The addition of vectors corresponds to the Òsuper-
positionÓ of quantum states. The quantum state characterized by the vector s1 +
s2 is a superposition of the states characterized by the vectors s1 and s2 (in the
sense of superposition of waves or wave functions. A wave function corre-
sponds to a particular representation (Schr�dinger or wave mechanics represen-
tation) of a quantum system).

This is a mathematical formulation of the general Òsuperposition principleÓ,
which posits that for every two states of a quantum system you can find a third
state which is a ÒsuperpositionÓ of the other two states. This principle has no
equivalent in the classical representation frame.

The physical quantities characterizing the system, and which can be measured
by the observer, are called ÒobservablesÓ, and are represented by self-adjoint
linear operators acting on the Hilbert space.

According to the spectral theorem, every self-adjoint linear operator can be
reduced to a linear combination of projection operators. These projections
correspond to the observation of simple propositions or predicates about the
system (i.e. variables with only two values: 1 and 0, or ÒyesÓ and ÒnoÓ). In order
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to simplify the discussion, we will restrict our attention to these binary
observables. This does not diminish the generality of the analysis.

The observation process is expressed by a postulate which states that the
possible measurement results for an observable A are the eigenvalues of the
self-adjoint operator corresponding to A. For binary observables represented by
projection operators the possible eigenvalues are 1 and 0: either the vector is
projected onto its own ray, and then it is multiplied by 1, or it is projected onto
an orthogonal subspace, which means that it is reduced to 0. This postulate is of
a more technical nature.

More important on the conceptual level is the accompanying postulate stating
that if a measurement yields a result corresponding to an eigenvalue a then the
state of the system immediately after the measurement is an eigenvector
corresponding to this eigenvalue. This postulate is sometimes called the
projection postulate: during the observation process the state is projected onto
the subspace, corresponding to the measured eigenvalue. This discontinuous
state transition is also called Òthe collapse of the wave functionÓ: if a state is
represented as a wave function defined in configuration space, the result of the
measurement process will be viewed as a sudden, dramatic change of the shape
of the wave, a ÒcollapseÓ.

For a system in the state s1 the probability of finding an eigenvalue a as result of
the measurement of the observable A is given by the projection of the (normal-
ized) vector s1 onto the subspace corresponding to a, multiplied with itself. This
implies that if a state s1 is already an eigenstate corresponding to a of A, then the
probability of finding a is 1; the probability of finding any other result b¹ a is 0.

In other words, the result of an observation is in general not determined,
except when the state is an eigenstate of the observable. In conjunction with the
projection postulate, this implies that if an observation of an observable A is
repeated immediately afterwards, the result of the second observation will be the
same as that of the first observation, since the state after the first observation
was projected onto an eigenstate corresponding to the obtained measurement
result.

For two different observations carried out one immediately after the other one,
we must distinguish two different cases: either the operators representing the
two observations commute, or they do not commute.

In the first case, the two operators can be shown to have a common set of
eigenvectors. If the state of the system corresponds to one of those common
eigenvectors, then both observables will have a determined result. Moreover the
order in which the observations are carried out is irrelevant, since the projec-
tions of the state to the subspace of eigenvectors of both observations (projec-
tion postulate) commute.

In the second case, however, there are no common eigenvectors, so that
there are no states for which both observables have a determined result. The

- 86 -

observables are said to be ÒincompatibleÓ. For example, the observables
corresponding to the position respectively momentum variables do not
commute, hence are incompatible. For such observables the order in which the
observations are carried out will in general influence the results. The impossi-
bility of getting determined results for both non-commuting observables can be
expressed by indeterminacy relations of the Heisenberg type.

This Hilbert space formalism is in practice very complicated, so that it is
difficult to see what are the fundamental characteristics which distinguish a
quantum representation from a classical representation. It is nevertheless
possible to simplify this formalism so that only the purely logical features of the
representation are left for study. This is the domain of the approach known as
Òquantum logicÓ (Jammer, 1974).

It is founded on the result of Birkhoff and von Neumann (1935), who
showed that a Hilbert space is completely determined by the ortho-comple-
mented lattice of its subspaces. These subspaces correspond to projection
operators which project onto a subspace. Therefore, any subspace corresponds
to a binary variable or proposition about the system, whose truth or falsity can
be established through an observation. (Such Òyes-noÓ observations are called
ÒquestionsÓ by Piron (1976)). In the classical frame the propositions form a
Boolean lattice (sect. 4.5). The lattice formed by quantum propositions is not
Boolean, however.

Usually the non-Boolean character of quantum representation lattices is
expressed by stressing the fact that these lattices are non-distributive. Distribu-
tivity, however, is a rather technical feature which is based on the relation
between the conjunction (meet) and disjunction (join) connectives in a lattice. In
our reconstruction of the classical frame we have taken conjunction and
negation as primitive connectives, while considering disjunction as a derived
connective. Therefore we will look for another criterion for differentiating
classical from quantum representation lattices.

The basic idea which must be expressed is that there is no longer a
determined relation between a state s (i.e. an atom of the lattice) and a binary
observable a (i.e. a general element of the lattice). If s is not an eigenstate of the
observable a, then the result of measuring a is undetermined: different
experiments will in general have different results, with a probability determined
by the length of the projection of the vector corresponding to s on the subspace
of eigenvectors corresponding to a.

This can be expressed by stating that the classical principle: either s implies
a, or s implies the negation of a (i.e. the result of observing a is negative, the
detected eigenvalue is 0), is no longer valid for quantum systems. Beside the
eigenstates of a, which imply a or a', there is a third category of states for which
the answer to the question Òis a true or false?Ó is undetermined. These states
correspond to the superpositions of states from the two other categories.
Therefore, what the superposition principle really says, is that if you have two
states s1, s2 which produce determined, but distinct results when a specific
observation is performed upon them, then there always exists an intermediate
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category of states for which the result is undetermined: in some cases these
superposition states produce the same result as s1, in the other cases they
produce the same result as s2.

This discussion can be further clarified by introducing a new relation
between propositions or states: orthogonality. Two propositions or yes-no
observables a and b are said to be orthogonal if any state which produces a
positive result for a, will produce a negative result for b, and vice versa. In other
words: a implies the negation of b, or, equivalently, b implies the negation of a.

Ò a is orthogonal to bÓ will be written: a ^ b.

The name of ÒorthogonalityÓ comes from the fact that the subspaces corre-
sponding to eigenvalue 1 of a, respectively b, are orthogonal (the product of
vectors belonging to orthogonal subspaces is zero).

It can be shown that the set of states together with the orthogonality relation
on this set completely determines the quantum lattice of propositions, and hence
the Hilbert space (Finkelstein, 1979). The main argument of the proof goes as
follows: for a subset A S of states, we can construct another subset:

A^ = {sÊÎÊS: " sÓÊÎÊA: s ^ sÓ}

A^ is the set of all states which are orthogonal to all states of A. This operation
can be applied twice, so that we get A^^, which is called the orthogonal closure
of A. It has the following properties:

1) A Í A^^ (monotonicity)

2) A^ = (A^^) ^  (idempotence)

3) if A Í B then A^^ Í B^^ (inclusion preservation)

A set equal to its closure (A = A^^) is called closed. Now it can be shown that
the lattice of all closed subsets of the state space S is just the lattice of closed
linear subspaces (corresponding to yes-no observables or propositions) of the
Hilbert space (see Finkelstein, 1979).

Therefore, both lattice and Hilbert space are completely determined by the
set S of all states together with its orthogonality relation ^. This is a very simple
structure compared to the original Hilbert space formalism with its vector space
structure, positive inner product, operator algebra, etc. However, it is still more
complicated than the basic logical structure of the classical frame.

Indeed, it is a well-known result for Boolean algebras that an atomic
Boolean lattice is completely determined by its set of atoms (i.e. states). All
other elements (i.e. propositions) of the lattice can be reduced to disjunctions or
unions of atoms (i.e. states). Therefore, there is no orthogonality relation
needed, only a set of states. Yet there is an orthogonality relation in the classical
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frame, but at the level of states, it is trivial; all classical states are mutually
orthogonal:

" s1, s2ÊÎÊS: s1 ^ s2 iff s1¹ s2

(indeed, if s1 is different from s2, then s1 implies the negation of s2).

In the quantum case, however, not all states are mutually orthogonal: suppose s1,
s2 ÊÎÊ S such that s1 ^ s2, then you always can find a third state s3, which is a
superposition of s1 and s2, such that neither s3 ^ s1, nor s3 ^ s2.

This orthogonality relation also allows us to clarify the meaning of the
superposition principle: superposition states are those states which are
orthogonal to the same states as the states which were superposed:

" s1,s2,s3 ÊÎÊ S: s3 is a superposition of s1 and s2 iff s3 ^ s, for all sÊÎÊS such
that s ^ s1 and s ^ s2.

In other words, the superposition states of a set A = {s1, É sn} of states, are
those states which must be added to A in order to get its orthogonal closure A^^

A.
This is the origin of the difference of classical and quantum representations:

in classical representations, there are no superposition states, the orthogonal
closure of any set is the set itself:

A^^ = A

Hence, all sets of classical states correspond to propositions or yes-no observ-
ables, whereas for quantum systems only a part of all state sets are orthogonally
closed, hence correspond to yes-no observables.

Remark that the orthogonal complement A^ = (A^ ^)^ of a state set A
corresponds to the (physical) negation of the proposition determined by the
orthogonal closure A^^ of A. Indeed, if the state s of the system is such that the
observation of A^^ gives a determined answer ÒyesÓ (i.e. sÊÎÊA^^), then the
observation of A will by definition give a determined answer ÒnoÓ, and A^ will
be the largest such set.

7.3 A cognitive-systemic interpretation of quantum mechanics

We have analyzed the basic representation structure of quantum mechanics, and
shown in which respect it differs from the classical structure. Moreover we have
sketched the way quantum phenomena are traditionally interpreted. It is clear,
however, that this interpretation is not very explicit, and that a lot of questions
remain about the exact relation between the formalism and the phenomena it is
supposed to represent. This incompleteness of understanding is illustrated by the
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host of paradoxes and conceptual problems which can be found in books and
papers about the foundations of quantum mechanics (see e.g. Jammer, 1974).

As we have remarked in sect. 6.1, the classical structures of logic, causality,
space and time, are so deeply ingrained in our conception of the world, that it
seems very difficult, if not impossible, to abandon them without falling into
chaos and confusion. This is the reason why most of the quantum theorists, like
Bohr, have stressed the necessity to maintain classical concepts for the
description of physical observation, even though they acknowledged that these
concepts did not apply to the microscopic phenomena to be observed.

This has led to a pragmatic attitude, which can be phrased as follows: ÒWhy
worry about the nature of quantum phenomena, since we are in principle unable
to analyze them? The only thing which should interest us is the accuracy of the
correspondence between the experimental results and the theoretical predictions.
Since the accuracy of quantum mechanical predictions is very great, there is no
real problemÓ.

What is missing in this reasoning is the insight that a good representation
should not only allow us to solve well-defined problems in an accurate way, it
should also provide some heuristics or metaphors for the tackling of ill-defined
problems, and thus provide a basis for an extension of its own domain of
applicability. What is typical for the quantum mechanical representation is just
the fact that, on the one hand, the basic formalism has not really changed since
its appearance, more than half a century ago, while, on the other hand, none of
the ill-defined conceptual problems connected to it, seem to have been solved in
a satisfactory way.

For example, there still does not seem to be any satisfactory way to unify
quantum mechanics and relativity theory, or to explain the experimental results
connected to the Einstein-Podolsky-Rosen paradox (see sect. 8.6). Although no
one would doubt the general accuracy of quantum mechanical predictions, such
as those concerning the energy levels of the hydrogen atom, the fruitfulness of
the quantum mechanical approach appears very questionable when applied to
problems for which no explicit algorithm is proposed by the theory.

If we wish to find a more general representation of basic physical phenom-
ena, then we must look further than the set of algorithms for the calculation of
energy levels or probability amplitudes proposed by quantum mechanics. More
specifically we must try to design a general philosophy or world view compati-
ble with the quantum representation. This requires that we go further where
Bohr stopped, namely at the insight that classical representations of our
observation results are unable to give us a complete picture of the microphysical
phenomena. The next step should be a search for a generalization of the classical
frame.

In order to do this, a first requirement is that we be able to detach ourselves
from the unconscious tendency to interpret everything through classical
concepts. A first step towards this distancing or detachment, is the analysis of
the classical frame we made in the previous chapters. It is just by making the
general presuppositions of the classical frame more explicit, that it becomes
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easier to conceive alternative frameworks where different presuppositions would
apply. As we have seen, the most fundamental assumption of the classical
frame, which can be considered to be the assumption which defines the
ÒclassicalityÓ of representations, is the absolute invariance of distinctions.

Following this criterion, we see immediately why the quantum representa-
tion is not classical. The observation process, as formalized through the
projection postulate, clearly does not conserve the distinction between quantum
states, since different states can be projected onto the same eigenstate of an
observable, whereas the same state can be projected onto two different
eigenstates in two measurements of the same observable.

This accounts for the non-deterministic character of quantum observations:
the knowledge of the initial state and of the operator representing the observable
is insufficient to determine the result of the measuring process. The observation
process is not causal in the classical sense, since equal causes (initial state +
observation) can have different effects, whereas different causes can have equal
effects. This is clearly in contradiction with the assumptions of classical physics
(sect. 5.2 and 6.3).

The difference between quantum and classical observations is not one between
observations which perturb the system, and observations which do not perturb
the system, as is often thought. In classical physics it often happens that the
measurement perturbs the system.

For example, to measure the mass of a billiard-ball, you could subject the
ball to a known force during a known time interval, and measure the increase of
velocity of the ball. This would allow you to compute the mass from the amount
of transferred momentum. Clearly, this operation has perturbed the state of the
ball.

Nevertheless, the process is causal, so that you can infer the characteristics
of the initial state of the ball by observing the characteristics of the perturbed
state, taking into account the known causal influence of your measuring
apparatus upon the initial state. A causal process is basically a process which
conserves distinctions, hence which conserves information. The original
distinction between a large mass and a small mass for the ball has determined
the distinction between a small increase of velocity and a large increase of
velocity.

The only thing the observation operation has done, is to make this distinc-
tion more visible, to ÒmagnifyÓ it. We indeed cannot ÒseeÓ that one ball is
heavier than another one, but we can ÒseeÓ that one ball moves faster than
another one, after both were subjected to the same transfer of momentum. This
is a general feature of measurement or observation processes in physics: to
transform a ÒsmallÓ or ÒinvisibleÓ distinction into a ÒlargeÓ or ÒvisibleÓ
distinction.

Let us consider an example from quantum physics: the difference between a
spin up and a spin down state of an elementary particle is too ÒsmallÓ to be
distinguished directly. Yet we can prepare a lot of particles in the same state and
send them on a polarizer. If the state is spin up, the particles will pass the
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polarizer, and a counter behind the polarizer will produce a signal perceivable
by the human observer. If the state is spin-down, the particles will not pass the
polarizer, and no signal will be produced. In this way the observer can
unambiguously distinguish both states.

In this situation the information embodying the distinction between spin-up
and spin-down has been transferred without perturbation from the system to the
observer, even though the system itself has been perturbed drastically by the
experiment. This is completely analogous to the classical case, where two
different masses were distinguished.

However, there is a basic difference if more than one observation is
considered. Although the distinction between spin-up and spin-down was
transferred to the observer, other distinctions were neglected, i.e. assimilated by
the measuring instrument: the polarizer clearly does not distinguish between
particles with large and small momentums. In the classical case, the observer
would determine a second property of the system by making another observation
which would ÒmagnifyÓ the distinction between states which possess this
property, and states which do not possess this property.

For example, in the billiard-ball situation, if the observer would like to
determine the original momentum of the ball after he measured its mass, he can
simply reason backwards from the detected velocity after the force was applied
to the original momentum, taking into account the already detected mass. The
reason he can do this is because the perturbation of the state was causal, hence
conserved the initial distinction between large and small momentum.

In the quantum example, however, the initial distinction between particles
with large and small momentums was lost when the particles were absorbed or
scattered by the polarizer. The only thing we can infer by using the quantum
formalism is that the particles which passed through the polarizer, were
afterwards in an eigenstate corresponding to spin-up. But this does not give us
any information about their momentum before or after the experiment. In so far
as there was a distinction between particles with large or small momentums, this
distinction has disappeared during the observation process.

In general we may conclude that during quantum observations certain distinc-
tions are conserved, while other distinctions are lost. On the other hand, in
classical observations all distinctions are in principle conserved, although not all
distinctions are in general sufficiently ÒmagnifiedÓ to attract the attention of the
observer (for example, the observer will generally not notice a very slight
difference in momentum between two balls).

A general condition for a quantum distinction to be conserved is that both
states to be distinguished correspond to different eigenvalues of the observable
which is measured. This implies that the states be orthogonal. States which are
not orthogonal cannot be distinguished in a single experiment, they can only be
distinguished statistically. Hence, the non-trivial orthogonality relation between
quantum states is equivalent to the non-conservation of distinctions during
quantum observations.
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We must now look for the cause of this non-conservation. In order to make
things more concrete we will analyze a thought experiment, used by Bohr for
demonstrating the complementarity of position and momentum representations
(Jammer, 1974).

Suppose we want to observe a particle by using a set-up consisting of a
diaphragm with a slit. If the diaphragm is rigidly connected to a frame, the
position of the particle can be determined (up to the, in principle, arbitrarily
small width of the slit). However, the momentum exchanged between micro-
object and diaphragm cannot be observed, because of the rigid connection of the
diaphragm with the ideally unmovable (i.e. infinitely heavy) frame. Although
there is an exchange of momentum, the change of state of the measuring
instrument resulting from this momentum transfer is macroscopically indistin-
guishable. We could say that the difference between large and small momentum
transfer is ÒassimilatedÓ by the instrument; no distinction is left on the
macroscopic scale of the ÒinfinitelyÓ heavy apparatus.

On the other hand we could distinguish between large and small momentum
transfer by using a diaphragm connected to the frame by weak springs, so that it
can move when hit by the particle. In that case, however, the information
concerning the exact position of the passing micro-object is lost, because of the
indeterminate location of the diaphragm with respect to the frame. Here the
distinction between different positions of the particle is assimilated by the
apparatus.

In these experiments one difference characterizing the interaction is
magnified, hence made visible or distinguishable, whereas another one is
ÒreducedÓ or ÒassimilatedÓ, hence made indistinguishable. Indeed, the change in
velocity of the (heavy) frame resulting from the momentum transfer, is
ÒinfinitelyÓ smaller than the change in velocity undergone by the (light) particle.

However, if we would reason classically, i.e. causally, we would remark that
there still is a change of state of the apparatus caused by the interaction, and that
it must somehow be possible to magnify this difference so that it becomes
distinguishable. The problem here, however, is that to detect a difference, we
must know exactly which state the apparatus was in at the moment the
interaction took place. But this requires a determination of the microscopic state
of a macroscopic apparatus.

The discrimination of properties that ÒsmallÓ demands a new experiment
with a new macroscopic measuring instrument to magnify the microscopic
differences characterizing the first instrument. Clearly the same limitations
apply to this second experimental set-up, so that we need a third instrument for
determining the microscopic differences registered by the second instrument.
Obviously this leads to an infinite regression, where for each indeterminacy to
be dissolved we need an extra instrument bringing itself new imprecisions into
play.

Hence, there always remains a fundamental uncertainty as to the micro-
scopic state of the macroscopic measuring apparatus, leading to the wiping out
of certain distinctions characterizing the observed microscopic phenomenon.
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The reason why this problem does not occur in classical physics is because the
effect of microscopic differences between macroscopic instruments on the
macroscopic interaction with another macroscopic object can be neglected.
These ÒmicroscopicÓ differences are automatically assimilated, as well with
respect to the state of the object as with respect to the state of the instrument.
The only information needed for constructing a classical, causal representation
of the macro-object, is that concerning macroscopic distinctions, i.e. distinctions
at the same scale as those made by a macroscopic observation apparatus.

However, in the quantum realm, the distinctions needed for a causal
determination of the micro-phenomenon are so fine-grained that they cannot be
all magnified simultaneously by the observation instrument. This would not
constitute a problem if different ÒmagnificationsÓ could be executed one after
the other. Because of the quantum principle, however, the ÒindistinguishableÓ
perturbation of the micro-state of the phenomenon by the interaction is of the
same order of magnitude as the distinctions which are to be determined.
Therefore, the distinctions which were assimilated inside the apparatus are also
wiped out in the micro-object; therefore they are lost forever, and the result of
subsequent distinctions to be performed on the object is basically indeterminate.

We may conclude this analysis by noticing that the fundamentally non-classical
nature of quantum representation, which can be variously characterized by the
concepts of indeterminacy, complementarity, superposition or non-trivial
orthogonality, is simply an expression of the basic cognitive principle, stating
that every distinction implies an assimilation. This principle is a direct
consequence of another principle stating that a representation is always less
complex than the thing it represents (cf. section 6.2).

One way to see the necessity of this principle is by noting that ultimately an
adaptive representation should represent all possible interactions between the
(inside) self and its (outside) environment. This implies that a representation to
be really adaptive should also represent itself. Clearly this is only possible if
representation entails simplification. Otherwise the part of the representation
representing itself would be as complex as the whole, and this is obviously
paradoxical.

Another way to express this idea is by introducing the principle of the
impossibility of complete self-knowledge. To quote Finkelstein (1979):

Ò[In this approach] Our inability to predict whether a photon from one polarizer will
pass another is likened to the inability of a computer to predict whether a program will
halt. Both seem like special cases of a general principle of self-ignorance, an anti-Solon
principle (Solon said, ÒKnow yourself!Ó The anti-Solon principle is that you cannot).Ó

In physics this principle is exemplified by the inability of a measuring
instrument to determine its own microstate. In logic it is exemplified by the
G�del theorem, which entails that in general the completeness of a theory
cannot be proven within the theory itself. We will now show how this principle
can explain the non-classical features of the quantum formalism and its
predictions.

- 94 -

7.4 From classical to quantum probability

Since the quantum representation is basically indeterministic, it can only make
predictions which are of a statistical nature. These predictions express the
probability of finding a certain result when an observable is performed on a
given state.

They can basically be reduced to the transition probabilities P (sf si), where
si is the initial state in which the system was prepared, and sf the final state onto
which si is projected, and which is an eigenstate corresponding to the eigenvalue
which was detected. P can also be interpreted as the conditional probability of
finding the eigenvalue corresponding to sf, knowing that the system is in state si.

It can be shown immediately that this probability is not classical. Classical
probability theory, which was axiomatized by Kolmogorov, indeed presupposes
the axiom of Bayes, which describes conditional probability:

      P (aÊ.b)
P (a | b) = -------------

       P (b)

Here we see that the conditional probability P (a b) that a is true, knowing that b
is the case, is proportional to the probability P (a.b) of a and b both being true. If
we apply this formula to the quantum probability we find:

                    P(siÊ.Êsf)
P (sf | si) =                       = 0

                     P(si)

since si and sf, being different states, can never simultaneously be true.
However, according to the quantum formalism P (sf si) is only equal to 0 if si

and sf are orthogonal. In all other cases the application of the Bayes formula
leads to a contradiction with the quantum formalism. In order to explain this
result we must first analyze the basic assumptions connected with the probabil-
ity concept.

The determinism of the classical frame implies that if an observer has complete
information about the state of a system, then he can predict all results of
observations of the system. However, in practical circumstances, the informa-
tion the observer has got is often incomplete. Statistical mechanics is an
extension of the classical frame, which aims to maintain as much as possible of
the classical predictive mechanisms, without requiring that the initial informa-
tion be complete.

The way this is achieved is by introducing the concept of a ÒmacrostateÓ m,
which represents the incomplete information received by an observer who is
unable or unwilling to execute all observations or distinctions needed for the
determination of the ÒmicrostateÓ s, which represents the complete information
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determining the phenomenon. It is assumed that the microstate, which is
ÒhiddenÓ for the observer, obeys all rules and constraints of the classical frame.
The macrostate, on the other hand, does not allow us to make determined
predictions for all possible observations of the state. The principle holding for
all microstates sÊÎÊS:

" aÊÎÊE: s < a, or s < a',

where a is an arbitrary proposition about the system (cf. section 4.4), does not
hold for macrostates mÊÎÊM.

The basic assumption of statistical mechanics is that every macrostate can
be represented as an equivalence class of microstates, determined by an
equivalence relation:

Òcannot be distinguished (macroscopically) by an observer fromÓ.

The set M of macrostates then corresponds to a partition of the (micro)state
space S. This implies that two distinct macrostates correspond to two disjoint
sets of microstates.

The concept of probability can be fundamentally defined as:

Òthe number of positive cases divided by the total number of casesÓ.

This applies as well to a series of actual events, in which some are considered
positive, as to a set of potential events or states, in which some are positively
distinguished. The first situation corresponds to the ÒfrequencyÓ definition of
probability, where the probability of a particular type of events is established
empirically by observing the frequency by which this type of event occurs in a
controlled series.

The second situation is the theoretical or abstract representation of this
phenomenon, which aims to provide mechanisms for predicting the empirical
results from the first situation. As in all adaptive representations, this requires
the specification of a space of potential events or states, from which certain
events are to be selected. It is clear that the value of the probability defined in
this way will depend on the number of potential events, i.e. on the size of the
state space. This implies that representations with different state spaces will
produce different probabilities.

However, in the classical frame it is assumed that for every system there is a
unique set of (micro)states, which completely represent the information inherent
in the system. The probability of an arbitrary proposition or macrostate will then
be given by the cardinal number (more generally the measure) of the set of
microstates which imply the proposition, divided by the cardinal number of the
set S of all microstates:

    M (Sa)
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P (a) =  ---------
     M (S)

with: Sa = sÊÎÊS: s < a; M = measure upon S.

         M (Sa Ç Sb)
Hence: P (a. b) = -------------
          M (S)

since: Sa.b = Sa Ç Sb.

The formula for the conditional probability follows directly from these
assumptions:

     M (Sa Ç Sb)   P (a. b)
P (a | b) = ------------------ = -------------

       M (Sb)    P (b)

(indeed, the probability of a, assuming that b is true, is equal to the number of
positive cases M(Sa Sb), i.e. the number of states for which a is true, and b is
true, divided by the number of possible cases M(Sb), i.e. the number of states for
which b is already true).

Therefore the requirement of disjointness of macrostates implies that
different macrostates be orthogonal:

P (m1 | m2) = 0 for m1, m2ÊÎÊM, m1¹ m2.

Clearly then quantum states cannot be modelled by classical macrostates. Yet,
many people have tried to explain the indeterminacy of the quantum representa-
tion by assuming the existence of Òhidden variablesÓ, i.e. classical microstates,
which would determine the observation results in a causal, deterministic way,
but which would not be known by the observer. The impossibility of recon-
structing a quantum representation starting from classical representations with
hidden variables was proven by von Neumann, and from a different viewpoint,
by Bell (cf. Jammer, 1974, and sect. 8.6). Both demonstrations, however,
require certain assumptions, which amount to the principle that the classical
macrostates be disjoint.

If this principle is relinquished, however, it becomes possible to introduce
macrostates, mÊÎÊM, corresponding to generally non-disjoint sets of micro-
states, which behave like quantum states, i.e. which have a non-trivial
orthogonality relation defined by:

m1 ^ m2 iff Sm1 Sm2 = Æ
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The microstates si which are elements of the sets Sm are called ÒinfrastatesÓ by
Finkelstein (1979). The probability of transition between macrostates could then
be defined by:

        M (Sm1 Ç Sm2)
P (m1 | m2) = -------------------

         M (Sm2)

7.5 Information transfer during the quantum observation process

In order to explain the physical meaning of this formal construction, it is
necessary to give a concrete interpretation to these microstates which have the
strange property that the same microstate can imply different macrostates. One
possible point of view is to see a microstate as a complete characterization of
the microscopic relation between the observed object and the part of the
measuring instrument with which it interacts directly. This means that if we
would know the microstate, then we would be able to predict unambiguously the
outcome of the experiment, i.e. the value measured and the state of the particle
after the measurement.

However, as we have discussed, only a fraction of this information inherent
in the microstate is sufficiently magnified by the remaining part of the
measuring instrument to become macroscopically distinguishable. This fraction
corresponds to the macrostate. Hence, certain small differences between
microstates will be assimilated, so that every macrostate includes different
microstates. However, which fraction of the information is made distinguishable
will depend on the macroscopic arrangement of the measuring instrument,
which determines the way the microscopic event of interaction is coupled to the
macroscopically visible signal to the observer.

For example, in Bohr's gedankenexperiment with the diaphragm, there are
two different manners of coupling the diaphragm (i.e. the directly interacting
part of the instrument) with the frame (i.e. the part of the instrument which
ÒmagnifiesÓ the change of state undergone by the other part): either the coupling
is rigid, and then the information about the position of the interaction is
accurately magnified, or the coupling is flexible, which allows us to magnify the
information about the momentum exchanged during the interaction.

Hence, different ways of coupling will lead to different macrostates, even
though the microstates of the interaction can be the same. On the other hand, the
macrostate characterized by determined momentum, and the one characterized
by determined position correspond to incompatible, or complementary,
arrangements, and hence it is impossible to give an operational meaning to the
conjunction of both states, even though formally their corresponding sets of
microstates have a non-empty intersection.

This complementarity of macroscopic couplings can also be viewed as a
complementarity of subject-object distinctions. Indeed a representation is
essentially a scheme for making distinctions, and the most basic of these
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distinctions is the one between subject and object (see section 2.1). As we have
shown by two examples, however, the distinction is not absolute or invariant.

The same kind of distinction is made in physics between the object and the
observing subject. Classically this distinction is supposed to be absolute:
observer and observed are essentially separate (see section 5.3). In quantum
mechanics, however, this distinction is blurred.

This can be illustrated by the Schr�dinger's cat paradox, where the life or death
of a cat depends on the result of a yes-no observation of a quantum phenome-
non. This phenomenon is supposed to be in a superposition state such that the
result ÒyesÓ (which does not interfere with the life of the cat) and the result ÒnoÓ
(which triggers a mechanism which kills the cat) have equal probability.
According to the quantum formalism, the observation of the phenomenon leads
to a collapse of the wave function, which results, in one case out of two, in the
killing of the cat.

The paradoxical question is then: who has killed the cat? In other words,
which event in the sequence of events which form the observation process, has
caused the collapse, and hence the death of the cat: the microscopic interaction
between the quantum phenomenon and the measuring instrument, the magnifi-
cation of this event by the rest of the instrument, the perception of this
magnified signal by the observer, or the awareness of the observer that this
signal signifies the collapse of the wave function?

That this problem is far from trivial can easily be seen by imagining the
following situation: the experimental set-up is prepared by a physicist A at time
t1, the interaction leading to a macroscopic signal happens at a later time t 2, the
registered signal is noticed by a second physicist B at time t3, who is told at time
t4 by A that this signal means that the wave function has collapsed and hence
that the cat is dead. At what time did the cat die: t1, t2, t3 or t4? And who killed it:
A, B or the measuring instrument?

From our point of view the wave function collapses when the information from
the microstate is magnified, and thus creates a ÒcollapsedÓ macrostate. The
process of magnification, however, will depend on what we have called the
ÒcouplingÓ between microscopic interaction and macroscopic observation
frame.

The coupling really determines the boundary, distinction, or interface
between the autonomous phenomenon, and the macroscopic observation
instrument controlled by the subject. This boundary can be conceived as a filter,
or a semi-permeable membrane, which only allows a certain type of information
to pass (cf. sections 9.3 to 9.5). The ÒmagnifiedÓ information, forming the
macrostate, should then be seen as the information which passed the filter.

The coupling, and hence the filtering, will in general be different for
different types of observations. The specific type of coupling used during an
observation is however not represented in the quantum formalism: the
projection postulate does not specify how, where, or when the collapse of the
wave function occurs. This ambiguity leads to the paradoxes of the measure-
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ment process (e.g. Schr�dinger's cat, Wigner's friend, the Zeno paradox, É).
The solution of these paradoxes, and more generally a better understanding of
the quantum representation, requires the construction of more explicit models of
the ÊÊ.

A nice example of such a model is given by Aerts (1986). He considers an
arrangement for measuring the spin of a particle, which consists of a sphere with
two charged poles, which exert an attractive force on a third charge representing
the spin. If the spin is attracted by the upper pole, the measurement result is
Òspin upÓ. If it is attracted by the lower pole, the result is Òspin downÓ.

This result will depend on two parameters: the difference of charge q
between upper and lower pole, and the distance or the angle A between the spin
and the upper pole. The larger q, and the smaller A, the larger the force exerted
by the upper pole upon the spin. Given those two parameters, the model is
deterministic: the result of the measurement is determined by the relative
strength of the two forces exerted upon the spin, and this strength can be
computed classically.

However, Aerts assumes that we lack information about the relative charge
q. By supposing that q can vary within a determined interval, and that all values
within that interval have equal probability, he derives the algebraic expression
for the probability of getting the result Òspin upÓ for an initial state characterized
by a given angle A. This probability expression coincides perfectly with the
expression derived from the quantum representation of spin. The purpose of the
argument is to show that a quantum, i.e. non-classical expression for probability
can be derived by supposing that there is a classical lack of knowledge on the
microstate of the instrument.

However, I wish to make two remarks about this argument. First, we do not
need the exact microstates of the spin and the instrument (represented by the
two parameters q and A) to determine the observation result. It is sufficient to
know the relation between both parameters, which determines the strength of
the attractive force on the spin in the upward or downward direction. This
relation can be represented by a Òrelational microstateÓ, which may be called the
ÒinfrastateÓ. This infrastate is less specific, or contains less information than the
conjunction of both microstates represented by q and A.

Different observation results, leading to different macrostates can now result
from equal infrastates. Indeed, different macroscopic arrangements for
measuring spin in different directions, can still be in the same microscopic
relation with the object they are measuring. This allows us to recover the non-
trivial orthogonality relation and transition probabilities between macrostates,
where the probability of a transition from m2 to m1 is proportional to the number
of infrastates common to m1 and m2.

The second remark I want to make about the Aerts model is that it is not as
classical as it seems. Although the explicit derivation of the attractive force is
purely classical, it is implicitly assumed that the position of the attracting pole
corresponds to a fixed Òattractor stateÓ, to which the spin will stick after it was
attracted. The existence of attractor states is, however, not compatible with the
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classical principle of reversibility (see section 5.2). This irreversible attraction
implies that after the measurement the information about the initial angle A is
lost: all subsequent observation results will only depend upon the position to
which the spin was attracted, not upon its initial position before the attraction.

This explains why we do not want to include the information about A in the
infrastate. Hence, it is not necessary to attribute both a (determinate) value to A
and an (indeterminate) value to q. The only thing which counts is the relation
between A and q, which is microscopically determinate, but macroscopically
probabilistic. The non-classical (i.e. non-Bayesian) structure of this probability
is due not so much to the fact that the state of the micro-object (A) is determi-
nate, whereas the state of the instrument (q) is not, as Aerts proposes, but to the
fact that the probabilistic macrostates corresponds to overlapping sets of
infrastates.
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CHAPTER 8: Space-time theories and causality

8.1 The relativity of reference frames

As we remarked earlier (sections 1.1 and 3.3), to construct a useful representa-
tion of a system we need more than an abstract set of states: we need an
indexation scheme for labeling the states in such a way that their operational
meaning can be unambiguously specified. In mechanics such a scheme is often
called a Òreference frameÓ. It allows us to express the time and position of an
object in relation or in reference to a system of axes representing the viewpoint
of the observer.

The numbers expressing the distance between the origin of the system,
which represents the position of the observer, and the point on the axis which is
the projection in parallel with the other axes of the position of the object, are
called the spatial coordinates of the object. These coordinates unambiguously
determine the position of the object. In order to determine them operationally
we need a measuring unit for measuring the distances (i.e. a rigid rod), and a
frame for specifying the directions of the axes. Time, on the other hand, is a
coordinate measured by a clock carried by the observer, which labels subsequent
states or events, independently of their localization with respect to the spatial
reference frame.

In the classical frame once the measuring units (rods and clocks) are fixed,
the measurement of length (spatial) and duration (temporal) is supposed to be
invariant. By changing the reference frame we may change the coordinates of an
event, determining its position in space, its instant in time and its velocity (i.e.
the relation between spatial and temporal coordinates), but we will not change
the temporal or spatial relations between events, i.e. their relative distance or
duration. In particular, if two events are simultaneous (i.e. their relative duration
is zero), then they remain simultaneous for all observers and reference frames.

This is no longer true in relativity theory. This theory is founded on two
postulates: the principle of relativity, and the invariance of the speed of light.

The first principle states that physical laws (i.e. dynamical constraints)
should have the same form for observers using different (inertial) reference
frames. You could see this requirement as a direct consequence of classical
determinism: there is only one solution to the problem of how a physical system
evolves; hence different observers should find the same solution. You could also
see it as a requirement that the representation of the way states change
(dynamical constraints) should be more invariant than the representation of their
position in space and time. Hence, the principle implies that the specific
indexation schemes determining spatial and temporal coordinates (and hence
velocities) are relative; only the dynamical laws can be absolute. In order to
express this principle mathematically you need a group of transformations,

- 102 -

which transform the states belonging to one frame into the states belonging to
the other frame, but in such a way that the physical laws remain the same.

The fundamental laws of mechanics are those formulated by Newton. They
imply that a massive object on which no force is exerted, moves at a constant
velocity. The requirement that this law be literally valid in the frame we are
using, singles out a special class of frames; these are called inertial frames. For
an observer using such a frame the movement of a force-free particle is not
accelerated. The relativity principle then states that the three laws of Newton
should be valid in all inertial frames.

Remark that this principle does not give us any information about physical
phenomena. Its only function is to coordinate different representations. Indeed,
if we would interpret the principle physically, we would conclude that Newton's
laws are valid in all those frames which were chosen such that Newton's laws
would be valid. This is obviously tautological.

The interesting thing about the principle is that it allows you to determine
the form of an actual transformation group relating different frames. By
assuming that the reference frames are Cartesian and isotropic, it can be shown
that it leads to two distinct types of transformations (Rindler, 1977).

The first type forms what is called the Galilei group. This is the group used
in classical mechanics. The second solution to the problem is a transformation
group determined by an indeterminate parameter V2.

In order to explain the physical meaning of this parameter, we must make an
extra assumption, based on the following dichotomy: either particles can be
accelerated to arbitrarily large speeds, or they cannot. Because of the continuity
principle, which excludes movements with infinite speed (see section 4.6), we
shall suppose that they cannot. Then there must exist a least upper boundÊÎÊto
particle speeds in any one inertial frame. Because of the relativity principle, this
maximal speed c, which determines a physical law, must be the same for all
inertial frames. This implies that a transformation from one inertial frame to
another one must conserve this speed. If we apply this requirement to the
transformation groups we already found, then there remains only one solution,
namely the one with V = c.

This implies that the Galilei transformations are ruled out by the assumption
that there exist an invariant maximum speed. The remaining transformations
characterized by the parameter c are called the Lorentz transformations.

The existence of an invariant speed c is called the second postulate of
relativity theory. In this case the principle seems to have a physical meaning,
and it is possible to do experiments to determine the magnitude of c. Empirically
c appears to be the speed of light (or of electromagnetic radiation in general).
The second postulate was confirmed by the Michelson-Morley experiment, and
by the insight that Maxwell's laws of electromagnetism are not invariant under
the Galilei-transformations, but under transformations of the Lorentz type.

The switch from Galilei transformations to Lorentz transformations had
profound consequences for the structure and the world view of the mechanical
representation frame. One of the more spectacular consequences is that in the
novel representation the length of rods and the frequency of clocks should
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diminish whereas their mass should increase, when the rods and clocks are
accelerated to a speed near to c.

More important on the conceptual level, however, is the new relation
between space and time: in the relativistic frame they are no longer separate, but
form one indivisible whole, Òspace-timeÓ.

8.2 The relativity of simultaneity and synchronization

In the Galilei transformations the time coordinate of an inertial frame does not
transform, only the space coordinates change. Hence, time is invariant or
absolute. If two events happen at the same instant of time in one frame, they are
simultaneous in all frames.

In relativity theory, however, the Lorentz transformations mix the time and
the space coordinates in a way dependent upon the relative velocity between the
initial and the transformed frame. Hence, frames with different velocities will
have different time coordinates. If two events are simultaneous in time, but
separate in space in one frame, they will in general no longer be simultaneous
after a transformation. Since the new time coordinate depends on the previous
space coordinates, the events with different space coordinates will now also get
different time coordinates.

What we see here is that the distinction between simultaneity and non-
simultaneity becomes variable or relative. It may even get worse, and we may
find events a and b so that a happens later than b in one frame (a's time
coordinate is larger than b's coordinate), whereas b happens later than a in
another frame. Hence, also the distinction between past and future loses its
invariance! However, as we shall see later (sect. 8.3), there are constraints which
prohibit the interchange of past and future in many cases.

Let us try to understand on a more physical level why it is impossible to
establish absolute simultaneity. If I want to send a message to another observer,
who is separated from me in space, then I must use a physical carrier for this
information. But all physical carriers (particles, macroscopic objects, electro-
magnetic waves) are subject to the existence of a limit speed c. Hence, I cannot
transmit information instantaneously; a finite time must necessarily elapse
before the signal can reach its destination.

This principle is sometimes called the principle of locality or causality:

I cannot cause an event which is separated from me in space but not in
time; the only phenomena I can influence instantaneously are those with
whom I have local contact, i.e. which are not spatially separated from me.

The way this principle was formulated was with the emphasis on the sending of
information. However, it also applies to the receiving of information. Perception
or observation is basically a process whereby a subject receives information
from an object. Suppose that the object undergoes a certain state transition. Call
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this event e1. Suppose that e1 causes a perturbation in a physical carrier (e.g. the
electromagnetic field) and that this perturbation propagates to the observing
subject. There it induces a state-transition in the subjects perceptual system (e.g.
an excitation of the optical nerve). Call this perceptual event e2. Clearly e1 and
e2 cannot be simultaneous, if object and subject are spatially separate; e1

necessarily precedes e2:

e1 P e2.

Suppose the observer reacts immediately and sends a signal back to the object,
which causes a state-transition e1Ó. Clearly:

e2 P e1Ó, and hence by transitivity: e1 P e1Ó.

Suppose that both signals travel with the maximum velocity c. Even then there
is a non-zero time interval T between e1 and e1Ó. During this time interval many
events or state-transitions will have occurred to the object. Now, since e2 is
temporally in between e1 and e1Ó, one of these intermediate events should be
simultaneous with e2, according to the classical conception of time. However, it
is operationally impossible to determine which one, since it is impossible to
connect e2 in a causal way to one of these intermediate events (cf. Reichenbach,
1958).

We can only define simultaneity in a conventional way, by calling two events
simultaneous if two clocks which are locally connected to the events indicate
the same time when the events occur. However, the time indicated by a clock
depends on the way the clock is set, i.e. on the moment which is taken as the
zero of the measurement scale. If two different clocks are to give consistent
results, they should be synchronized, i.e. the zeros of their time scales should be
made to coincide.

This is no problem if both clocks have the same position in space. However,
if they are spatially separated, the synchronization requires that a signal be
exchanged between the clocks. The transmission of this signal requires a finite
time, depending on its velocity. But velocity is defined as distance divided by
duration, and the determination of the duration of a transmission requires that it
is possible to determine the time of departure and the time of arrival of the
signal. In order to determine these two times in an absolute way you need two
clocks which are already synchronized.

Hence, we come to a circular reasoning: you can only synchronize two
clocks in an absolute way, if they are already synchronized!

There are two ways to evade this circularity: either you assume that it is
possible to send signals with unlimited speed, and then you can neglect the
finite duration, or you make an arbitrary convention (e.g. that the speed of the
signal has a certain fixed value c) which allows you to determine the duration of
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the transmission. The first approach is implicit in the classical frame. The
second approach is used in Einstein's theory of special relativity.

It should be remarked that the standard synchronization used in special
relativity, which is such that the velocity of light is the same in all directions of
movement is not physically necessary. Einstein's definition is maybe the one
which leads to the simplest model, but it is not the only possible one (cf.
Reichenbach, 1958; Sj�din, 1979). A property of the Einsteinian synchroniza-
tion is that reference frames which are in relative motion, will attribute
simultaneity to different pairs of events. This, however, should not be taken as a
proof of the relativity of simultaneity, as is often done. It is always possible to
define a (non-standard) synchronization such that the simultaneity in a reference
frame K would be the same as that in another frame K' which is in motion
relative to K. The relativity of simultaneity is not a consequence of the relativity
of (inertial) motion, but of the existence of a finite limiting speed for causal
propagation (cf. Reichenbach, 1958, p. 146).

A second remark we could make, is that the impossibility to establish the
absolute time at which a distant event occurred, is similar to the impossibility to
establish the microstate of a quantum system (cf. section 7.5). In both cases we
have an observer and an object, which are spatially separated, but which
exchange information. Both quantum mechanics and relativity theory can be
interpreted as theories which represent restrictions upon the exchange of
information. Hence, what both theories have added to the framework of classical
physics, has not to do with the material or energetic properties of physical
processes, but with their informational properties. It is the inclusion of these
informational principles which leads to the direct connection between physical
and cognitive problem domains.

In the relativistic case the constraint on information transfer is that its
velocity is limited. This entails a limitation on the possibility of distinguishing
between simultaneous and non-simultaneous events. In the quantum case, the
limitation is on the type of information which can be transferred through a
specific coupling between object and observation apparatus. This also entails a
limitation on the possibility of making distinctions, which is represented by the
non-trivial orthogonality relation. As we will show later (section 8.4), both
restrictions can be seen as consequences of a general principle of the impossi-
bility of circular information transfer, leading to the impossibility of perfect
self-determination.

In order to see the analogy with the quantum problem of impossible self-
knowledge (section 7.5.) we could imagine the following situation: if I want to
observe myself, I need a mirror, which is spatially separated from my body.
However, the light which is reflected in the mirror needs a finite time to travel
from my body to the reflecting surface and back to my eyes. During this time
interval my physical appearance will have changed, however slightly. Hence,
the image I see can never be a completely faithful representation of the actual
state of my body.
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We have seen that the existence of an invariant limiting speed c entails the
relativity of simultaneity. However, this relativity implies the relativity of
synchronization and hence of the determination of velocities. Then how can we
speak about an invariant velocity, if there is no absolute way to measure
velocities? If we say that the velocity of light is invariant then we really mean
that the velocity is independent of the velocity of the sender or the receiver of
the light signal.

This is typical for Òwave-likeÓ signals, in contrast to Òparticle-likeÓ or
ÒballisticÓ signals. If I perturb a certain medium, e.g. water or air, then this
perturbation propagates away from me with a velocity determined by the
properties of the medium (e.g. its density). There is no way I can accelerate or
decelerate this propagation by ÒpullingÓ or ÒpushingÓ on the perturbation.

On the other hand If I shoot a bullet out of a rifle, the velocity of this bullet
with respect to the air will be greater if I am moving in the same direction, i.e. if
I am ÒpushingÓ the rifle, and smaller if I am moving backwards. This type of
propagation is called ballistic.

There is, however, one difference between light waves and waves in
material media (e.g. sound): the relative velocity of the sound wave will depend
on the relative velocity of the medium with respect to the observer. This does
not seem to be the case for light signals. The Michelson-Morley experiment has
shown that the velocity of light is independent of the relative velocity of the
observer with respect to its supposed medium, the ÒetherÓ. This led Einstein to
reject the existence of such an absolute and pervasive medium.

We still must answer the question how the velocity determination can be made
independent of the synchronization. The synchronization problem arises because
we use two spatially separated clocks. This can be avoided by using a mirror
which reflects the light back to its source, so that both the time of arrival t2 and
the time of departure t1 can be measured by the same clock. The velocity v could
then be put equal to the double of the distance l between source and mirror,
divided by the time interval between departure and arrival:

v = 2l / (t2 - t1)

Remark, however, that we assume here that the velocity of the signal is the same
for both directions: from source to mirror, and from mirror to source. This
corresponds to the standard synchronization used in relativity theory: according
to this assumption, when the signal arrives at the mirror a clock situated there
should be set to a time:

tm = (t2 + t1) / 2

With this synchronization the two one-way velocities vl (from the source to the
mirror) and vr (from the mirror back to the source) are equal to the average two-
way velocity v:
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vl = l / (tm - t1) = vr = l / (t2Ê-Êtm) = v

For different synchronizations (where a different value is given to tm) vl and vr

will not be equal.
In general, the only thing we can absolutely determine is that the ÒaverageÓ

velocity v for both directions has an invariant value v = c, which is independent
of the orientation of the set-up and of the relative velocity of the mirror with
respect to the source.

Suppose now that it would be possible to send signals with an average, two-way
velocity larger than c. Such faster-than-light signals are usually called tachyons.
We could then synchronize two clocks, one at the source of the signal, and one
at a reflecting mirror, in such a way that the velocity of the tachyon would be
the same in both directions. This synchronization will in general be different
from the standard synchronization for which the velocity of light is the same in
both directions.

It can be shown that for one particular reference frame, both synchroniza-
tions will coincide. The proof can be found in (Sj�din and Heylighen, 1985), for
the case where the tachyons have no maximum limiting speed.

The existence of such a preferred frame would, however, be in contradiction
with the principle of relativity, which entails that it is impossible to distinguish
two inertial frames by doing experiments in them. Since both the invariance of
the speed of light, and the relativity principle seem to be experimentally well-
validated, this argument can be used to exclude the existence of tachyonic
signals.

8.3 The invariance of the causal structure of space-time

This leaves us with two kinds of signals:
1) signals with an invariant velocity of c;
2) signals with a relative or variable velocity which is less than c.

The existence of these two types of causal propagation can be used to structure
the set M of all possible events. In relativity theory an event is supposed to be a
change which is instantaneous, and of atomic dimensions. A typical example is
the scattering of two elementary particles. Such events can be represented by a
point in space, denoting its position, and a point in time, denoting the instant it
occurred.

However, because of the relativity of simultaneity, it becomes impossible to
attribute the same point in time to two events, at a different point in space.
Equivalently, there is no absolute way to attribute the same point in space to
events happening at different points in time, because different observers would
in general attribute different positions to the second event, even if they had
attributed the same position to the first event. This makes it meaningless to
attribute independent spatial and temporal positions to events; the only thing
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which can be determined in an invariant way is a combined Òspatio-temporalÓ
set of events.

In order to structure such a set we need a number of invariant relations
between events. These are provided by the different possibilities of exchanging
information, such that the departure of a signal corresponds to an event a, and its
arrival to an event b:

If the signal is of the light-like type, the relation between a and b is called
Òhorismotic precedenceÓ (HP).

If the signal is of the ballistic-type, the relation is called Òchronological
precedenceÓ (CP).

The union of both relations: Òit is possible to send a signal (light-like or
ballistic) from a to bÓ is called Òcausal precedenceÓ, or ÒprecedenceÓ for short
(P).

The basic structures of space-time, as represented in relativity theory (special
and general), can be derived from the set of events provided with these three
relations (Zeeman, 1964; Kronheimer and Penrose, 1967; Woodhouse, 1973).

The precedence relation can be interpreted as the fundamental temporal order:

a P b signifies that Òa is able to cause b Ò, or that Òb happens after aÓ.

Remark that this relation is a partial order; it is not complete, or linear, like the
classical temporal order (section 4.6). This means that for two arbitrary events a
and b, we cannot establish in an absolute way that either a P b, or b P a (or a
simultaneous to b).

In this sense, the innovation of the representation structure brought by
relativity theory can be reduced to the one structural feature, that the classical
relation of precedence loses its completeness. This is analogous to the way we
analyzed the quantum mechanical revolution in representation. Here the
innovation can be reduced to the fact that the orthogonality relation between
states loses its completeness. Whereas the relations of precedence and orthogo-
nality had a trivial structure in the classical frame, in relativity theory, respec-
tively quantum theory, these relations play an essential role in the determination
of the representation structure. In quantum mechanics the orthogonality relation
determines the Hilbert space structure. In relativity theory the precedence
relation(s) determine the structure of space-time.

The difference between causal precedence and chronological precedence lies in
the existence of signals with an invariant velocity c. The chronological
precedence can only be established between events a and b if it is possible to
send a massive object (e.g. a clock) from a to b. This clock can then measure the
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time elapsed between a and b, and hence establish a ÒchronologicalÓ interval
between them.

This is not possible for events a and d, connected by a horismotic relation.
Here the only possibility for a to influence d, is by using light-like, i.e. massless,
signals. For these signals no duration or temporal interval can be determined.

This can be shown with the help of the Lorentz transformations, which state
that for an object which is accelerated until its velocity comes close to c
durations are stretched out, until time itself almost stops. In the limit where the
velocity is c, this means that all clocks have stopped, and that all time intervals
have become infinite.

A more physically intuitive argument for this effect is the following: the
ultimate way to measure time intervals is by letting a light signal travel back and
forth between parallel mirrors which remain at an equal distance (this
corresponds to a simplified version of the geodesic clock used by Misner,
Thorne and Wheeler, 1974, p. 397). The time between the departure of the light
signal at one of the mirrors, and its subsequent arrival after being reflected by
the other mirror, is constant, and can be taken as a unit of time duration.

Suppose now that the mirrors are moving in a direction parallel to
themselves. Classically, the speed of the reflected light signals should now be
equal to the vector sum of their speed when the mirrors are at rest and the speed
of the mirrors, hence in absolute value: Ö2 c.

Relativistically, however, the speed of light is invariant, hence equal to c.
But since the mirror itself is moving with a speed equal to c, the light signal will
not be able to catch up with it, hence it will take an infinite time for the signal to
travel from one mirror to the other and back. If the mirrors are moving with a
speed somewhat less than c, the light signal will be able to catch up, but it will
need more ÒtimeÓ to execute the travel. This explains why this Òlight-clockÓ will
ÒtickÓ slower according as its speed increases, until it stops ticking entirely
when its speed reaches c (this last situation can never be attained by an actual,
massive clock).

Hence, P establishes a general ordering between events representing the
possibility of information transfer, whereas CP establishes an ordering
representing the possibility of information transfer whose duration can be
established by means of a clock travelling with the signal. The relation HP
represents a borderline case of information transfer with the speed of light, and
does not establish an order, since the relation is not transitive.

Indeed, if a can be connected to b by a (direct) light signal, and b can be
connected to d by a direct light signal, this does not imply that no slower-than-
light signal can be used to connect a to d. Consider for example the parallel
mirror situation. Call the departure of light at one mirror a. Call its arrival at the
other mirror b. Call its arrival back, after reflection, at the first mirror d. Clearly
a HP b and b HP d. However a and d correspond to the same spatial position on
the mirror, and are only separated by a time interval equal to the period of the
clock: hence a CP d, and not a HP d.
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On the other hand it is possible to consider P = CP HP, as a transitive
closure of HP. Indeed every two events a CP d, separated by a Òtime-likeÓ
interval, can be connected by a series of light signals (e.g. the signals bouncing
back and forth in a light clock travelling from a to b).

For a given event a, it is possible to distinguish five sets, which partition the set
M of all events:

1) I+(a) = {xÊÎÊM: a CP x}

This is the chronological future of a, which corresponds to the inside of its
future light cone through a.

2) C+(a) = {xÊÎÊM: a HP x}

This is the horismotic future of a, corresponding to the boundary of its future
light cone.

3) S (a) = {xÊÎÊM: NOT (a P x OR x P a)}

This is the set of events whose time cannot be compared with the time of a: they
come neither before, nor after a. They are separated from a by a Òspace-likeÓ
interval, and correspond to the outside of its light-cone.

4) I-(a) = {xÊÎÊM: x CP a}

This is the chronological past of a, constructed from I+(a) by inverting the order
of the relation.

5) C-(a) = {xÊÎÊM: x HP a }

This is the horismotic past of a.

The relation CP defines a topology on the set M of events: the Alexandrov
topology, which is generated by:

{I+(y): yÊÎÊ M} È {I-(y): yÊÎÊM}

(Kronheimer and Penrose, 1967). This is the topology for which a subset of M is
open if it is a union of open intervals I (a, b):

" a, bÊÎÊM such that a CP b: I (a,b) = {xÊÎÊM: a CP x, x CP b}

Such a topology on space-time can be extended to a topology on spatial (three-
dimensional) sections of the four-dimensional event set: SÊÎÊM is a space-like
subset of M iff
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" x, yÊÎÊS: NOT ((x P y) OR (y P x)).

This allows us to construct topologies on (state)spaces, whereas in the classical
frame the topology is a priori given (cf. section 4.6). Remark that with this
topology causal processes are automatically continues, so that it is not necessary
to introduce a requirement of continuity (section 4.6).

However, the CP relation is not yet sufficient to construct an unambiguous
metric. It can be shown that in general relativity the precedence relation
determines 9 out of 10 components of the metric tensor for space-time. This
corresponds in special relativity to the fact that the precedence relation
determines the Lorentz group (Zeeman, 1964).

If we want to measure distances or durations in an invariant way, however,
we still need to assume the existence of rigid rods, determining invariant
distances. Once such a distance is determined, it can be used to construct a light
clock, and hence it allows us to measure durations.

One way to dispense with rigid rods is provided by the Marzke-Wheeler
construction (Misner, Thorne and Wheeler, 1974, p. 397), where a unit of
distance or duration is constructed from the paths of freely falling particles
(corresponding to the CP relation). The construction, however, is technically
rather complex, so that its physical meaning remains obscure. This invariant
measurement unit can then be used to establish a metric on space-time. This
provides us with invariant metrical relations between events. Invariant means
here that the result of the spatio-temporal distance measurement is independent
of the specific way of comparison of the distance to be measured with the
distance taken as a measuring unit.

We will not go further into the mathematical details of this construction. It
suffices here to show that the possible paths of particle-like and light-like
signals, which form the causal structure of the event set, are in principle
sufficient to reconstruct the basic geometry of space-time, as represented in
special and general relativity theory.

Until now, we have only discussed the mathematical properties of the causal
relations. We must now also examine their physical and cognitive signification.
This will be illustrated by considering the so-called paradoxes which arise if one
of the rules defining causal processes is transgressed.

8.4 From local to global causal connections

Although the word ÒcausalityÓ is very often used in relativity theory, mainly to
denote the light-cone structure of space-time determined by the P relation, it is
never really defined. We know that Òcausal processesÓ do not leave the light-
cone, but we do not know why. And what must we think of processes which do
leave the light-cone, i.e. which travel faster than light? Can they be causal? A
serious discussion of this problem is given by Reichenbach (1958).
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He considers an example of a process moving faster than light: imagine a
searchlight which projects an illuminated spot on a far-away surface (e.g. a
cloud). If the searchlight rotates quickly enough, the velocity of the spot will be
larger than c. Clearly this movement does not transfer material substances:
nothing has been transported from one illuminated part A of the cloud to the
next part B, which is illuminated an instant later. The fundamental reason,
however, why the spot is able to travel faster than light, is because it does not
carry information, hence does not correspond to a causal process. Indeed,
someone sitting at A would be unable to manipulate or to ÒmodulateÓ the beam
in such a way that it could transfer a message to someone sitting at B.

In order to explain this in more detail, we must go back to our definition of
causality or information transfer in terms of the conservation of distinctions
(sections 5.2 and 6.3). This definition is different from Reichenbach's definition
(1958), although its application in the present context gives a similar result (for
a general overview of different causality concepts, see Apostel, 1975).

Consider two distinctions, one corresponding to the ÒcauseÓ, and the other one
to the ÒeffectÓ of a process. A distinction is characterized by a marked or
indicated state a, which will be called an indication, (cf. Spencer-Brown, 1969),
and by the negation or complement of this state a'. Hence, any distinction can be
represented by a couple (a, a') of a marked and an unmarked state, or
equivalently of a proposition and its negation. (Remark that if we call a a state,
then we mean ÒstateÓ in the sense of a representational pattern of activation
(section 2.5); on the other hand, in the classical frame, the word ÒstateÓ is
reserved for activation patterns which carry maximum information, i.e. which
correspond to atomic propositions (section 4.5); in this last sense a is in general
not a state but a proposition.)
We must now define the causality of sets of state transitions constrained by
dynamical laws, i.e. of processes.

Definition: a process is locally causal if it leads from a to b, and from a' to b',
i.e. if it conserves the distinction:

(a, a') ® (b, b') (*)

In other words, all state transitions leading from a to b', or from a' to b are
forbidden.

An example of a dynamical constraint, which selects causal processes, is energy
conservation. In this case, we have:

a = b = Òthe energy of the system is EoÓ, and
a' = b' = Òthe energy is different from EoÓ.

A more intuitive example is the following: If I support a stone by keeping it in
my hand (a), then it will not fall down to the ground (b). On the other hand, if I
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loosen my grip so that the stone is no longer supported (a'), then it will fall down
and reach the ground (b').

This definition clearly corresponds to the definition we gave earlier (section
5.2): Òequal causes (i.e. situations belonging to the same class a) have equal
effects (i.e. situations belonging to the same class b)Ó, Òdifferent causes (i.e.
situations belonging to a, respectively a') have different effects (i.e. situations
belonging to b, respectively b')Ó.

It also corresponds to the possibility of information transmission: if I want
to send a signal to someone else, who is spatially separated from me, then I need
a physical medium or carrier with at least two states (in the simplest case, the
two states correspond to respectively the presence and the absence of the
signal). I can prepare the medium in one of both states e.g. a, (i.e. I create an
ÒindicationÓ, I mark one of the two states). Through some dynamical
mechanism this state will then evolve or propagate until it reaches the other
observer to whom the message is addressed. This observer will detect a new
state b. In order to understand the meaning of this signal, he must be able to do
three operations:

1) to distinguish the state b from its complement b',
2) to deduce from the causal relation (*) between the prepared and the detected
signal that the original signal I prepared was a,
3) to interpret a, i.e. to determine the extension or meaning of the signal, which
is fixed by the language or communication code we have agreed upon to use
(this third stage can be seen as repetition of stages 1 and 2, with a now in the
role of the signal to be interpreted).

This scheme can be seen as an elementary model of communication or
information processing. It can be used to analyze information transmission as
well between two spatially separated subjects, who are communicating, as
between a subject and an object he perceives. In the latter case the causal
relation and the code correspond to the internal representation of the subject. In
both cases we see that an indication, which presupposes a distinction, can really
be considered as a Òunit of meaningÓ (or Òsemantic elementÓ).

For example, suppose that the purpose of our communication is to
synchronize our clocks. The code we have agreed upon is very simple: if my
clock indicates 0:00 hours, I will send a light signal towards my correspondent,
so that he can adjust his clock to the same time when it arrives. In this case the
medium used is the electromagnetic field. The distinction used for
communication is that between the state Òthere is a photon travelling towards
the receiverÓ and the state Òthere is no photon travelling towards the receiverÓ.
The photon itself may undergo a state transition: for example, its frequency may
diminish by gravitational red shift. The distinction between photon and no
photon, however, remains invariant, so that the received message is
unambiguous.
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Suppose now that light propagation would not be a causal process. For
example, suppose that a photon could disappear, or be created out of nothing. In
that case, the message would become ambiguous; it would no longer carry any
reliable information. Indeed if the addressee did receive a photon, he would not
be able to determine whether it was sent by me, or had appeared spontaneously.
If he did not receive a photon, he would be unable to infer whether I did not
send a signal, or my signal had disappeared. In both cases, it would be
impossible to synchronize our clocks.

This example already illustrates how the determination of space-time frames
requires the use of information- or distinction-conserving processes. However, it
is possible to go a step further and to show how the structure of space-time can
be derived from the properties of such processes. In order to do this it suffices to
show how the two basic precedence relations (HP and CP) arise naturally out of
the properties of information transmitting processes (cf. section 8.3).

The basic characteristic of a precedence relation is its antisymmetry.
However, our definition of causal processes is symmetric: the exchange of cause
(a) and effect (b), does not alter the relation. This reversibility is a general
characteristic of conservation principles (cf. section 5.2). However, it only
makes sense for potential processes: if a distinction is conserved during a
process leading from an event e1, characterized by a proposition a, to an event
e2, characterized by a proposition b, then it would also be conserved if e1 was
characterized by b, and e2 by a. In general, however, the actual event e1 will
correspond to a certain state indicated by a, but not by b.

So, we will suppose that actual causal relations between events are generally
asymmetric. However, this does not yet exclude the possibility of symmetrical
causal connections. Indeed suppose that a signal is sent from e1 to e2, and is sent
back from e2 to e1. Suppose that each of the two transmissions is causal, i.e.
conserves distinctions. Suppose e1 is determined by a state a. Distinction
conservation then implies that e2 is in a state b, such that:

e1 (a, a') ® e2 (b, b').

We can use the same reasoning for the reflected signal, and find a
correspondence:

e2 (b, b') ® e1 (c, c').

Hence, there are two possible causal chains: (1) a produces b, and b produces c;
(2) a' produces b', and b' produces c'. Suppose e1 is in a state a, so that process
(1) is actual. If a is atomic, we have either a < c, or a < c' (section 4.5).

In the first case, the logical relation of implication (<) is in correspondence with
the causal connection (®), exemplified by process 1). Hence, the causal
connection has not added anything new to the logical-informational structure of
the Boolean algebra representing e1, it has simply confirmed what we already
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knew without taking into account the state of the second event e2. In this sense
there was no information transferred from e2 to e1, no new selection was carried
out, everything has remained as it was.

In the second case, the causal connection leads from c' via b, to c. This time,
something seems to have changed: after the causal interaction the state of e1 can
no longer be a, since a implies the negation of the new proposition c resulting
from process 1). However, the event e1 is by definition elementary or indivisible
in space or time, so that it can have only one actual atomic state. By the law of
contradiction, this state cannot imply both c and NOT c. Hence, we come to a
paradox.

This paradox is equivalent to the traditional causal paradoxes associated
with the existence of a Òtime machineÓ, i.e. a device which allows us to
influence the past. Suppose that I construct a time machine, and that I use it to
go back to the time before my father had met my mother. Suppose that I kill my
father. In that case my father will never be able to meet my mother, and hence
will be unable to engender me. However, this implies that I shall not be born,
and hence that I shall not construct a time machine. We have here the same
circular causality as in the reasoning above: the construction of a time machine
(c') leads to the killing of my father (b), which leads to the time machine not
being constructed (c). This is truly paradoxical.

However, if we remain on the more formal level of distinctions, the
contradiction can be eliminated. Indeed if we find that c implies c', and, by
applying the causal relation a second time, that c' implies c, we can only
conclude that c and c' are equivalent, i.e. indistinguishable. Hence, the
distinction between c and c' is logically and physically meaningless, and it
should be eliminated from the representation. The conclusion is that the global
process which leads from e1 to e2 and back to e1 is not causal, since it does not
conserve any real distinction.

The reasoning we made is not only applicable to ÒcausalÓ paradoxes, but also to
ÒlogicalÓ paradoxes. An example of this latter type is the sentence: Òthe present
sentence is falseÓ. Suppose the sentence is true (a), then we must believe what it
says and conclude that it is false (a'). But if it is false, then we should not believe
what it says, and conclude that it is true (a). Hence, we get the same circular
structure:

a ® a' ® a ® É

From the present point of view, which sees representations as based on more or
less invariant distinctions, the paradoxical sentence is neither true nor false,
since it is impossible to distinguish between both cases. Hence, it does not carry
any information or meaning, and does not represent anything at all (except
itself).

The same can be said about circular ÒcausalÓ connections, such as the one
mentioned above: there is no conserved distinction at the global level (although
the process appears to conserve distinctions on the local level, where only the
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one-way connections between e1 and e2 are considered), and hence there is no
information transferred.

We may conclude that both cases, a < c and a < c', lead to the same result:
no information can be transferred in a circular manner, i.e. from an event to
itself.

The abstract reasoning we made to prove this, can be illustrated with the help of
a more concrete, spatial analogy. Suppose that the two sides of a distinction (a
and a') are represented by the two sides of a piece of paper (e.g. a corresponds to
the upper side, a' to the lower side). A causal process can now be represented by
a paper ribbon, which is twisted in a certain way. The left end of the ribbon
corresponds to the event e1 with its two possible states a (upper side) and a'
(lower side). The right end corresponds to an event e2 with two possible states b
(twisted upper side) and b' (twisted lower side). The conservation of distinctions
is represented by the smooth, continuous shape of the ribbon, which is such that
even when it is twisted, both sides can always be distinguished. The movement
of a signal from a to b can be represented by a point which travels continuously
from the left upper side (a) through the different twists to the right twisted side
(b).

If we now want to represent a circular causal process, we must form a closed
loop, such that the right end is attached in a continuous manner to the left end.
There are two possible ways to do this:

1) between the left end and the right end, which are to be stuck together, the
ribbon has been twisted an even number of times,
2) the ribbon has been twisted an uneven number of times.

In the first case, we have something isomorphic to a simple ring without
twisting. In the second case we have something isomorphic to a Moebius band.

As is well known, a Moebius band is characterized by the fact that it has
only one side: if you imagine a paint-brush moving continuously along the
paper surface, then it will eventually come back to its initial position after
having traveled a distance equal to the double of the length of the ribbon, and
having colored the complete surface of the ribbon. It is clearly impossible to
make a global distinction between the upper (or outer) and the lower (or inner)
side of the Moebius band, since the one is the direct continuation of the other
one.

In the case of the simple ring, the two sides can be absolutely distinguished.
This means that if a paint-brush begins to paint at one side, it will color this side
completely and come back to its starting point without having touched the other
side. Hence, if a signal moves around the complete ring, it simply comes back to
its starting point, without anything having changed.



- 117 -

8.5 Formal properties of global causal connections.

This analysis shows us that there is a basic difference between relations which
are locally causal (i.e. conserve distinctions between two directly connected
events), and relations which are globally causal (i.e. which conserve distinctions
between events connected by a sequence or path of locally connected events). If
the connecting sequence of events is part of a loop or circle, the connection is
not globally causal. Only non-circular relations admit global causality. We will
now express these properties in a more formal way.

Definition: the relation CÊÌ E ´ E is non-circular, or ÒacyclicÓ iff for any
sequence or ÒpathÓ of events:

{eiÊÎÊE: i = 1,É, n such that ej C ej+1 (j = 1,É,n-1)}

you have that en C e1 implies eh = ek for all h, kÊÎÊ {1,É, n}

In other words, a relation is acyclic if its (oriented) graph contains no cycles or
closed paths.

We can further distinguish two types of global causal connections:

1) either the path connecting two events a and b is unique
2) or there exist at least two paths P1 and P2 connecting a to b:

P1 = {eiÊÎÊE (iÊ=Ê1,Én): e1 = a, en = b, ej C ej+1 (jÊ=Ê1,Én-1)}
P2 = {fiÊÎÊE (iÊ=Ê1,Ém): f1 = a, f2 = b, fj C fj+1 (jÊ=Ê1,Ém-1)}

such that there exists at least one fiÊÎÊP2 with fi Ï P1, or at least one ejÊÎÊP1 with
ej Ï P2.

In other words, P1 and P2 pass through different events in their path from a
to b.

In the first case we will say that a and b are horismotically connected, in the
second case their connection will be called chronological. It can now be shown
that these two types of connection are formally equivalent to respectively the
horismotic and chronological relations introduced in section 8.3.

Definition: " x, yÊÎÊM: x HP y iff there is a unique causal path P from x to y.

Definition: according to Kronheimer and Penrose (1967), the two requirements
for a relation HP to be horismotic are:

whenever ei: iÊ= 1,Én is a finite sequence such that ei HP ei+1 for each i (except
n), and h, k are integers satisfying 1 < h < k < n, then:
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(1) en HP e1 implies eh = ek

(2) e1 HP en implies eh HP ek

Theorem: HP is a horismotic relation.

Proof: (1) Requirement (1) is equivalent to the requirement that the relation be
acyclic. Suppose that P would be part of a cycle, then there would be another
path P' connecting b to a such that the concatenation of P and P': P' * P would
form a closed path, leading from x, via y, back to x. However, we could then
construct a new path from x to y by concatenating the closed path again with P:
P *  P' *  P. Hence, the path connecting a to b would not be unique, in
contradiction to our assumption.

(2) Suppose that e1 HP en, i.e. there is a unique path P1,n from e1 to en. We know
that ei R ei+1, i.e. the path Pi, i+1 between ei and ei+1 is unique. The concatenation:

Pn-1,n * Pn-2,n-1 * É * P1,2

defines a path from e1 to en, which by assumption is unique and equal to P1n. The
segments of this path determine the unique paths connecting eh to ek (1 < h < k <
n):

Phk = Pk-1,k * Pk-2,k-1 * É * Ph, h+1.

Hence: eh HP ek      ■

Definition: x P y iff there is a causal path from x to y, which does not form part
of a cycle.

Definition: x CP y iff there are at least two paths, which are not part of a cycle,
connecting x to y.

Property: clearly we have: P = CP È HP (disjoint union)

Definition: the quadruple (M, P, CP, HP) where P, CP and HP are relations on
M, is a Òcausal spaceÓ iff the following conditions are satisfied (cf. Kronheimer
and Penrose, 1967): for x, y, zÊÎÊM:

(1) x P x
(2) if x P y and y P z then x P z
(3) if x P y and y P x then x = y
(4) not x CP x
(5) if x CP y then x P y
(6) if x P y and y CP z then x CP z
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  if x CP y and y P z then x CP z
(7) x HP y if and only if x P y and not x CP y

Theorem: the relations P, CP and HP on M as defined above, form a causal
space.

Proof:
(1) x is connected to x by the trivial, causal path (exemplified
by the distinction conserving relation of identity)
(2) if there is an acyclic path from x to y, and an acyclic path from y to z, then
the concatenation of both paths forms an acyclic path connecting x to z.
(3) suppose x¹ y, then the condition x P y and y P x would imply that there is a
non-trivial path from x, via y, back to x, and this is in contradiction with the
assumption of acyclicity.
(4) if there would be two different paths connecting x to itself, then at least one
of these paths should be non-trivial, and would hence correspond to a closed
loop.
(5) this requirement follows directly from the fact that CP is included in P.
(6) x P y signifies that there is at least one path from x to y, y CP z signifies that
there are at least two paths from y to z. By concatenation we find at least two
different paths leading from x to z.
(7) this condition follows directly from the fact that P is a disjoint union of CP
and HP. ■

Conclusion:
Suppose that you have a set M of potential events, and a locally causal relation
C M ´ M, defining direct causal connections between events, then this relation
can be extended to include indirect causal connections, i.e. paths or sequences of
direct causal connections. There are four different types of possible indirect
connections between two events x and y: suppose

P = e1,É, en, with e1 = x, en = y, ej C ej+1, jÊ=Ê1,Én

is a causal path connecting x to y, then there are two possibilities:

1) P is part of a cycle, i.e. there exists another path P' from y to x.
2) P is not part of a cycle.

Both categories can be further subdivided in two subcategories:

1.1) P' * P conserves distinctions globally, i.e. the indication transferred from x
to y and back to x is not in contradiction with the initial indication determining
the state of x. In this case there is no real transmission of information, but there
is a correlation between the state of x and the state of y.

1.2) P' * P does not conserve distinctions on a global level. In this case we
would find a causal paradox, if we would interpret the transfer of distinctions
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literally. The only way to avoid this, is by regarding the supposedly transferred
distinction as void or meaningless. Hence, this case is equivalent to the case
where there are no causal connections at all between x and y.

2.1) The path P is unique. This also entails that all segments {eh, É,ek: 1 < h
< k < n} Ì  P are unique. In that case the signal travelling along P can be
interpreted as a light signal, i.e. a signal with an invariant limit speed, moving in
a straight line. The connection is horismotic.

2.2) There is at least one different path P' leading from x to y. P can be
interpreted as a chronological connection. This was shown formally. We will
now try to explain this result on a more intuitive, physical level.

The characteristic of a chronological connection is that it is always possible to
have a faster connection: suppose that x corresponds to a clock A indicating a
time tA, and y to a clock B (in general spatially separated from A) indicating a
time tB. The chronological connection between x and y signifies that there is a
chain of subsequent signals of which the first one departs from A at time tA, and
the last one arrives at B at time tB.

If another, faster sequence of signals would depart from A at time tA, this
would reach B at a time t'B < tB. The concatenation of this sequence with the
causal process consisting of the movement of the clock B between t'B and tB,
would form an alternative causal path connecting x to y. Hence, the path would
not be unique. On the other hand, a horismotic or light-like path connecting two
events is necessarily unique.

We must further explain why horismotic signals have an invariant speed. In
order to define a speed, you need to establish a duration, and this requires either
a clock which travels along with the signal, or a set of two synchronized clocks,
one at the arrival and one at the departure of the signal. However, the fact that
the causal path of a horismotic signal is unique, implies that no clock can travel
in parallel with it, since this would create an additional sequence of causally
related events (e.g. the subsequent ÒticksÓ of the clock). On the other hand, the
only way to synchronize two spatially separated clocks in a more or less
invariant way, is by using light signals. Hence, we need to assume an invariant
speed for horismotic signals in order to determine their speed!
This is another formulation of the general principle of the impossibility of
measuring the one-way velocity of light (Podlaha, 1980). The only thing we can
measure in an invariant way is the two-way velocity, by determining the interval
between the departure of a light signal and the arrival of its reflection. A
reflected light signal, however, does not correspond to a horismotic connection,
but to a chronological one (cf. section 8.3), since it allows a parallel causal path
for the clock measuring the interval.

This clock can be assumed to be a light clock, or, more generally a geodesic
clock. The reflecting light signal itself can be viewed as forming another, larger
light clock moving in parallel with the first one. The invariance of the two-way
speed of light then implies that if both clocks were once synchronized, they
remain synchronized. In other words, both causal paths formed by the two light
signals moving back and forth between reflecting mirrors, remain in phase; it is
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not so that one clock will begin to tick faster with respect to the other one (cf.
Misner, Thorne and Wheeler, 1974, p. 398).

This is an empirical fact which can as yet not be explained from the
structural properties of distinction conserving processes. However, once this fact
is assumed, it becomes a matter of convention to determine an invariant one-
way speed for horismotic signals.

On the other hand, the topological and causal structures of space-time follow
directly from our analysis of distinction conserving relations (cf. section 8.3).

The interdependence of topology or continuity and distinction conservation
can be demonstrated in an even more direct way, without passing through the
intermediate stage determined by the precedence relations. Indeed, continuity is
defined mathematically as the conservation of topological structures. In other
words, an operator is said to be continuous if it maps closed sets onto closed
sets, and open sets onto open sets. But a closed set can be viewed as the union of
an open set and its boundary. Hence, continuous transformations are
transformations which conserve boundaries. But a boundary is just that which
separates or distinguishes the inside of a spatial domain from its outside. Hence,
continuity is equivalent to the conservation of spatial distinctions, and the
topological structure of a state space is just a representation of certain
distinctions which are conserved by all causal processes on the system.

8.6 Non-locality paradoxes in quantum mechanics

The reasoning we made to demonstrate the dependence of topology, and hence
locality, on information transfer, can be used to elucidate some paradoxes where
the interaction appears to be non-local. These paradoxes are typical for quantum
mechanics. This should not surprise us, since the characteristic feature of
quantum mechanics is that distinctions are in general not conserved. We will
consider three such paradoxes: the paradox of de Broglie (de Broglie, 1959), the
Aharonov-Bohm effect (Aharonov and Bohm, 1959) and the EPR paradox
(Einstein, Podolsky and Rosen, 1935).

8.6.1 The paradox of de Broglie

The de Broglie situation is formally and conceptually the simplest and can be
considered as a prototype for all apparently non-local effects in quantum theory.
Consider a quantum system imprisoned in a box, so that its wave function is
continuously spread out over the volume of the box. The box is then divided in
two by the introduction of an impenetrable plate. The two compartments A and
B are then separated by an arbitrarily large distance. Normally each
compartment will contain about half of the quantum wave. Suppose we now
make a measurement to test whether the system is present in box A. Suppose the
result is negative.

According to the postulate of the reduction of the wave packet, the part of
the wave function localized in box A will have vanished after this operation.
The total probability for finding the system in one of the two boxes however,

- 122 -

has to remain constant. This implies that the probability of finding the system in
the second box B, and hence the absolute value of the wave function in B, will
become larger.

It appears as though a part of the function has been transferred
instantaneously from A to B. Yet we have postulated that A and B are separated
by an impenetrable barrier, and by an arbitrarily large distance. Hence, this
strange jump of the wave function from A to B seems to be in direct
contradiction with the principle of locality which states that every physical
interaction between two spatial domains A and B must be carried by some
physical medium connecting A to B, and hence cannot travel faster than the
speed of light.

However, as seen from the viewpoint developed in the previous section,
there is no contradiction. The locality condition is really a requirement of
continuity for physical processes, which prohibits discontinuous jumps over
topological boundaries. As we have shown, this requirement only applies to
information transferring processes, i.e. acyclic, distinction conserving sequences
of events. It is shown easily that the collapse of the wave function, from box A
to box B, cannot be used to transfer information.

The basic distinctions in the de Broglie situation are those between the
presence and the absence of the system in the box A (respectively B). Let us call
these distinctions (a, a'), respectively (b, b'). There is clearly a correlation
between both distinctions: the indication a implies the indication b' (if the
system is present in A, then it must be absent in B), and a' implies b. So, there is
a conservation of distinction:

(a, a') « (b, b')

However, the relation between both distinctions is symmetric, since b implies a',
and b' implies a. The relation thus falls in the category 1.1) of cyclic, globally
distinction conserving connections. Such relation, however, cannot be used to
transmit signals, since it does not produce an observable (i.e. distinguishable)
change.

Indeed, to transmit information from A to B we must prepare the system at
A in a certain state (e.g. a') so that our correspondent, located at B, can detect
the corresponding, causally connected state (e.g. b). The problem is that we
cannot choose to prepare the system so that a' is necessarily actual. According to
the assumption that the original box containing a homogeneously diffused wave
function, has been split in two equal parts, there is a fifty percent chance to find
a, respectively a'. After the separation has been carried out, we have no way to
make sure that we will find the state a' when opening the box.

The only thing we can do is to observe which of both alternatives, a or a', is
actual. If we find that a' is actual, then we know that our correspondent at B will
find b. However, our correspondent does not know what he will find. Whether
we have observed the system at A, and hence reduced the wave packet, or not,
for him the probability of finding b, respectively b', remains fifty percent.
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Hence, he cannot infer anything about the way we have manipulated the system
at A by looking at B. No information has been transmitted.

This result may appear trivial when it is compared to a seemingly analogous
classical thought experiment. Suppose that the original box does not contain a
quantum particle, but a classical system, e.g. a billiard ball. Suppose that we do
not know the exact position of the ball in the box. If the box is now again split in
equal compartments, then we can assume that there is a fifty percent probability
to find the ball in one of the compartments, say A. Finding the ball in A
signifies that another observer opening box B will find it empty. Again there is a
symmetrical conservation, i.e. a correlation, of distinctions between both boxes.

However, this can be explained simply by noticing that the two observations
at A and at B had a common cause, namely the original position of the ball in
the box. If the ball was somewhat left of the middle (l), it would become
enclosed in the left compartment (e.g. A) when the dividing plate was
introduced, otherwise (l') it would be enclosed in the right box (B). This can be
represented by two causal connections:

(l, l') « (a, a') and (l, l') « (b', b)

The original distinction between left and right has simply determined the
distinctions between presence and absence in box A, respectively B. The
distinction conserving relation Òhas the same cause asÓ between (a, a') and (b, b')
is clearly symmetrical, and hence accounts for their correlation.

We could now wonder whether an analogous explanation could be found for
the quantum correlations. Such an explanation would correspond to a hidden
variable model, i.e. a classical statistical model, based on the assumption that
the quantum particle is already located in one of the two parts, left or right,
before the compartments are separated. This is in contradiction with the
traditional interpretation of the wave function, i.e. of the quantum
representation. However, in the present, simple situation it would provide an
equivalent model of the experiment.

8.6.2 The EPR paradox

This is no longer true for the more complex situation exemplified by the EPR
paradox. Suppose that a quantum system, with a total spin equal to zero,
disintegrates in two particles of the same type, e.g. photons, each with a spin
equal to one half. By the law of spin conservation, the directions of the two
spins must be opposite, so that their sum remains zero.

This means that if we make on observation on one of the particles, and find
that its spin is up, than the wave function of the other particle must collapse so
that its spin is necessarily down. This instantaneous effect is again independent
of the distance, or of eventual barriers between the two particles. This is
completely analogous to the de Broglie situation.

The difference, however, is that we can choose between different
observations of the particles, and that each time we will find the same
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correlation. For example, we could decide to measure the spin in the left-right
direction, instead of the up-down direction. Again we will find that if particle A
has spin left, then particle B has spin right. This cannot be explained by a
classical common cause for the two results, because this would require that the
particle A has an initial state where the spin is at the same time left and up. But
the properties of spin up and spin left cannot both be actual.

A mathematical proof of this impossibility of explaining the quantum
correlations by assuming hidden variables for the two particles was given by
Bell (1966). He considers coincidence experiments where two simultaneous yes-
no measurements a and b are made, one on particle A and one on particle B. Let
us define a variable describing the possible results of such an experiment (the
present notation corresponds to that of Aerts, 1982):

Xab(s) = +1 iff for a system in the state s, we get the result ÒyesÓ for particle
A, and ÒyesÓ for particle B, or ÒnoÓ for A, and ÒnoÓ for B

Xab(s) = -1 iff we get the result ÒyesÓ for A, ÒnoÓ for B, or ÒnoÓ for A and
ÒyesÓ for B.

Now define a variable describing the possible results of a single experiment, on
only one of the particles:

Xa(s) = +1 iff s < a

Xa(s) = -1 iff s < a'

Bell now assumes that there is a classical locality condition, and concludes that
necessarily:

Xab(s) = Xa(s). Xb(s)    (1)

In other words, the variable describing the coincidence experiment can be
factorized in two variables describing the two single experiments on the
different particles. This signifies that the result of the measurement a on A does
not change the result of the measurement b on B. Otherwise we could have that
a state s, which would give the result ÒyesÓ for a, and ÒyesÓ for b, if a and b
were performed separately, would give a result ÒyesÓ for a, ÒnoÓ for b if a and b
were performed together. In that case we would have:

Xa(s) = +1, Xb(s) = +1 and Xab(s) = -1,

contrary to Bell's locality condition.

At first sight, Bell's assumption appears perfectly natural: if the initial state s is
such that both a and b have determined answers, when performed separately,
and if the two measurements are performed together, but so that they are
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separated by a space-like interval, so that no signal can be transmitted from one
measurement event to the other one, then we should find the same determined
answers for the coincidence experiment.

Of course, in the quantum situation, the quantum state generally does not
allow us to determine the answers for the measurements a and b. However, Bell
assumes that this is due to a classical lack of knowledge, and that there exists a
classical microstate, which we do not know, but which determines the answers.

Bell then uses his assumption (1) to derive the following inequality:

Xab(s)Ê-ÊXac(s) + Xdb(s) + Xac(s) < 2,

where a, c are measurements on A, and b, c are measurements on B.
(this result follows trivially by factoring Xa (s) in the first term, and Xd (s) in

the second term)

However, in the quantum correlation experiment, the Bell inequality is generally
violated. This has been shown as well theoretically, by using the quantum
formalism, as empirically (Aspect, Dalibard and Roger, 1982). Therefore, we
must conclude that Bell's locality assumption does not apply for quantum
systems. Hence, we cannot explain quantum correlations between spatially
separated systems by assuming a Òcommon causeÓ s for the correlated events,
which determines independently the results of the experiment at A, and the
experiment at B.

These mysterious correlations are not restricted to the microscopic world,
however. Aerts (1982) has proposed a macroscopic system which violates the
Bell inequality. The system consists of two vessels A and B (standing on the
same horizontal plane) connected by a tube of arbitrary length. The system is
filled with water, and the measurements under consideration consist of emptying
one of the vessels by means of a siphon, and checking whether the amount of
water collected thus in a reference vessel is more than 10 liter.

Let us call such a yes-no observation a when it is performed on vessel A,
and b when performed on vessel B. Suppose each vessel contains 10 liter. This
corresponds to the state s of the system. If we empty vessel A with a siphon, we
shall clearly get more than 10 liter. Indeed, when the water level in A goes
down, water from B will flow through the tube to compensate, so that the total
amount of water which can be collected in this way will be near to 20 liter.
Hence, observation a will always produce the result ÒyesÓ in state s. The same is
true for b.

However, if we perform both measurements at the same time, the total
amount of 20 liter will have to be distributed in some way between the two
reference vessels at A and at B. Since normally the flow of water through the
two siphons will not be completely equal, we may expect that the water level in
one of the reference vessels (say at A) will rise a little faster than the level in the
other vessel. When the water level in the two connected vessels reaches the
bottom, the water flow will stop in both reference vessels at the same time, so
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that the reference vessel at A contains somewhat more water than the other one.
Since the total amount to be collected is 20 liter, after the experiment the
reference vessel near A will contain more than 10 liter, whereas the reference
vessel near B will contain less than 10 liter.

Hence, when performed together, the two observations a, respectively b,
produce the result ÒyesÓ, respectively ÒnoÓ. Hence, we get:

Xab(s) = -1 whereas Xa(s) = +1 and Xb(s) = +1.

This is in contradiction with Bell's locality assumption (1).

Let us analyze this thought-experiment by means of the distinctions framework.
The observation a corresponds to the distinction:

(a, a') = (the amount of water in vessel A is more than 10 liter, the
amount of water in vessel A is less than 10 liter).

Analogously, the observation b corresponds to the distinction (b, b'), where
vessel A has been exchanged for vessel B. The coincidence experiment of a and
b shows a correlation between both distinctions:

(a, a') « (bÕ, b)

However, this correlation cannot be explained by a third distinction acting as a
common cause, like in the example of the billiard ball in the box. This can be
illustrated by considering the situation where the tube connecting the two
vessels A and B is closed. In that case, it is possible to ascertain which vessel
contains the largest amount of water by doing one observation, e.g. a. The water
collected in this way comes only from vessel A. If the total amount of water is
20 liter, then we know that if A contains e.g. 12 liter, than B must contain 8
liter, so that observation a will produce the result ÒyesÓ, and b ÒnoÓ. The
coincidence experiment will produce Òyes, noÓ. Hence, the Bell locality
condition is satisfied, and the distinction:

(the largest amount of water is contained in A,
the largest amount is contained in B)

can be considered as a common cause for (a, a') and (b, b'). This is completely
analogous to the billiard ball situation, where the initial distinction is:

(the center of gravity of the ball is in compartment A,
the center of gravity is in compartment B).

However if the connecting tube is open, it becomes impossible to determine
which vessel contained initially the largest water volume, by doing a single
experiment, e.g. a.
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Moreover, if we would be able to determine the volume in another, indirect
way (e.g. by measuring the dimensions of the vessel and calculating its volume),
this would not allow us to predict the result of the coincidence experiment.
Indeed, the volume collected from vessel A does not depend on A's volume, but
on the speed with which the water flows through the siphon. The only
distinction which does influence the result of the coincidence experiment is that
between the sizes of the two siphons:

(the siphon at A is larger, the siphon at B is larger) > (a, a').

However this distinction does not belong to the system which is observed, but to
the measuring apparatus. Hence, it corresponds to what we have called the
indeterminate microstate of the measuring instrument (sect 7.3). At the level of
the system to be observed there is no initial distinction:

(there is more water to be collected from A,
there is more water to be collected from B)

as long as the tube is open. The distinction is really created during the
observation process, and depends upon the observation apparatus. This is
completely in correspondence with our analysis showing that the quantum
observation process does not conserve distinctions.

As we have continuously emphasized, processes which do not conserve
distinctions, cannot transfer information, and hence are not subject to the
requirements of causality, locality or continuity. It can indeed be proven in a
rigorous way that the EPR set up cannot be used to transmit signals (Ghirardi,
Rimini, and Weber, 1980). Hence, there is no paradox in the fact that the EPR
correlations are non-local, i.e. are correlations between events separated by a
space-like interval.

The apparent paradoxical nature of the EPR effect is simply due to the fact
that the correlated, spatially separate distinctions are not caused by a common
initial distinction, corresponding to a classical, local hidden variable, as shown
by the Bell theorem. However, there is nothing mysterious about that, if the
phenomenon is analyzed in a more general, non-classical frame, where there is
room for the creation of distinctions by the observer, and for a symmetrical,
distinction conserving relations between events. In such a frame the Bell locality
condition (and hence the Bell inequality) would generally not be valid, because
it presupposes that the distinction made during a coincidence experiment was
already inherent in the state of the object, and hence could be uncovered by
single experiments. The Aerts thought experiment has shown that this is not
even true for macroscopic systems.

8.6.3 The Aharonov - Bohm effect

We will now apply our analysis to a last quantum mechanical paradox, which is
at first sight of a different nature: the Aharonov-Bohm effect. The non-local

- 128 -

correlations appear here to be independent of the observation process
represented by the collapse of the wave function; they depend only on the
dynamical part of the quantum representation, characterized by the Schr�dinger
equation.

Consider a magnetic field confined to an infinitely extended solenoid.
Consider an electron wave function confined to the spatial domain outside the
solenoid. Clearly there is no local contact between field and wave. Yet the
solution of the Schr�dinger equation for the wave function can be shown to
depend on a parameter which measures the flux of the magnetic field through
the solenoid.

The reason is that the Schr�dinger equation depends on the magnetic
potential, which is non-zero outside the solenoid, and which thus gets into the
expression for the phase factor of the wave function. This flux dependence of
the phase factor can be observed by doing an interference experiment with the
wave. The interference pattern will undergo a shift proportional to the flux.

This effect can again be represented very simply by a correlation between two
distinctions: call the situation where there is a shift in the interference pattern s,
and the situation where there is a non-zero magnetic field in the solenoid m. We
then have a correlation:

(s, s') « (m, m').

This correlation is again non-local, since the events of detecting whether s or s'
is the case respectively detecting whether m or m' is the case, can always be
produced by a coincidence experiment, so that they are separated by a space-like
interval.

Let us analyze whether this correlation can be used to transmit signals.
There are two possible cases: either the magnetic field has always been present
in the solenoid, with a constant flux, or at some moment in time the magnetic
field has been turned on.

In the first case, the correlation cannot transfer information, just like the de
Broglie, or EPR correlations. Indeed, the state of the distinction (m, m') is fixed,
and hence, through the correlation, the state of (s, s') is fixed. Therefore, we
cannot prepare the field or the electrons in a particular state, we can only detect
what is already the case, and predict what our correspondent looking at the other
distinction will find. However, this correspondent has no way to establish
whether we have looked at the distinction or not.

In the second case, we can prepare the magnetic field in a certain state, e.g.
by turning it on if it was turned off. This will influence the state of the electron
wave, so that our correspondent looking at the interference pattern (which can
be at a large distance of the solenoid), can detect the pattern shift caused by this
event. Hence, a signal has been transferred.

However, according to the laws of electrodynamics, if the magnetic field is
turned on, this must necessarily be accompanied by the appearance of an electric
field, extending outside the solenoid. This electric field will interact locally with



- 129 -

the electron wave by shifting its phase. When the magnetic field becomes
constant again, the electric field will disappear, leaving behind a shifted electron
wave. This local effect of the electric field on the wave, is subject to the laws
governing electromagnetic propagation, and hence must spread with a velocity
which is equal to the velocity of light. Hence, the velocity of the transmitted
signal cannot be larger than the velocity of light (cf. Van Kampen,1985).
Therefore there is no paradox.

Remark that in this second case the correlation can be explained by a
common cause. Indeed the turning on or off of the field has directly caused (m,
m'), and indirectly, through the appearance of the electric field, caused (s, s').

In the first case, where the field is absolutely constant in time (this is clearly not
a realistic situation), the origin of the correlation can be traced back to the fact
that the Schr�dinger dynamics conserves superpositions of quantum states.
Indeed, the changing of the phase factor can only be made observable because
waves travelling along opposite sides (left or right) of the solenoid acquire
different phase factors, and hence will produce a shifted interference pattern.
Classically, an electron can only travel along one path, left or right of the
solenoid, so that there is no interference of different phases.

This can be represented by a topological distinction: the space outside the
solenoid has a multiply connected topology. This signifies that paths travelling
along different sides of the solenoid cannot be continuously deformed one into
the other; they belong to different Òhomotopy classes Ò. The solenoid can be
viewed as a ÒholeÓ in space forming an absolute boundary separating paths
which belong to different classes.

However, quantum observation processes do not conserve topological
distinctions. This means that a general quantum state will be a superposition of
waves travelling along different homotopy classes. Such a superposition state
does not distinguish between homotopy classes. This is analogous to the
superposition state in the de Broglie situation which does not distinguish
between the separate component spaces (boxes) of a non-connected space, and
to the state of the connected two-vessel system in the Aerts thought experiment,
where the water is distributed in such a way that it is impossible to distinguish
between the vessel containing the larger amount of water and the vessel
containing the lesser amount.

If we wish to make distinctions between different paths, we must make the
wave function collapse to one of its position eigenstates. This is what happens
during the interference experiment when the wave is projected onto the screen.
The interference pattern is really a two dimensional image of the correlations
between different measurement results (i.e. points on the screen hit by different
particles). The fact that this pattern itself depends on the magnetic flux is then
analogous to the fact that the spin correlations of the EPR experiment depend
upon the initial spin of the particle which has disintegrated.
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CHAPTER 9: Irreversible information processes:
from statistical mechanics to cognitive psychology

9.1 Introduction

We have seen that the basic difference between classical and non-classical
representations is to be found at the level of the information processes within the
representation, which simulate and hence allow us to anticipate external
processes. In classical representations these feedforward processes conserve all
distinctions, hence conserve the amount of information. Non-classical
representations are characterized by internal processes which create or delete
distinctions: e.g. the observation process in quantum mechanics, or the
ÒparadoxicalÓ cyclic causal processes in space-time physics.

In these examples, however, the non-conservation of distinctions seemed to
have rather negative effects. Each time this phenomenon appears in a theory, it
gives rise to indeterminacy or relativity. Furthermore, it is accompanied by a
host of paradoxes, confusions, and ambiguities. This is because the classical
frame, which unconsciously determines the world view of most scientists, is
unable to incorporate these phenomena.

In the examples we shall discuss now, however, the creation and destruction
of distinctions will be seen in a more positive way. We shall show that this
phenomenon is a very natural one, which is needed to explain all evolutions
where something qualitatively new is produced. Due to lack of space and time,
however, the discussions must remain very superficial.

9.2 Irreversibility in statistical mechanics

As we have said earlier (section 7.4), the main difference between classical
mechanics and statistical mechanics lies in the fact that statistical mechanics
uses macrostates to represent the incomplete information an observer has got
about a complex system.

A typical example of such a system is a box filled with a gas. The number of
gas molecules in the box is so great, that it is impossible to determine the basic
state variables (position and momentum) of all the individual molecules. The
only things the observer can determine are global, macroscopic variables
(volume, pressure, temperature,É), which describe the basic properties of the
gas as a whole. The values of the macroscopic parameters determine the
macrostate of the system, which can be viewed as the subset (or ensemble) of all
these microstates, which imply the given values. (More generally, a macrostate
can be viewed as a probability distribution on the space of the microstates.)

One would then be tempted to represent the evolution of the complex
system by an ensemble of microstate trajectories determined by the classical,
deterministic laws of microstate evolution. If the macrostates are well-chosen,
so that the set of microstates determining a macrostate m(t) is mapped onto a
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new set which corresponds to another macrostate m(t+T), then the evolution of
macrostates within the macrostate space will be deterministic.

In that case, the transition from microstates to macrostates amounts simply
to a Òreduction of the representationÓ (cf. section 4.8), where the new
representation is homomorphic to the old one. The new representation is
obtained from the old one by eliminating all distinctions which are considered
irrelevant, i.e. those distinctions which discriminate between different
microstates belonging to the same macrostate. Although the new representation
will contain less information than the old one, it will still be classical, i.e. it will
conserve all remaining distinctions.

It can indeed be shown that the classical, reversible evolution conserves the
volume of regions of state space (Liouville theorem). This volume can be seen
as a measure for the amount of microstates belonging to a macrostate (assuming
that the probability density of microstates is constant within the volume, and
zero outside). Hence, the ÒnumberÓ of microstates belonging to a macrostate is
conserved, and this means that the number of distinctions needed to determine
the microstate remains constant.

This property can be clarified by introducing the concept of entropy (S), which
is an additive measure for this number of distinctions (i.e. the amount of
information) needed to determine a microstate s, given a macrostate m:

S(m) = k log W(m)

where k is a constant (often the constant of Boltzmann) and W the number of
microstates belonging to m. This formula was introduced by Boltzmann. It can
be generalized for situations where the probability distribution is not constant:

S(m) =Ê-Êå i Pi(m).log Pi(m)

where Pi(m) is the probability to find a microstate si provided that m is actual.
(In the continuous case, the sum will be replaced by an integral).

This is the classical expression for the amount of lacking information. If k is
chosen equal to 1, and if the logarithm has base 2, S corresponds to the Ònumber
of bitsÓ, i.e.: the number of (equiprobable and independent) distinctions to be
carried out in order to determine s, given m.

We have not used this measure until now, because in general the two sides a and
a' of a distinction are not equiprobable, and different distinctions are generally
dependent (e.g. a.b would have a greater probability than a'.b). However, in
general there is no absolute way to determine these probabilities.

In the framework of statistical mechanics, were all variables are supposed to
have determined probabilities, this measure is very useful. It is mostly used to
express the reversibility (or irreversibility) of a specific evolution. Indeed,
according to the classical, causal dynamics, all information is conserved, and
hence S is constant for reversible processes.
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However, it is easy to imagine situations where the incomplete, macroscopic
information of the observer will diminish. A traditional example is the
following: suppose that you have a box, separated by a plate in two
compartments A and B. Box A contains a gas, box B is empty. If the plate is
removed, the gas molecules will diffuse into B. After a while, the distribution of
the gas over the two compartments will have become homogeneous. Call (a(x),
a'(x)) the distinction:

(the gas molecule x is in box A, the gas molecule x is in box B)

Before the removal of the plate, it was possible to determine which of both
alternatives was actual (namely a), for all the molecules x of the system.
However, after the removal, we can no longer ascertain whether an individual
molecule is in box A or in box B. The same thing would have happened if all
the molecules were originally present in box B.

Hence, we have lost the information about which compartment contains the
molecules. The distinction (a, a') has become unobservable, hence meaningless.
This signifies that the new macrostate m1, representing the diffused system, will
contain less information than the original macrostate mo, representing the
system contained in A. Hence:

S (m1) > S (mo).

In other words, m1 contains more microstates than mo. If we suppose that all
microstates are equiprobable, this means that m1 is more probable than m2.

Let us estimate how much m1 is more probable than m2. Suppose that the
number of molecules in the system is N (let us say equal to the Avogadro
number, i.e. very large). Each molecule can be in two distinctional states: a or a',
assuming that m1 is given. Hence, there are 2N subsets of m1 to be distinguished
if we could determine whether a molecule was in A, or in B. One of those
subsets, where all molecules are in A, corresponds to mo. Hence, m1 is 2N times
more probable than mo.

In other words, the chance of finding mo, given the global constraints
expressed by m1, can be neglected. The macroscopic or global properties
determining the system, such as global energy, volume, number of particles,É,
allow different configurations of the systems elements. However, the
configuration represented by mo, where all molecules are concentrated in one
half (A) of the box, is so improbable, that we may assume that we will never see
it occur spontaneously. Hence, we can assume that the configuration to be
expected is the one where all molecules are homogeneously scattered over the
entire box, i.e. the macrostate which does not distinguish between compartments
A and B.
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If this idea is formulated as a dynamical constraint, we get the second law of
thermodynamics:

a closed system will always evolve towards its most probable macrostate,
i.e. the macrostate m for which the entropy S (m) is a maximum.

This principle is generally applicable to all complex or thermodynamic systems,
i.e. systems with a very large number of components. For systems with a small
number of components we cannot neglect the probability of macrostates for
which the entropy is not maximal, hence the principle is not universally
applicable.

The main consequence of this principle is that thermodynamic evolution
becomes irreversible: a thermodynamic evolution towards equilibrium (i.e.
maximum entropy) cannot be reversed, because this would mean that entropy
would diminish. The equilibrium state acts as an attractor.

This irreversibility contradicts classical distinction conservation, because
distinct initial states e.g. (all molecules in A, all molecules in B), can evolve
towards the same equilibrium state. This confronts us with a paradox, because
we started with the assumption that statistical mechanics is based on classical,
reversible dynamics.

If we wish to express the irreversible thermodynamic evolution as a
deterministic trajectory in the space of distributions over classical microstate
space, then we clearly cannot use the classical dynamical constraints
exemplified by the Liouville theorem. We must introduce stochastic processes,
i.e. processes where for a given initial microstate there are different potential
transitions, each with its proper probability.

If these processes are not time symmetric, i.e. the transition probability P (sf

si) is in general different from P (si sf), it is possible to define a function S of the
probability distributions, whose time derivative dS/dt is positive. This function
corresponds to the entropy, and is a measure of the irreversibility of evolution.

In other words, to represent irreversible thermodynamic evolutions, it does
not suffice to introduce a lack of information about the state, because this would
lead to a model with non-zero, but constant entropy. We must add a lack of
information about the dynamical constraints, i.e. we must allow different
possible state-trajectories starting at the same initial state.

A good exposition of this tension between reversible and irreversible
representations in statistical mechanics is given in (Prigogine, 1979). However,
Prigogine's attempt to solve the paradox appears rather artificial. He tries to
define a transformation mapping distributions from the reversible representation
onto distributions from the irreversible representation. This would also
transform the operator group representing the reversible evolution into an
operator semigroup (i.e. no inverse operators) representing the irreversible
evolution. The physical meaning of this transformation, however, remains
vague.
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From the present point of view, there is no reason to derive the irreversible
representation from the reversible representation. If we are willing to accept that
it is impossible to get complete information about the state of a thermodynamic
system, then we should also be willing to accept that it is impossible to get
complete information about the system's dynamical constraints, since these
depend upon the unknown state variables.

For example, if we do not know the momentum of two molecules in a gas,
then it is meaningless to use the principle of momentum conservation in order to
determine the directions in which they will be scattered. Even if we had
(incomplete) information about their initial positions (e.g. inside compartment
A), then we would have lost this information after a few unpredictable
interactions.

The only constraint we can use is continuity: a molecule cannot move
instantaneously from the center of compartment A to the center of compartment
B. Apart from that, and some global constraints (conservation of total energy,
total momentum, etc.), there is no way to restrict the number of possible state
transitions. Hence, the information we had about the initial state can only
diminish during further evolution, until equilibrium is reached. In other words,
the distinctions we were initially able to make are subsequently lost.

We find here an analogy with quantum observation processes. Suppose a
quantum system is prepared in a state with definite momentum. Then its
position is measured by a macroscopic apparatus. As we have seen (section 7.3),
the interaction depending upon the unknown microstate of the apparatus will
perturb the state of the quantum system in an unknown way, and hence destroy
the information about the momentum of the particle. Here too the lack of
information about the microstate (of the apparatus) produces a lack of
information about the interaction, and hence about the further evolution of the
coupled system (apparatus + quantum object). However, this loss of information
about momentum is here compensated by a gain of information about position.

We shall now see that in certain cases, a thermodynamic system can also
experience a gain in information.

9.3 Self-organization

The second law of thermodynamics states that entropy cannot diminish, hence
information cannot increase, in closed systems. A closed system is a system
which does not interact (i.e. does not exchange information) with its
environment. However, if the system is open, then it is possible that the entropy
produced in the system is evacuated or dissipated, so that the information inside
the system increases. This gives rise to new distinctions between parts of the
system.

For example, a layer of water heated from below, can give rise to the
B�nard instability: a structure of hexagonal cells appears in the liquid. Inside the
cells, warm water moves up from the bottom to the relatively cool surface.
Outside the cells the water which was cooled by its contact with the surface
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sinks downward again to the bottom. Before the water was heated there was no
distinction between inside and outside of a cell; the movement of water
molecules was homogeneously spread. The heating, however, has created a non-
equilibrium, resulting in a dissipation of entropy. This becomes visible as a
structure of distinct cells.

Such phenomena were called Òdissipative structuresÓ by Prigogine (1979).
Analogous phenomena are sometimes designated by Òspontaneous symmetry
breakingÓ, Òorder from fluctuationsÓ, or Òsynergetic systemsÓ (cf. Haken, 1978).

This terminology can easily lead to confusion, since at first sight we would
tend to associate order with more symmetry, not with less symmetry. On the
other hand, the concepts of ÒdissipationÓ and ÒsynergyÓ are more readily
associated with the classical concept of ÒenergyÓ, whereas the phenomena we
try to describe are better characterized by ÒinformationÓ. Their essential
characteristic is the appearance of structure, i.e. internal differentiation and
integration, or, in our terminology, distinction and assimilation.

Since these phenomena are in general dynamic, it is better to replace the
word ÒstructureÓ, which has a static connotation by the word ÒorganizationÓ.
Since the phenomenon appears spontaneously, inside the system, we will speak
about Òself-organizationÓ: there is no external agent determining the
organization.

From a purely classical point of view, we would be tempted to say that the
appearance of macroscopic differentiations or distinctions is not random or
unpredictable: it is caused by certain microscopic differences between
components of the system.

For example, in the B�nard phenomenon, what causes the water molecules
in one region A to move upwards, and those in another region B to move
downwards? Before the water was heated, the water molecules both in A and B
moved more or less homogeneously in all directions. The heating now creates a
Ònon-equilibrium boundary conditionÓ: the conditions (temperature) at the
boundaries (bottom and top surfaces) of the system are such that it is impossible
for the system to maintain a thermodynamic equilibrium, i.e. a macrostate with
maximal but constant entropy. This means that the system becomes unstable: a
very small fluctuation can be greatly enlarged and drive the system into a new
regime. For example, if the concentration of molecules moving upward in A
was a little larger than the concentration in B, then this effect will be enhanced
until all molecules in A move upwards, and all molecules in B move
downwards. Classically, we have a causal process:

(c,Êc') = (upward concentration larger in A, upward concentration
larger in B) ®

(a, a') = (all molecules upward in A, all molecules upward in B)

However, the distinction (c, c') is that small that it cannot be observed, or
predicted from previous observations; it belongs to the (unknown) microstate of
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the thermodynamic system. The distinction (a, a'), on the other hand, is clearly
visible, and belongs to the (observed) macrostate of the system.

The characteristic of such an instability is that initial conditions which are
very close to each other (i.e. microstates which are macroscopically
indistinguishable) can give rise to final conditions which are far apart (i.e.
microstates which belong to different macrostates, hence are macroscopically
distinguishable). This phenomenon is sometimes called ÒbifurcationÓ: at some
point the (deterministic) trajectory of the macrostate bifurcates, so that the
system must choose between distinct macroscopic trajectories (e.g. one
characterized by a, another by a').

This is the point where the deterministic macrorepresentation becomes
stochastic: different possibilities for further evolution are open. The path the
system will choose depends upon something which is unobservable. Hence, we
can only try to attach probabilities to the different possibilities, we cannot
predict with certainty.

This is again analogous to the quantum observation process. The non-
equilibrium boundary conditions play the same role as the coupling to the
macroscopic observation set up: both enhance or magnify certain microscopic
distinctions. On the other hand, they blur or erase other microscopic
distinctions.

For example, certain small differences in movement of molecules within the
cell A are wiped out, all molecules in A undergo the same movement. This is
sometimes described as Òthe appearance of long-range correlationsÓ between
parts of a previously chaotic system.

From this viewpoint, the irreversible process described in quantum
mechanics by the collapse of the wave function is seen as a self-organization of
the coupled system (micro-phenomenon + macro-observation apparatus),
leading to the appearance of macroscopic distinctions. The indeterminism of the
observation result corresponds then to the bifurcation phenomenon, where the
self-organizing system must choose between distinct macroscopic states. The
incompatibility of observational couplings corresponds to the fact that different
boundary conditions will generally produce different dissipative structures.
Finally, the Ònon-local correlationsÓ between observations are similar to the
Òlong-range correlationsÓ in dissipative structures.

9.4 Autonomy and adaptation

In dissipative structures the self-organization depends upon the non-equilibrium
boundary conditions, i.e. on the coupling of the system with the environment. If
these conditions change, the structure of the system will generally be destroyed.
In this sense dissipative structures are not very stable. The reason is that the
ÒforcesÓ which create and maintain the internal distinctions are external
themselves. If the heating of the water layer is interrupted, the B�nard pattern of
cells will disappear.



- 137 -

In the example of quantum observation, the collapse of the wave function,
i.e. the creation of a macroscopic distinction, is ÒforcedÓ upon the quantum
system by the external observation apparatus. If the system is dissociated from
the apparatus, its state trajectory will in general leave the subspace of
eigenstates corresponding to the observed distinction. (Remark that if the
observation would be carried out continuously, the state of the system would not
change at all. The wave function would be projected continuously onto the same
eigenstate. This is called the ÒZeno paradoxÓ (Misra and Sudarshan, 1977)).

For a dissipative structure to become stable, you need an internal ÒcontrolÓ
which maintains the internal distinctions by eliminating or counteracting all
fluctuations and perturbations which might destroy it.

An example of such a stable self-organizing system is a living cell. The
internal control is here effectuated by the DNA, which selects chains of amino
acids to form the structure proteins and enzymes needed for the proper
functioning of the all. These proteins and enzymes are sooner or later destroyed
by chemical reactions. However, there is always a recuperation of their amino
acids, together with an input of new amino acids by feeding and digestion, so
that the DNA can reconstruct the original polymers. Thus the organization of the
cell, i.e. the interplay of distinct classes of proteins and enzymes, is maintained.

Remark that the DNA itself is not invariant: it is itself produced and
reproduced by the proteins it produces. In this sense the process is circular. This
phenomenon may be called ÒautopoiesisÓ, i.e. self-production (Maturana and
Varela, 1980; Varela, 1979). An autopoietic system is a system whose internal
processes produce the components needed for the internal processes to occur.
Thus the system maintains an invariant organization, even though the
components, or substances, which carry this organization change continuously.

This is analogous to the functioning of dissipative structures: for example, in
the B�nard phenomenon the distinction between the cells is invariant, even
though the water molecules moving inside the cells are continuously replaced.
This should remind us that a distinction belongs to the category of information,
not to the category of matter, i.e. it is independent of its physical substrate (cf.
section 1.4), which may change, whereas the distinction remains invariant.

What distinguishes an autopoietic system from a general dissipative structure, is
that one of the distinctions produced by the system is its own boundary, i.e. that
what separates the system from its environment. This allows the system to
become more or less autonomous, i.e. independent of the details of the outside
situation. The system creates in a certain sense its own Òboundary conditionsÓ,
in such a way that its internal organization (dissipative structure) becomes
independent of the environment. For a living cell, this topological boundary
corresponds to the membrane, which encloses the protoplasm where the internal
processes occur.

In order to maintain stable Òboundary conditionsÓ the internal processes
must counteract or compensate all external perturbations. This type of dynamic
stability is sometimes called ÒhomeostasisÓ. A very simple example is provided
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by the thermostat, discussed in section 2.3. If the outside conditions change (e.g.
the temperature goes down), an internal process will be triggered that corrects
the deviation (e.g. the heating element is activated), until the ideal boundary
condition is restored (e.g. the temperature reaches 24¡C).

In other words, for a self-organizing system to be autonomous, it must be
able to adapt to all external changes. This allows it to maintain a stable
boundary, i.e. a distinction between inside (system) and outside (environment).

We might be tempted to see adaptation, which is characterized by the continuity
of the system-environment boundary, as a simple causal process. However, the
conservation of the inside-outside distinction in autopoietic systems is the result
of a number of internal processes which do not conserve distinctions. This
becomes immediately clear if we remember that Òdissipative structuresÓ are
characterized by dissipation, hence production of entropy.

This may be contrasted with other systems for which the boundary is
invariant. Let us once again consider our billiard-ball example. The movement
of a billiard-ball is a causal process: it conserves the distinction between inside
and outside of the ball. This allows us to represent the ball as a classical
ÒobjectÓ. However, this is only due to the fact that the molecules forming the
ball are rigidly connected, so that it is very difficult to separate them. There are
no internal processes of adaptation or self-production.

We thus find two classes of ÒobjectsÓ, i.e. systems with a conserved
boundary: simple, mechanical systems (i.e. particles or rigid bodies) like the
ball, and autonomous or adaptive systems, like an organism.

We have already stressed the interdependence of adaptation and cognition
(section 2.2): in order to adapt, a system must be able to perceive and to
understand the signals from the environment, and to decide between alternative
ways of reacting. Hence, the information and/or entropy exchanges between
autopoietic system and environment can be interpreted as rudimentary cognitive
processes.

This corresponds to Maturana's and Varela's (1980) definition of the
cognitive domain of an autopoietic system as the domain of all interactions in
which the system can enter without loss of its identity (i.e. its self-environment
distinction). However, Maturana and Varela do not wish to describe these
interactions as Òinformation exchangesÓ. The way we have defined information
transferring processes, however, is general enough to incorporate Maturana's
and Varela's Òperturbations and compensationsÓ.

9.5 Perception and problem-solving as irreversible processes

The first step in a general cognitive process (cf. section 2.6) is perception.
Perception is basically a distinction of the features of the environment which are
meaningful, that is to say which are relevant with respect to the system's global
strategy for survival (i.e. maintenance of its self-world boundary).
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This means that perception is primarily a filtering of the incoming
information, so that only the important distinctions are retained and magnified.
If all information, i.e. all physical distinctions or differences, were conserved,
the internal representation of the outside situation would become so complex
that the system would be unable to plan or to prepare appropriate reactions (cf.
section 6.2). Therefore, it would be unable to adapt, i.e. to maintain its
autonomy.

On the other hand, a mechanical system, such as a billiard ball, reacts
causally to all external influences. This means that all distinctions characterizing
the perturbation are conserved in the reaction of the system (cf. also section
7.3). Yet the system ÒsurvivesÓ most interactions. So, why does a mechanical
system have no difficulties with information complexity?
The reason is that a mechanical system is not self-organizing, there are no
autonomous processes occurring inside the system. This means that all its
reactions are immediate, and completely determined by the input. It cannot learn
from past events, or anticipate future events. This implies that the domain of
interaction in which the system can enter without loss of identity, is a priori
fixed: if the temperature becomes too high, the ball melts.

An autonomous system, on the other hand, will generally anticipate the
effect of a raise of the temperature (e.g. produced by an approaching fire) and
take counteraction (e.g. running away, or cooling itself). In order to do that, it
needs a filtered representation of the information provided by the environment.
It is just this filtering (i.e. elimination of irrelevant distinctions), which
guarantees that the system remains autonomous, i.e. independent of the causal
influences of the environment.

This filtering of distinctions can occur in different, incompatible ways. A
traditional example is found in what psychologists call Ògestalt switchesÓ. This
phenomenon is exemplified by certain drawings which, when looked at in one
way, are recognized as representing a certain object, e.g. a rabbit, or a cube seen
from below. However, if the same figure is looked at again, it is suddenly
recognized as representing a quite different situation, e.g. a duck, or a cube seen
from above.

The two different ways of perceiving the same pattern are called ÒgestaltsÓ.
They are mutually exclusive: it is impossible that the same figure is interpreted
simultaneously as a rabbit and as a duck. Yet both interpretations are equally
plausible, and if one looks long enough at the drawing he will experience a
discontinuous shift from one way of perceiving the pattern to another way.

This should remind you of the incompatibility of certain propositions or
observations in quantum mechanics. Quantum observation and everyday
perception are indeed two instances of the same basic type of information
processing, where certain external distinctions are magnified, while others are
wiped out or filtered.

One way of perceiving may magnify a distinction (p, p') and eliminate a
distinction (m, m'). Another perception, however, may retain (m, m'), while
filtering out (p, p'). Therefore, we may find that the same phenomenon is
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sometimes categorized as m (e.g. large momentum, or a rabbit), and at other
times recognized as p (e.g. a specific position, or a duck).

Classically, we would conclude that the phenomenon should be represented
by the conjunction of p and m. This would correspond to the interpretation that a
particle has both definite position and definite momentum, or that the drawing
represents both rabbit and duck. However, we know that in practice it is
impossible to observe or perceive both features at the same time.

This can be explained by the basic principle that a representation can never
be as complex as the thing it represents. If all potentially perceivable
distinctions would be simultaneously represented internally, then the
representation would be too complex. Therefore, the process of perception is
necessarily irreversible, i.e. it does not conserve the complete information.

The same reasoning can be made for the other basic type of cognitive process:
problem-solving. If the internal representation would be perfect, i.e. isomorphic
to the external world, then the search for problem solutions could be
deterministic. The different steps in the problem-solving process would simply
reflect the different changes in the outside world. In that case, however, the
internal feedforward process could not anticipate, i.e. go faster than the external
evolution of the world (cf. section 6.2).

An additional argument could be that, as we have shown in sections 8.4 and
8.5, the structure of time itself is determined by the interconnections between
information transferring processes. Since the causal connections inside the
representation would be completely isomorphic to the causal connections in the
outside world, the passage of time inside the representation would be in phase
with the passage of time outside. Therefore, the inside processes could never go
faster than the outside processes they are supposed to represent.

Since the internal representation, by definition, cannot be a perfect image of
the world, we cannot expect to find a deterministic procedure for designing
perfect predictions of outside phenomena. Every internal feedforward process
will be characterized by Òtrial-and-errorÓ, and hence will depend on (internal
and external) feedback in order to correct its course.

This is clearly exemplified by the heuristic problem-solving paradigm used
in AI (cf. section 1.5): for every state of the problem representation there is a
choice between different operators to be applied. The only guide is an
evaluation function, but the maximum of the evaluation function is not
necessarily the best alternative for solving the problem. Typically one tries to
follow a path initially characterized by high values of the evaluation function.
After a few steps, however, it appears that the path leads to a dead end: all
remaining state transitions from the last state correspond to a spectacular
decrease of the evaluation function. In this situation the most reasonable course
of action is ÒbacktrackingÓ, i.e. going back to a previously reached state, and
trying an alternative operator, whose initial evaluation is less than the value of
the operator leading to the dead end.

Clearly, the search through the problem space is not a classical causal
process. Different initial states can lead to the same final state, whereas the same
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initial state can lead to different final states. In other words, the problem-solving
process too does not conserve distinctions.

9.6 Learning and discovery as changes of representation

Until now, we have assumed that the representation structure which guides the
perception and problem-solving processes, is invariant. The state, i.e. the
activation pattern, of the representation undergoes irreversible transformations,
but the representation structure is fixed. The prototypical example of such a
fixed representation structure is the DNA pattern, which guides the processing
of amino acids and proteins.

In higher order autonomous systems, however, there is also a non-fixed
component in the knowledge needed for adaptation. This flexible knowledge is
generally embodied in the central nervous system, and in the immune system
(Varela, 1979). The evolution of this knowledge under the influence of
environmental input may be called ÒlearningÓ. When the cognitive change takes
place independently of new external input, we will speak about creativity or
ÒdiscoveryÓ.

For example, I can ÒlearnÓ to drive a car by listening to someone else's
advice, and by experiencing the feedback provided by a real car, when I try to
make it move. On the other hand, by reflecting internally, I can ÒdiscoverÓ a
new law of physics. In practice, it is difficult to separate learning and discovery:
every cognitive change is partly caused by external stimuli, partly by internal
processing.

Let us analyze some of the basic psychological paradigms used for modelling
learning processes.

The simplest types of learning are ÒhabituationÓ and ÒsensitizationÓ
(Wickelgren, 1977). If a certain stimulus occurs again and again, without
announcing anything important with respect to my global survival strategy, I
shall learn to ignore it. For example, if I live in a house near to a railway, I shall
get used to the sound of the trains, i.e. I shall not longer notice when a train
passes. I shall get habituated to the stimulus. This means that I shall not longer
distinguish (consciously) between the sound of a passing train, and the absence
of this sound. Therefore, habituation is merely the disappearance of an internal
distinction, used to interpret stimuli.

Conversely, sensitization corresponds to the appearance of a new stable
distinction. This occurs when some difference between two types of stimuli,
which I did not notice before, turns out to be important for my survival strategy.
For example, if I discover that there are two types of apparently similar
mushrooms, of which one type is edible, whereas the other type is poisonous, I
will learn readily to distinguish between both types. Similarly, a new-born child
will learn rapidly to distinguish the face of its mother who feeds him from the
faces of other persons, who do not.

Related to sensitization, is the process which is called Òconcept learning
through examples and counterexamplesÓ. The best way for a child to learn the
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meaning of the concept ÒdogÓ, is by being presented to different types of
animals, some of which are designated as dogs, while others are designated as
Ònon-dogsÓ, i.e. cows, sheep, cats,É By being confronted with all these
examples, the child will learn to assimilate all four-legged, hairy creature which
bark, into one category, and to distinguish it from other, similar categories.

A more complex type of learning occurs when a relation is to be established
between different categories of stimuli. The simplest paradigm for such learning
process is called Òassociation through conditioningÓ. If a dog is presented with
food each time he has heard the sound of a bell, he will learn to associate the
sound with food. This means that he will begin to salivate when he hears the
sound, even when no food follows. This can be explained by assuming that a
kind of ÒconnectionÓ has been established in the dog's internal representation
between the phenomenon of hearing a bell, and the phenomenon of receiving
food.

We have seen two basic types of connections between distinctions: either
the connection is logical (ÒbellÓ implies ÒfoodÓ, Òno foodÓ implies Òno bellÓ), or
it is causal (ÒbellÓ produces ÒfoodÓ, Òno bellÓ produces Òno foodÓ). If the
connection obeys both conditions, the relation between the two distinctions is
one of equivalence, or perfect correlation: no phenomenon occurs without the
other one.

Formally this can be represented as follows:

logical relation: (b, f') ® (f, b')

causal relation: (b, b') ® (f, f')

equivalence relation: (b, b') « (f, f')

Furthermore, there are a continuous number of probabilistic or stochastic
connections characterized by different conditional probabilities of the type:

P (f |Êb), P (f' |Êb), P (b' |Êf), É

We may assume that a general process of association formation can be modelled
by the continuous evolution of such a set of probability functions until an
Òattractor stateÓ is reached corresponding to one of the basic types of
connections (i.e. a state for which most of the conditional probabilities would be
zero).

It should be noted here that in practice association and sensitization go together.
In other words, it is not so that you should first have two distinctions, before you
can form an association between them. For example, the formation of the
distinction (mother, other person) for a baby, will proceed in parallel with the
formation of the association:

(mother, other person) ® (feeding, no feeding)
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Another example of this interdependence can be found in the domain of
scientific discovery. The concept of Òbaryon numberÓ was introduced in
elementary particle physics to explain certain observed regularities in
elementary particle interactions. Certain reactions between particles which could
be expected to occur, were empirically never found. Therefore, one postulated a
conservation principle, which could constrain possible reactions so that only the
observed reactions would be allowed. In order to do this one needed to
introduce some property which could be conserved. This property was called the
Òbaryon numberÓ.

One could now distinguish different collections of particles according to
their total baryon number. If the baryon number of the two collections
(channels) was different, the transition from one collection to the other one
could be excluded. This corresponds to a causal relation, where the distinction
between equivalence classes characterized by different baryon numbers is
conserved.

By attributing on a purely conventional basis a baryon
number to a certain type of particles, the baryon numbers of the other particles
could now be computed from the observed reactions. In this sense, the actual
value of the baryon number for a particle is purely a matter of convention. The
only thing which is physically meaningful is the distinction between particles
with different baryon numbers, because this distinction appears to be conserved
in actual interactions. The discovery of this distinction follows from the
assumed existence of a causal relation.
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CHAPTER 10: A summary and discussion of the previous
results

10.1 Different formulations of the research problem

We began this exploration by observing that the present (r)evolution of science
and society demands a framework for representing change, which is more
general than the framework provided by classical science, and we set out to
investigate how such a framework could be constructed. This first formulation
of a research problem was very ambitious, but also quite vague, so that it could
be doubted whether anything like a precise, scientific analysis could be used to
approach it.

Therefore, the first step of the investigation had to be a refinement of the
concepts involved in the problem formulation. The fundamental concept
appeared to be the concept of ÒrepresentationÓ. This was studied in different
contexts: physics, mathematics, systems theory, philosophy and computer
science. It appeared possible to synthesize the different meanings of the
ÒrepresentationÓ concept by means of the concept of ÒadaptationÓ. An Òadaptive
representationÓ was then defined as the abstract structure through which an
internal, cognitive system (self) could efficiently anticipate, and hence adapt to,
the external physical changes taking place in the environment.

In this sense, a representation forms a kind of abstract interface, regulating
the interactions between system and environment, in such a way that the system
is able to maintain a stable identity. This process of regulation or steering can be
conceptualized as an internal processing of information coming from the
environment. The actual information being processed corresponds to the ÒstateÓ
of the representation; the more stable knowledge which controls this processing
corresponds to the ÒstructureÓ of the representation.

Although this analysis allowed us to understand the aim or function of a
representation, the actual mechanism through which this function is fulfilled
remained vague. Since the cognitive mechanisms used by most adaptive systems
are very difficult to observe, we looked for a domain where these mechanisms
are more explicit. Science was recognized as an attempt to construct such
explicit representations. The scientific method for making the representation
structure and its feedforward mechanism more explicit was called
ÒformalizationÓ; the method for making the information exchange between
representation and environment, and hence the feedback mechanism, more
explicit was called ÒoperationalizationÓ.

However, after looking at the often discontinuous evolution of scientific
representations and at the difficulties of communication across the boundaries of
representations or disciplines, we had to conclude that there is no universal
representation to which all existing theories can be reduced. Therefore, (implicit
or explicit) representations appear to have only a local and temporary value;
they cannot be integrated in one absolute, global representation.
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But then, if representations are relative and changeable, it becomes
interesting to study just how different representations can be related, and how
they can evolve. A theory of such relationships and dynamics, however, would
just be another adaptive representation. But this time the objects to be
represented would not be outside, physical phenomena, but representations
themselves. Therefore, the theory we wish to construct would be an adaptive
representation of adaptive representations, or, in other words, an adaptive
metarepresentation.

At first sight, this new problem formulation is quite different from the original
formulation, where we set out to find a representation of the most general types
of change, not of the most general types of representation. The key to elucidate
this apparent confusion could be found in an analysis of what we called Òthe
classical representation frameÓ.

10.2 Lessons learned by analyzing classical representations

If we wish to generalize the representation frame provided by classical science,
we should first try to understand how this frame is structured, and which kinds
of phenomena are easy, respectively difficult to represent within such a
structure. Such a reconstruction of both explicit and implicit representation
mechanisms used in classical science would provide us not only with a detailed
view of the way a (classical) representation functions, but also with some useful
ideas about how the problem domain of such a representation could be
extended.

This reconstruction was carried out in a hierarchical manner: starting from
the most primitive elements, and gradually adding levels of organization until a
complete, coherent and self-sufficient whole came out. The basic elements,
which represent distinct external phenomena, were called ÒobjectsÓ. Primitive
expressions of the representation can be constructed by coupling these ÒobjectsÓ
to ÒpredicatesÓ, representing properties or relations between objects.

By combining these expressions by means of conjunction and negation, we
get a set of compound expressions or propositions, whose logical structure is
that of a Boolean algebra. The atoms of this algebra correspond to classical
states. Every proposition of the algebra can be decomposed as a union of
mutually orthogonal atoms. Therefore, we have the basic property that for every
proposition a, and every atom s, either s implies a or s implies the negation of a.
This allows us to reduce the algebra of propositions to its subset of atoms, which
forms the classical Òstate spaceÓ.

Change can now be represented by a trajectory in the state space of the
represented system. A trajectory is a continuous, parameterized path. Therefore,
we must introduce a parameter, representing an absolute, linear time ordering,
and a topology on state space, which defines continuity.

In order to represent the way such a change of state can be brought about,
we must introduce operators, which can be composed. The linear structure of

- 146 -

time and the equivalence class structure of state space entail a group structure
for the operator algebra.

In order to decide which operator should be applied to a particular state, at a
particular time, we need dynamical constraints. These can be categorized as
conservation principles, which demand that certain properties of the state be
conserved during dynamical evolution, and variation principles, which demand
that possible state transitions be evaluated according to a certain criterion, so
that the ÒoptimalÓ one can be selected.

After this structural analysis of the classical frame, we had to analyze the world
view entailed by this particular structure. The formal properties of the
representation could now be related to general, philosophical concepts and
principles on which the classical ontology and epistemology are based. The
basic concepts are: atoms, matter, energy, space and time. Some principles
governing the interrelation of those concepts are: reductionism, determinism,
causality, reversibility, absoluteness and rationality.

Starting from this detailed analysis, we could now try to contrast classical and
non-classical representations. In order to do this efficiently, we needed a simple
criterion for determining the ÒclassicalityÓ of a representation. Such a criterion
was found by going back to the most fundamental mechanism used in a
representation: the process of distinction.

We had already noticed that information processing in a representation
consists basically of categorizing and selecting certain combinations of
categories. The Boolean logic and causal dynamics of the classical frame
provided a very simple model of such a mechanism. The model is characterized
by the fact that the distinction between a category and its complement, or a
proposition and its negation, is absolutely invariant. This applied as well to
logical as to dynamical operators or relations. We could then define a Ònon-
classicalÓ representation as a representation whose distinctions are not invariant.

10.3 The correspondence between classical metarepresentations and
non-classical object representations

From this point of view, we can now show that the two formulations of the
research problem we have used, are basically equivalent. If first, we look for a
representation frame able to represent more general changes than the classical
frame, then this can be interpreted as a search for a representation frame able to
represent processes where not only states, but also distinctions change. Second,
the search for an adaptive metarepresentation can be interpreted as a search for a
representation of the way the basic components of a representation, i.e.
distinctions, evolve.

The confusion between ÒrepresentationÓ in the first case, and
ÒmetarepresentationÓ in the second case, can be eliminated by demanding that
the representation we are looking for be explicit. Explicit or ÒscientificÓ
representations must have a structure which is sufficiently invariant to be
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transmitted faithfully between communicating members of a scientific
community.

This means that two scientists using the same concept, e.g. ÒmassÓ, should
make the same distinctions when trying to categorize phenomena, according to
this concepts. For example, they should use the same formal definition of
ÒmassÓ, and the same measuring units and instruments in order to distinguish
between objects with a different mass. With such a convention the purely
subjective meaning or experience of the phenomena can be eliminated from the
intersubjective representation.

For example, the same color can be experienced in a quite different way by
two individuals (e.g. one of the persons might be color-blind). However, if both
individuals agree to make the same distinction between one class of colors,
which is called ÒgreenÓ, and another class of colors, which is called ÒblueÓ,
there is no obstacle to communicate efficiently about this phenomena. The
ÒmeaningÓ transmitted through such communication is purely determined by the
explicit, intersubjective scheme of distinctions. However, this meaning is
generally different from the subjective meaning which is determined by a
variable scheme of implicit distinctions.

We may consider that a really intersubjective representation must be based
on invariant distinctions. In other words, it must have a classical structure. (Of
course, this is only an ideal case. In practice, scientific representations are only
partially explicit or intersubjective. Hence, their structure will only approximate
the classical ideal.)

But how could we then construct an intersubjective representation of
processes which do not conserve distinctions? The answer is simple: by
introducing ÒmetadistinctionsÓ. Such a metadistinction would be itself invariant,
but distinguish between other distinctions which could be variable. A scheme of
invariant metadistinctions would form a classical metarepresentation. This
would represent, depending upon the interpretation, either the changes in
classical (i.e. distinction-conserving) object representations, or general non
distinction-conserving processes. In order to see what this means in practice, it
suffices to look at some examples.

Quantum mechanics is an explicit representation characterized by a non-
classical logic, representing the non-conservation of distinctions during the
observation process. The only way to express this non-classical logic is by using
the language of mathematics, i.e. set theory, which forms the base of the Hilbert
space geometry and its algebra. But this language is based purely on classical,
Boolean logic. This fact has often led to confusion amongst researchers in
quantum logic: on the one hand, to formalize quantum theory you use a classical
logic; on the other hand, if you analyze the epistemological implications of this
formalism, you find a non-classical logic; which one of those in now the true
logic of quantum mechanics?

In order to evade this paradox it suffices to distinguish two levels of
description: 1) the classical logic of set theory functions on the
metarepresentational level, it represents the structure of the Hilbert space
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representation; 2) the non-classical logic functions on the representational level:
it represents the external process of observation. Therefore, we find a classical
metarepresentation coupled to a non-classical object representation.

A similar construction can be found in relativity theory. On the object level,
relativity theory is not a classical representation: there is no invariant distinction
between time (precedence) and space (simultaneity). However, this can be
reformulated so that we get a classical representation on the metalevel.

An example of such a classical representation of general relativity is the
theory called ÒgeometrodynamicsÓ (Misner, Thorne and Wheeler, 1974;
Wheeler, 1968). Here we have a particular, space-like hypersurface in 4-
dimensional space-time, and consider it as a particular state of the geometry of
3-dimensional space. The complete structure of 4-dimensional space-time,
which is determined by the Einstein equations, can now be seen as a dynamical
sequence of such 3-dimensional space geometries.

Hence, we have reduced the relativistic spatio-temporal representation to a
classical trajectory in state space. However, this state space does not represent
the possible properties of a concrete physical phenomenon. A state of this space
(which is sometimes called ÒsuperspaceÓ) represents a complete space, with a
proper geometrical structure. In other words, the states of the geometro-
dynamical representation are themselves complete representations of a 3-
dimensional state space. Therefore, geometrodynamics is a classical
metarepresentation, representing a non-classical object representation.

The examples we have seen of classical metarepresentations of quantum or
relativity theory are, however, quite incomplete. The metarepresentation of
quantum mechanics does not say anything about dynamics, whereas the
metarepresentation of general relativity seems to ignore all logical structures. It
is no wonder then that there seems to be no basis to unify quantum mechanics
and relativity theory, or even that both theories seem to be inconsistent.

In order to integrate different non-classical approaches we need a classical
metarepresentation which is at once simple and general. Instead of representing
merely some particular substructures of its object representation (e.g. the logic
of observations, or the geometry of 3-dimensional space), it should represent the
fundamental building blocks with which all adaptive representations are
constructed: distinctions, and all the ways they can be interrelated, or evolve. To
prepare such a metarepresentation is really the objective of the present study.

From our analysis of the classical frame we learned some basic properties of
the static or logical relations between distinctions. By analyzing non-classical
representations we should be able to learn something about the dynamics of
distinctions. Let us review the principal results we have obtained.

10.4 Lessons learned by analyzing non-classical representations

A first striking feature of quantum mechanics is what we called the
Òcomplementarity of representationsÓ: it appears impossible to give a complete
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classical description of a quantum phenomenon; we can only find mutually
incompatible, partial representations. Every partial representation consists of a
set of (compatible) observables, which give determined results for a particular
set of states (the eigenstates of the commuting set of observables) of the
quantum phenomenon. However, a basic feature of the quantum formalism is
the Òsuperposition principleÓ, which posits that for every two (orthogonal)
eigenstates s1 and s2 of a partial representation, there exists a Òsuperposition
stateÓ:

s3 = s1 + s2

which is not an eigenstate of this representation. It is always possible to find an
observable or representation for which s3 is an eigenstate, but this representation
will be incompatible with the previous one.
The simplest way to express this complementarity principle, and its formal
equivalent, the superposition principle, appeared to be the introduction of a non-
trivial orthogonality relation in the quantum state space. The superposition state
s3 could then be identified with a state which is not orthogonal to s1, nor to s2,
but orthogonal to all states orthogonal to s1 and s2. The propositions of the
quantum representation could be identified with the orthogonal closure of
subsets of the state space.

The non-orthogonality of states s2 and s3 implies a non-zero transition
probability P (s2 |Ês3). Since the conjunction of s2 and s3 can never be true, this is
in contradiction with the Bayes axiom of classical probability theory. This
apparent paradox could be resolved by postulating that the quantum states s2 and
s3 correspond to non-disjoint subsets of unobservable ÒinfrastatesÓ. The
transition probability P would then be proportional to the number of infrastates
in the intersection of those subsets.

We still had to find an interpretation of these infrastates which would
explain why they are unobservable. A quantum state, such as s2, was interpreted
as the maximal information, or amount of distinctions, which could be
simultaneously magnified by an observation apparatus. However, this
information can never be complete: there is always a loss of distinctions during
the observation process.

The reason for this is that the microstate of the apparatus, which determines
the state of the quantum system after the measurement, is itself indeterminate.
This implies that those distinctions which were not magnified by the apparatus,
are perturbed in an uncontrollable way by the observation, and hence can no
longer be magnified by a subsequent observation. The indeterminacy of the
apparatus microstate can be traced back to the principle of the impossibility of
self-determination: the macroscopically observable part of the apparatus can
never represent as much information as the apparatus contains as a whole, since
a part can never be as complex as the whole.

The conclusion is that it is impossible to distinguish two non-orthogonal
quantum states by a single experiment, they can only be distinguished
statistically.
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On the other hand, if a quantum system in a state s1 is subjected to the
observation of a proposition a, which is incompatible with, or non-orthogonal
to, s1 (i.e., it is not so that s1 < a, or s1 < a'), then a new distinction is created:
one part of the ensemble of systems in state s1 will be projected onto an
eigenspace corresponding to a, the other part will be projected onto the
eigenspace corresponding to a'. The difference between the two subensembles is
due to a different microscopic relation between the system and the measuring
instrument. In this sense, the distinction between a and a' is created by an
unobservable difference between observation set-ups; it is not inherent in the
quantum system.

If this unobservable difference is interpreted as a Òhidden variableÓ, then
this variable is not localized in the quantum system. This explains why quantum
coincidence experiments do not obey the Bell locality condition which demands
that the results of simultaneous observations on spatially separated parts of a
system would be determined locally, hence would be independent of each other.

In order to elucidate this locality problem, we had to analyze the structure of
space-time and the way it is dependent upon causality. The relativity principle
for reference frames, together with the existence of an invariant limit speed for
causal propagation, entail the relativity of simultaneity. This signifies that it
becomes impossible to determine the absolute time at which spatially separated
events occur. Indeed, to measure this time we need to synchronize clocks
located in different parts of space, and this synchronization requires the
exchange of signals. But since these signals require a finite time interval to
travel from one clock to the other one, and since this interval cannot as yet be
measured since the clocks are not yet synchronized, we must arbitrarily choose
the value of this interval in order to make a synchronization. Different choices
entail different synchronizations, and hence different simultaneity and
precedence relations.

However, the existence of an invariant maximum speed allows us to
determine invariant precedence relations: horismotic precedence and
chronological precedence. The first relation is established between events which
can be connected by a signal travelling with the speed of light, the second
between events connected by a slower-than-light signal. The union of both
relations is called causal precedence. It is a temporal order relation, which is
however not linear. This means that in general, two events cannot be temporally
ordered. On the other hand, the incompleteness of the relation allows us to
define a non-trivial topology on space-time. This topology guarantees the
continuity of causal processes without requiring any additional assumptions.

In order to understand this mathematical property of causal precedence on a
more fundamental level, we had to further analyze the causality concept.
Locally causal connections were defined to be relations between events which
conserve distinctions. In order to determine whether such a connection could be
used to effectively transmit information, we had to extend this concept to
globally causal connections, i.e. we had to consider sequences or paths of
locally connected events.
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If such a path is part of a cycle, then the connection cannot be used to
transfer information. Indeed, either the indication coming back to an event after
following a cyclic path is consistent with the original indication, or it is not. In
the first case, the indication of the event implies itself, hence nothing has
changed. We have a tautology: a = a. In the second case, the indication
determining the event contradicts itself: a = a'. Therefore, the distinction (a, a') is
deleted, and the causal connection annihilates itself. This corresponds to a
causal paradox.

If the causal path is acyclic, it can be interpreted as an information transfer.
There remain two possible cases: either the path is unique, and then it can be
interpreted as defining a horismotic relation, or it is not, and then it can be
interpreted as defining chronological connection. In this way the causal and
hence topological structure of space-time, is reconstructed by demanding that
potentially causal connections be able to transmit information.

This construction could then be used to elucidate some non-locality
paradoxes in quantum mechanics. These paradoxes are characterized by a
correlation between spatially separated but coincident observations. Since the
correlation is a symmetric, hence cyclic, distinction conserving connection, it
cannot be used to transfer information. Therefore, there is no contradiction with
the locality principle derived from information transfer.

An analysis of the Aerts thought experiment with the two-vessel system has
shown that it is not necessary to attribute the correlated observation results to a
Òcommon causeÓ, inherent in the system. In this experiment, the observed
indications are ÒcausedÓ by the incompletely controlled interaction between
system and observation instrument, and their correlation is due to a global
conservation principle.

From this point of view, it is interesting to re-examine the relation between
quantum mechanics and relativity theory. Both are non-classical representations
characterized by the (implicit) acknowledgment that distinctions are not
necessarily conserved. However, their focus of attention is different. In relativity
theory the focus is on those processes which do conserve distinctions. These
processes are called ÒcausalÓ. By distinguishing them from processes which are
not causal, one succeeds in deriving certain formal properties, which can be
used to structure space-time.

In quantum mechanics, on the other hand, the focus is on processes which do
not conserve distinctions. They are described as Òthe collapse of the wave
functionÓ. The distinction between such non-distinction conserving processes
and classical observation processes where all distinctions are conserved, entails
a distinction between orthogonal and non-orthogonal pairs of states. This
ÒmetadistinctionÓ can be used to structure the quantum state space. This gives
rise to the superposition principle and to the Hilbert space structure.

In this way we find two complementary descriptions: on the side of the
distinction conserving processes we find relativity theory, characterized by the
causal space-time structure which is determined by an incomplete precedence
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relation; on the side of the non-distinction conserving processes we find
quantum mechanics, characterized by the Hilbert space structure, which is
determined by an incomplete orthogonality relation.

From this viewpoint, quantum mechanics and relativity theory are not
inconsistent or incompatible: they only describe the two opposite sides of the
same phenomenon. What distinguishes them both from the classical
representation frame, is that they acknowledge that there are two sides. In the
classical world view, only one side is assumed; the possibility of non-distinction
conserving processes is simply ignored.

Moreover, if the analysis is carried through far enough, the origins of the
non-classicality in relativity theory and in quantum mechanics seem to be quite
similar. Both the superposition principle and the causality principle can be
viewed as instantiations of a general principle of the impossibility of circular
information transfer. In the relativistic case, there is no information transfer
from an event to itself. In the quantum case, there is no information transfer
from an observation instrument to itself. A further study of this analogy seems
very promising.

The main obstacle to such an examination appears to lie in the great
difference between the formalisms and concepts used in relativity theory,
respectively quantum mechanics. The concept of distinction and causal
connection, have allowed us to make a first comparison between the two
approaches. However, we have only scratched the surface of a vast problem
domain. The unification of relativity theory and quantum mechanics demands a
completely new formalism. A possible strategy to construct such a formalism
will be discussed in chapter 11.

In a certain sense, the problem domains of quantum mechanics and relativity
theory are still very simple. They both try to represent phenomena without
internal structures: elementary particles and events. This entails that all
processes involving these phenomena are external. Therefore, it is relatively
simple to classify them as distinction conserving, respectively non-distinction
conserving.

This is no longer true when complex systems are considered. We have
characterized the evolution of such systems by the somewhat vague concept of
ÒirreversibilityÓ. During such an evolution certain distinctions are conserved,
whereas other distinctions are created or destroyed. However, it is generally
quite difficult to determine which distinctions will be conserved, and which
distinctions will be created or deleted. Moreover, the total amount of observable
distinctions is not constant. If the system is closed, this amount will generally
decrease (second law of thermodynamics).

We could further speculate that this law too can be reduced to the principle
of impossibility of circular information transfer. An argument for that could be
found in Brillouin's (1962) resolution of the paradox of the Maxwell demon.

According to Maxwell, this demon would be able to decrease the entropy
inside a closed system, by creating new distinctions through observation. For
example, he would distinguish between the two types of molecules in a mixture
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of gases, and let the individual molecules of one type pass in a compartment A,
those of the other type in a compartment B. After a certain time, this would
create a macroscopic distinction between both compartments. This would
correspond to an entropy decrease.

However, Brillouin has shown that the interaction between demon and
molecule during the process of observation would create an amount of entropy
which is larger than or equal to this entropy decrease. We could compare the
demon to a quantum observation instrument, and consider that the gain of
information during the interaction is necessarily counterbalanced by the loss of
other information, because of the indeterminate perturbation of the observed
system (molecule) by the apparatus. Since the demon cannot have complete
self-knowledge, he cannot prevent a certain transfer of indeterminacy (i.e.,
entropy) from itself to the observed system. Therefore, the total entropy of the
system demon + molecules cannot decrease.

Once again, we should remark that a more thorough analysis of these
problems requires a more elaborated and formalized conceptual framework.

We have further discussed some examples of higher-level complex systems,
characterized by self-organization, autonomy and cognition. Here the internal
increase of entropy can be compensated by external input of information.
However, here too we have shown that the principle of incomplete self-
knowledge constrains the information intake. This leads to a filtering of
information during perception. On the highest level, these irreversible
information processes take the form of changes of the representation structure of
cognitive systems. We had to conclude once again that the modelling of these
phenomena requires a metarepresentational formalism. We will now propose a
possible basis for such a formalism.
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CHAPTER 11: Towards a formalization and
operationalization of the theory

11.1 Introduction

In the preceding chapter we have summarized some basic principles on which
an adaptive metarepresentation could be founded. We remarked that if we would
wish this metarepresentation to be scientific, we should provide a scheme of
invariant distinctions determining as well the structure of the
metarepresentation, as its relation to the outside environment. In order to do this
we must try to formalize as well as operationalize the theory.

In the present state of knowledge, however, no definitive formalism or
operationalization can be proposed. We can only sketch some general principles
on which a provisional formalism could be based. We can further present some
procedures by which such a formalism could be applied to practical problems,
so that its adequacy can be tested. By experimenting in this way, it should be
possible to elaborate, refine and, if necessary, correct the formalism, until a
concretely applicable theory is obtained.

This is work for the future. For the moment, it will suffice to show that the
concepts which were uncovered are sufficiently well-structured and concrete to
form the basis for an explicit representation.

If we look for a criterion for evaluating the adequacy of a theory, we must first
define the objective of the theory. A metarepresentation was defined as a theory
allowing to anticipate or plan changes of representation. Hence, its objective
(i.e. the problems it is supposed to solve) should be to construct an optimal (or
at least satisfactory) representation of a given problem domain. In other words,
it should provide a method for transforming an incomplete, unnecessarily
complex or ill-structured representation into a simple and well-structured
representation. Some examples, and the first steps in the development of a
computer model of such a representation transformation can be found in (Korf,
1980).

Another interpretation, and hence domain of application, of a
metarepresentation is the modelling of non-distinction conserving processes.
The two most interesting examples of such processes are self-organization and
discovery. Some interesting work about the computer simulation of discovery
(which is related to representation transformation) has been done by Lenat
(1983). There are further numerous attempts to simulate self-organizing
processes, and even autopoietic systems (Varela, 1979), on computer, in
particular through the paradigm of Òcellular automataÓ (Farmer, Toffoli and
Wolfram, 1984).

The problem with existing formal or computer models of such phenomena,
however, is that either they are too simple to model really interesting processes,
or they are too complex to be practically managed. In order to avoid this, we
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must try to construct a formalism, which can be made arbitrarily complex, by
adding new distinctions, but which, on the other hand, can always be reduced to
its bare essence by eliminating all redundant or irrelevant distinctions.

We will now try to build up such a formalism beginning with something similar
to the hierarchical construction of the classical frame, to which we will add
further non-classical levels of representation. The formal structures we used to
describe, what we called Òthe classical frameÓ (e.g. Boolean algebra, group
structures,É) are indeed already metarepresentations. However, they contain a
lot of redundancies. The addition of non-classical formal structures (e.g. a non-
trivial orthogonality relation, or a causal precedence relation) will lead to further
redundancies, together with apparent inconsistencies.

Therefore, we must try to reconstruct all these structures from the basis of
pure, contentless distinctions, so that all constraints would become totally
transparent. No redundant or unmotivated structures should be left. For every
structure (i.e. basically a set of distinctions) we should be able to decide whether
it is relevant for the problem domain, or not. If it is irrelevant we should be able
to delete it. If a new problem domain is considered, new distinctions will
become relevant, and we should be able to add them to the representation.

No existing formalism offers these features. Every existing formalism has a
set of in-built structures, determined by axioms, which must be used throughout
all applications of the formalism. Furthermore, there is only a limited set of
structures which can be added to the formalism in order to enhance its scope.
The formalisms we have considered (Boolean algebras, partial orders,É) were
already chosen such that their basic structures are very simple, whereas their
domain of applicability is rather broad.

However, if we consider them all together, we get a structure which is not
very simple anymore, but whose domain of application is still restricted. The
complexity of the representation structure leads to confusion, to difficulties in
problem-solving and to paradoxes. So, we must try to simplify the formal
structures we already found, while broadening their domain of applicability.

Let us begin by studying the different ways by which (static) combinations
of distinctions can be made.

11.2 Distinction algebras

The Boolean algebra, which forms the basic structure of classical logic, is
defined by means of a collection of different axioms, relating the connectives
(conjunction, disjunction, negation,É) to the variables, and constants (I and O)
of the algebra. However, Spencer-Brown (1969) has shown that this algebra can
be derived from an algebra of distinctions, which uses only one connective
( ,), determined by two axioms. In order to simplify notation, I have replaced
the special symbol  used by Spencer-Brown (the ÒmarkÓ, symbolizing the act
of distinction) by square brackets: [Ê]. Symbols covered by the mark are
replaced in my notation by symbols enclosed in square brackets.

The axioms are:
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1)    [ [p]  p]   =

2)    [ [pr]  [qr] ]  =  [ [p] [q] ] r

This can be transcribed in the notation we used for Boolean algebras (section
4.4), by observing the conventions:

[p]   =  NOT p

pq  =  p OR q        hence:   [ [p]  [q] ]   =  p.q

The axioms then become:

1) p'.p = 0 (law of contradiction)

2) (p OR r).(q OR r) = (p.q) OR r (distributivity)

Spencer-Brown has shown how Sheffer's set of postulates for Boolean algebras,
which is the least such set, can be derived from these two postulates.

The algebra of distinctions, however, is derived from an even more simple
formal structure: the calculus of distinctions. In this calculus there are no
variables denoting different distinctions. There is only one distinction
considered, which could be interpreted as the distinction between ÒtrueÓ and
ÒfalseÓ, and which is represented by  [Ê]. The rules of calculation are derived
from two extremely simple axioms:

i)   [ [] ]   =

ii)   [] []   =     []

In our notation this could be transcribed by using one variable between brackets:
(a), to indicate that it is not a specific distinction:

i) (a)'' = (a) (double negation)

ii) (a) OR (a) = (a) (idempotence)

The sign  can be interpreted as the crossing of a boundary or distinction between
two states: the marked state (represented by the inside or concave side of the
sign) and the unmarked state (represented by the outside or convex side of the
sign).
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Axiom ii) means that if you cross a boundary two times in sequence, from
the outside to the inside, and from the inside to the outside, you come back to
the state you started from: nothing has changed.

Axiom i) signifies that if you cross a boundary two times in parallel, from
the outside in, and from the outside in, then this is equivalent to only crossing
the boundary once.

The axioms i) and ii), or 1) and 2), can be used to prove a number of theorems
(Spencer-Brown, 1969). These theorems can be used to simplify expressions
consisting of combinations of connectives ([ ]), and variables (a, b, c, ...). Since
all the expressions of Boolean logic can be transcribed in such expressions of
the algebra of distinctions, this formalism can be used to simplify expressions
from classical logic. The ultimate simplification of an expression consists in
reducing it to one of the two primitive expressions:

a)      []        (i.e. ÒtruthÓ)

b)                (i.e. ÒfalsityÓ)

The sequence of steps leading to this simplification can be interpreted as a proof
of the expression, or as a proof of its negation.

In general the simplified expression will still contain variables. For example:

((p < q).(r < s).(q OR s)) < (p OR r)

can be transcribed as:

[ [ [ [p]  q]  [ [r]  s]  [qs] ] ]

and this can be simplified to (Spencer-Brown, 1969; p. 116):

[qs]  pr

which can again be transcribed as:

(q OR s) < (p OR s)

The truth of such an expression will be contingent upon the truth or falsity of the
variables q, s, p and r. However, to check the truth of the simplified expression
for a given set of values for the variables is much easier than to check the truth
of the original expression.

This method of simplifying or proving propositions is essentially similar to
the resolution method used in artificial intelligence and in automated theorem
proving (see e.g. Charniak and McDermott, 1985).

In Boolean algebra the method is based on the transformation of a Boolean
expression to its conjunctive (or disjunctive) normal form. A conjunctive normal
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form of an expression consists of a conjunction of factors, which themselves
consist of the disjunction of a number of primitive expressions or their
negations, and such that every factor contains the same set of primitive terms in
positive, or negated form.

For example:

(a OR b'). (a OR b)

is a conjunctive normal form, with two factors, and two primitive expressions a
and b. Every Boolean expression can be reduced to such a form, by changing all
implications into disjunctions, and by applying the rules of distributivity, and
the laws of de Morgan. Once you have a normal form, it is easy to delete
redundant variables (i.e. distinctions).

For example, the expression a is part of both factors in the above normal
form, and hence, because of distributivity, it can be taken out of the brackets.
We get:

a OR (b'. b) = a   (since b'. b = 0)

This means that the truth value of b is irrelevant for determining the truth value
of the complete expression.

Suppose that the problem with which an adaptive system is confronted, consists
of attaining a goal represented by the originally compound expression. This
means that the system will have to conceive a sequence of actions which will
lead from the expression representing the actual situation to the expression
representing its goal. In order to do this in an efficient way, it is best to
maximally simplify the expression, so that a minimal set of primitive variables
is left. The system can then easily check which of the variables has already the
required truth value, and which should acquire a different truth value. It can then
plan a sequence of actions consisting of different subsets, which each change the
truth value of one primitive variable (i.e. cross the boundary of one
distinction)(this procedure is analogous to the Òmeans-ends analysisÓ used in the
General Problem Solver conceived by Newell and Simon, 1975). The more we
succeed to simplify the expression for initial and goal state, the easier it will be
to design such an action plan.

This is a concrete example of problem transformations. However, the
present transformations are limited to the purely logical combinations of
representation elements. We must now also try to formalize the kinematical,
geometrical and dynamical properties of representations.

11.3 Kinematical constraints for distinctions

The distinction algebra of Spencer-Brown is based on the assumption that all
variables have a fixed truth value. This means that they can be interpreted as
different formulations of the one basic distinction between truth and falsity,
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represented by . Their apparent variability is only provisional, because we
do not know their truth value as yet.

However, to construct an adaptive representation, we need a set of different
states, so that for each state there is a specific set of primitive expressions which
are true, whereas the other primitive expressions are false. Therefore, for
different states, different primitive expressions will be true. The space of
possible states will then be determined by all possible assignments of truth
values to the primitive expressions. In a free Boolean algebra, this means that
every (atomic) state can be written as a conjunction of the primitive expressions
which are true for this state, and the negation of the primitive expressions which
are false for this state:

s = a1.a2. É.an.b1'.b2'. É.bm'

Every compound expression can then be written in its disjunctive normal form,
as a disjunction of terms consisting of a conjunction of primitive expressions
and their negations. If the terms contain all primitive expressions and their
negations, they correspond to atomic states. Hence, every expression can be
written as a disjunction of atomic states.

In practice, not all primitive expressions will be independent. This means that
there will be constraints, so that certain combinations of primitive expressions
will be excluded. The basic relation of this type between primitive distinctions is
implication:

a < b, which is equivalent to:  b' < a'.

Remark that this can also be expressed in a notation similar to the one we used
for causal relations (cf. sect. 9.6):

(a, b') ® (b, a')

For a causal relation we should have:

(a, a') ® (b, b')

Here we see that for an implication relation the two distinctions (a, a')and (b, b')
are ÒmixedÓ in some way, so that the two sides of the connection expressed by
® contain each states from both distinctions. This can be interpreted to signify
that the two distinctions are simultaneous; there is no unambiguous order
between them. The cyclic or symmetric causal relations, which were called
correlations:

(a, a') ® (b, b') and (b, b') ® (a, a')
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can be interpreted as special cases of implications, namely symmetric
implications or equivalencies:

(a, b') ® (b, a') and (b, a') ® (a, b')

or: (a < b). (b < a)

In this sense, correlations can be viewed as relations between distinctions which
are both causal relations and implications.

In a Boolean algebra implications between primitive expressions: a < b, will
usually be expressed as identities of the form:

a. b = a or a. b' = 0

This means that in a disjunctive normal form the conjunction a. b or a. b' can be
simplified to a or to 0. If such identities hold, the Boolean algebra is not ÒfreeÓ
(Halmos, 1963). This means that it is not isomorphic to the power set of a set
whose elements correspond to the maximal conjunctions of all primitive
expressions or their negations. The distinct elements of the Boolean algebra will
be smaller in number than the elements of such a power set, because the
constraints imply that certain combinations of primitive expressions should be
identified (e.g. a.b can be identified to a).

There is another type of kinematical constraints which must be introduced. As
we have seen, it often happens that certain Boolean combinations of variables
are not observable, even though the primitive expressions are. The simplest way
to represent this kind of limitations is by introducing a ÒclosureÓ operation in
the algebra (see section 7.2 for the properties of such an operation.). The
observability of an expression can then be equated to the fact that it is closed.
Non-closed expressions would correspond to combinations of primitive
expressions which cannot be macroscopically distinguished.

This method can be used as well to represent a non-classical logic within a
classical Boolean structure (see section 7.2 for quantum logic, and (Sikorsky,
1969; p. 199) for modal and intuitionist logics), as to represent a topological
structure in a Boolean algebra (Sikorsky, 1969; p. 198).

In the latter case, a closed expression can be interpreted as a ÒclosedÓ subset
of the state space consisting of the atomic expressions. The set of all closed
subsets defines a topology an state space. A closed subset can be interpreted as a
set of states which can be unambiguously distinguished from its exterior, that is
to say there is a ÒboundaryÓ, separating the interior from the exterior. Such
Òmacroscopically observableÓ distinction could be represented by an
orthogonality relation, analogous to the one used in section 7.2.
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Two states would be said to be orthogonal if there is a boundary separating
them. The closure operation could then be defined as taking the orthogonal
complement twice:

Closure (a) = a^ ^  (cf. section 7.2)

Remark that the implication relation can also be seen as an orthogonality
relation between one of the expressions and the negation of the other one:

a < b iff a   ̂b'

From this point of view, all kinematical constraints (implications, limited
observability, topological structures,É), could be represented by adding one
simple type of relation to the distinction algebra of Spencer-Brown:
orthogonality. However, the meaning of this orthogonality relation with respect
to the basic structures of the distinction algebra is not very clear yet. We might
speculate that states or propositions would be orthogonal if they can be
distinguished directly, i.e. by means of a single observation. In order to
elucidate this, however, we should first have a theory of the dynamics of
distinctions.

11.4 Categories of distinction algebras

Now that we have seen some formal methods for describing the possible states
of a representation constructed from pure distinctions, we should try to
formalize the possible transitions between states. In general a transition or
change from one description to another one can be represented by a morphism
of Boolean (or distinction) algebras (cf. Halmos, 1974). A morphism is a
mapping f from one algebra to another one, which conserves the basic
structures. For a Boolean algebra, this means that we have:

f(p.q) = f(p). f(q)

f(p') = (f(p))'

If we would also represent kinematical constraints by using an orthogonality
relation, we should add a requirement of the type:

a ^ b iff f(a) ^ f(b)

If the orthogonality relation represents a topology, the requirement amounts to a
form of continuity for the mapping. If it represents a quantum logic, the
requirement can be interpreted as a form of unitarity for the mapping.

The restriction of general mappings to morphisms should be viewed as a
requirement that a process should be minimally structure preserving in order to
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be represented. A process which would conserve no distinction whatsoever,
would be unable to transfer any information, and hence would be totally
uncontrollable and unobservable. Therefore, it does not make sense to include it
in a representation.

However, we have emphasized that we do not want to restrict our
representation to classical causal processes which conserve all distinctions.
Therefore, the formalism should be sufficiently general to encompass processes
which are only partially distinction conserving. Instead of a transformation
group, which represents classical processes, we need a more general algebraic
framework. This can be found in Òcategory theoryÓ (see e.g. Arbib and Manes,
1975).

A ÒcategoryÓ K is defined as a set of (formal) objects Obj(K), a set of
morphisms K(A, B) going from one object A to another object B, and a
composition operator (*) for morphisms which is associative, and for which
there exists an identity morphism for each object:

Morphisms: fÊÎÊ K (A, B) is also written as f: A ® B

Composition: " fÊÎÊK(A, B), " gÊÎÊK(B, C), $ hÊÎÊK (A, C): h = g * f

Identity: " AÊÎÊObj (K), $! idAÊÎÊK(A, A): f * idA = f, " fÊÎÊK (A, B)

It is possible to identify each object A with its associated identity morphism
(which sends the object onto itself, without changes): idA. In that case, the
category consists only of morphisms. This is sometimes called the Òarrow onlyÓ
description of a category, because morphisms are usually represented as arrows
(®) connecting different objects (or other arrows).

This framework can now be used to represent and classify all partially
distinction conserving processes within the formalism of Boolean (or
distinction) algebras. Consider a category whose objects are Boolean algebras,
and whose morphisms are morphisms of Boolean algebras. These morphisms
can be divided in distinct classes:

1) Morphisms which map a Boolean algebra B onto itself (f(B)=B), are called
automorphisms. They send each distinction (a, a') of B onto another distinction
(b, b') of B, and for each distinction (b, b') of B there is another distinction (a, a')
which is sent upon it. An automorphism is completely distinction or structure
preserving.

The set G(B) of all automorphisms of B, which is a subset of K(B, B), is a
group. Indeed: there is an associative composition operation, which is internal in
G(B); there is an identity morphism which sends each element of B onto itself;
the inverse of an automorphism is again an automorphism. Moreover,
automorphisms send atoms to atoms. Hence, the set of automorphisms
corresponds to the classical transformation group of a state space (cf. section
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4.7). The Boolean algebra B with respect to G(B) can be interpreted as a
classical system or object.

2) Morphisms which map a Boolean algebra into itself (f(B) B) are called
endomorphisms. Each distinction (a, a') of B will now be sent upon another
distinction (b, b') of B, but not all distinctions (b, b') will be the image of
another distinction (a, a'). We may say that the morphism sends B onto a smaller
algebra f(B) with less distinctions. Hence, the morphism deletes or ÒforgetsÓ
distinctions.

Therefore, it represents a process where there is a loss of information. An
example of such processes are the irreversible processes in statistical mechanics
(see section 9.2) where there is a transition from a microstate description to a
macrostate description, together with an increase in entropy.

The subcategory K(B, B) of all morphisms from B to B, which comprises
both endomorphisms and automorphisms, can be seen as a category with only
one object (B). Such categories are called monoids. They have the structure of a
semigroup: there is an internal, associative composition with an identity
element, but in general there are no inverse elements.

3) Morphisms from an algebra A to an algebra B which are both onto and into,
are called ÒisomorphismsÓ. There is a bijective correspondence between all
distinctions (a, a') in A, and all distinctions (b, b') in B. All isomorphisms can be
inverted. However, the subcategory of all morphisms from A to B, and from B
to A which have an inverse, is not a group, since there is no unique identity
element: there is one identity idA in A, and another identity idB in B.

If A and B are connected by an isomorphism, they can be interpreted as
representing perfectly correlated objects: every distinction in A is determined
by a corresponding distinction in B, and vice versa. An example of such a
system could be found in the EPR set-up (see section 8.5): the conservation of
spin induces an isomorphism between the distinction algebras representing spin
measurements in different directions carried out on the two particles (remark
that in this case the algebras are not purely Boolean, we must introduce a non-
trivial orthogonality relation to represent the superposition states). Another
example is a system consisting of two rigid bodies (e.g. billiard balls), which are
rigidly connected to each other. The classical representations of the two bodies
are perfectly correlated: there is a bijective correspondence between the two
state-spaces.

4) Morphisms from A to B which have no inverse can be interpreted as signals
sent from A to B. They correspond to the non-cyclic distinction conserving
connections of section 8.4, which define the precedence relations. They can be
further classified according to the specific distinctions they conserve:

a) a morphism which is one-to-one into will send different elements or
distinctions upon different elements or distinctions. It is called a
monomorphism . It conserves all distinctions of A, but if it is not an
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isomorphism, it will not cover B completely (f(A) B). This means that certain
distinctions of B will not be determined by A.

This can be interpreted as a ÒcreationÓ of distinctions in B with respect to A.
For example, if B corresponds to a dissipative structure, and A to its
environment, then clearly distinctions will appear in B which are not completely
determined by the boundary conditions provided by A. This is the phenomenon
of ÒbifurcationÓ.

b) a morphism which is onto will cover B completely. It is called an
epimorphism. If it is not an isomorphism, this means that it will send distinct
elements of A upon the same element of B. Therefore, certain distinctions of A
will not be conserved. However, the distinctions of B will be completely
determined by those of A.

This is analogous to an endomorphism: the process leading from A to B is
deterministic, but accompanied by a loss of information. For example, if a
complex system A emits a particle B, the particle's state will be completely
determined by the initial state of the system. However, the observation of the
particle's state will not provide sufficient information to determine this initial
state.

c) a morphism which is neither an epimorphism nor a monomorphism
corresponds to a process where there is as well a deletion of distinctions from A,
as a creation of distinctions in B. This is the most general case.

5) Morphisms which send a Boolean algebra B onto the trivial Boolean algebra
Ò2Ó which consists of only two elements (i.e. one distinction): I and O, are
called Ò2-valued morphismsÓ. They can be interpreted as representing a
particular state of B. All propositions of B which are sent upon I are assumed to
be true, all propositions sent upon O are assumed to be false. Since this
morphism conserves the Boolean structures (negation, conjunction,É), the set
of true propositions will not be inconsistent but will correspond to a particular
maximal conjunction of propositions, denoting the (atomic) state. The transition
between two states s1 and s2 of B, represented by two 2-valued morphisms, can
then be represented by an automorphism f from B to B, such that:

s2 * f = s1

The possible states of different objects defined in this way can be conceived as
representing potential events. The set of events can then be structured in the
same way as in sections 8.3 to 8.5. The morphisms between (non-trivial) objects
could be viewed as representing causal connections leading from one event to
another one. For example, the morphism f above leads from event s1 to event s2.
The sequences or ÒpathsÓ of morphisms for which there is no inverse morphism,
could then be interpreted as defining horismotic and chronological precedence
relations. These relations would then determine a temporal order, a topology,
and possibly a metric.
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A minimal realization of such a relationally determined space-time structure
can be found in (Heylighen, 1984). In this model there are however no explicit
distinctions. This is equivalent to a model where each object is characterized by
only one distinction: (presence, absence) or (existence, non-existence) of an
event. The ÒarrowsÓ of the Òstructural languageÓ (Heylighen, 1984) can then be
interpreted as morphisms which conserve this unique distinction.

If more than one distinction is considered, however, the model becomes
much more complex, and the interpretation of distinctional states as events, or
morphisms as processes, is much less straightforward. In order to further
elucidate this problem we should gain a better understanding of the relation
between morphisms and distinctions.

11.5 The relation between categorical and Boolean algebras

We have succeeded in reducing the set of formalisms used to build up a
classical representation (objects, predicates, Boolean algebras, state space
geometry, linear order of time, group structure of operator algebra,É) to only
two formalisms: Boolean algebra and category theory. Moreover, we have
shown that these particular formalisms can be generated by a very small set of
postulates.

In order to represent a classical or non-classical representation within this
framework, it suffices to identify an object with a Boolean algebra, a predicate
characterizing this object with an indication or proposition in the algebra, the
logic of propositions with the algebraic structure, the state space with the set of
atoms, the operators, processes or relations applied to objects with morphisms
between algebras, the events with states of objects, i.e. 2-valued morphisms, the
causal structure of space-time with the horismotic and causal precedence
relations determined by non-reversible morphisms,É
Of course, the details of the construction must still be worked out. We have only
attempted to show that existing formalizations can be simplified and generalized
through an analysis based on the concept of distinction.

A further simplification requires the elucidation of the relation between category
theory and Boolean algebra. The question which should be asked is: is it
possible to synthesize both formalisms, so that only one algebra is left? For the
moment, we cannot give a definite solution to this problem. However, there are
reasons to suppose that categorical and Boolean approaches are merely different
points of view directed to the same problem.

We have already pointed out that objects in a category (in this case Boolean
algebras) can themselves be regarded as morphisms, so that all of their
properties can be expressed as properties of the composition of morphisms. This
is typical for category theory: you do not have to specify the internal structure of
the objects or morphisms in order to describe them. For example, we have
defined epimorphisms as morphisms which cover all elements of their image
set. However, in category theory, one uses the following equivalent definition:
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Definition: an arrow f in a category K is an epimorphism iff the equality g * f =
h * f in K always implies that g = h

With such a categorical definition, we do not need to pay attention to the
elements (i.e. the internal structure) of the objects. This is in accordance with
the general philosophy underlying the present approach: knowledge, or
information, is independent of its substrate or building blocks; it is only
determined by abstract relations. (A more elaborate presentation of this
ÒrelationalÓ philosophy of representation, where the concept of distinction is not
yet used, can be found in (Heylighen, 1984)). The important point about a
distinction does not reside in the specific states, objects, or elements which are
distinguished, but in their relation.

We have defined a morphism as a mapping which conserves distinctions.
However, except in the case of identity morphisms, it does not conserve the
elements which are distinguished. But this is not important: a distinction is
abstract, so is information. Therefore the morphism can be interpreted as an
invariant piece of information travelling from one object to another one. The
objects (i.e. Boolean algebras) themselves can be interpreted as static, or stored
Òpieces of informationÓ. With this interpretation a morphism could also be seen
as a distinction algebra, isomorphic or equivalent to the distinction subalgebra
which is its image.

Hence, we have shown that it is not only possible to interpret a Boolean
algebra as a morphism, but also to interpret a morphism as a Boolean algebra.
What should be done now, is to express this intuition formally by integrating the
basic operations of Boolean algebra (distinction, or conjunction and negation)
and of category theory (composition).

11.6 The dynamics of distinctions

A last requirement to transform the proposed formalism into an adaptive
representation is the formulation of dynamical constraints, which would govern
the flow of information in the model. A first type of constraint is clearly
consistency: if an object receives information from different other objects, these
informations should not contradict each other. This seems to be difficult to
determine in a local way, since the different objects do not know of each other
which messages they transfer.

One way to evade this problem, is by letting contradicting messages
neutralize each other. This can be conceived in the same way as our discussion
of causal paradoxes in section 8.4: if one object sends a message implying a,
and another object sends a message implying a', then the distinction between a
and a' is (momentarily) deleted from the algebra. In other words, the state of the
object with respect to the distinction (a, a') becomes indeterminate. This
provides us with a first sketch of a criterion for the elimination of distinctions.

In order to build a complete dynamics of distinction however, we would also
need a criterion for the creation of distinctions. In a certain sense, the messages
carried by different morphisms are already distinct. However, not all distinct
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messages are sent upon distinct indications or propositions in a Boolean algebra.
For example, the messages sent by two different objects may both actualize the
proposition a. In other words, both messages are assimilated to the category a.

As an illustration, consider the new-born baby who is still unable to distinguish
his mother's face from the faces of other people. All impressions of different
human faces will be assimilated to the same category. However, the child will
soon learn that this undifferentiated collection of messages is followed by
another set of messages where there is a clear distinction: either he receives
breast-feeding from the person whose face he saw, or he does not. Therefore, he
will tend to Òshift this distinction backwardsÓ, so that also the original set of
impressions will be divided in distinct categories.

The basic requirement for introducing such a new distinction is that it be
conserved by certain morphisms (representing (partially) causal relations), and
so becomes connected to already existent distinctions. The general process
might be described by some kind of blind-variation-and-selective-retention
(BVSR, cf. Campbell, 1974). The new distinction, which is not the mere
conservation of an existing distinction, can only arise in a ÒblindÓ, indeterminate
way. However, once it has been created it will tend to disappear in the same
way, unless it is stable, i.e. conserved. This conservation or retention of a
distinction depends upon the ÒenvironmentÓ of other distinctions and
morphisms, which carries out a selection. E.g. for the new-born child, the
selection of new distinctions is determined by the efficiency of the new
distinction in allowing to anticipate important events (feeding, or no feeding).

For the moment, these ideas about the dynamics of distinctions remain
vague. Probably the best way to make them more concrete, is by
operationalizing the theory, so that it becomes possible to observe actual
processes happening in a system which is described by a category of Boolean
algebras, and thus experimenting with different types of dynamics.

11.7 Towards an operationalization of the theory

In order to be able to apply an adaptive metarepresentation for the anticipation
or steering of the behavior of a concrete system, we must find systems which
use adaptive representations. The best example of such a system is the human
brain. In principle an adaptive metarepresentation should allow us to anticipate
or steer our own cognitive processes. This steering of human cognition is
already carried out in a primitive form in disciplines such as pedagogy and
psychotherapy. However, the human cognitive system is very complex and very
difficult to observe or to analyze.

Another type of system using adaptive representations is an organization.
Here the processes of information processing, decision making and problem
solving are already more explicit, hence easier to observe and to steer. This is
attempted in disciplines such as management science, or organization design
(see e.g. March and Simon, 1958; Galbraith, 1977). However, the basic
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components of the system are still humans, hence difficult to observe or to
control.

For non-human organisms, e.g. animals, we have mainly the same problems of
complexity, and limited observability.

Therefore, the best objects for testing the adequacy of an adaptive
metarepresentation are artificial cognitive systems, more in particular: digital
computers.

We have already mentioned some attempts to simulate self-organization,
discovery and representation change on computers. The main difficulties
experienced during these attempts, however, were not of a technical nature, but
were due to the lack of a clear and general conceptual framework which could
be formalized and translated as a programming language. If the formalism
which was sketched in de preceding sections proves to be adequate, then it
should be relatively easy to implement it on a computer. Some arguments to
show that this is realistic can be found by looking at examples where structures
similar to parts of the formalism were already implemented.

The programming language PROLOG which is used in AI, and more
especially for the design of expert systems, is based on the resolution method
we sketched in sect. 11.2. It can be seen as a computer implementation of the
logical part of the classical representation frame. Therefore, it encompasses
everything we said about objects, predicates, Boolean algebras, É However,
every idea about dynamics, space or time is lacking in PROLOG. One way to
evade this is by using PROLOG on a metalevel, for the determination of an
object representation which may be dynamical and non-classical (cf. Heeffer,
1986).

The second aspect of the formalism, which is determined by the morphisms
passing messages between objects, is similar to another AI technique: object
oriented knowledge representation. Here the principle is to structure knowledge
in modules (objects) which can communicate by exchanging data (Steels, 1984).

This general idea of communicating modules or processors is also at the
base of a new development in computer hardware: Òparallel processingÓ, or
Òconnection machinesÓ. Although technically it is possible to construct
machines consisting of a network or array of parallel processors, the main
difficulty is the creation of new programming formalisms, which can efficiently
steer the very complex flow of information in such a machine. Two conceptual
frameworks which are promising in this respect, are Òsemantic networksÓ and
Òcellular automataÓ.

A semantic network is a frame for knowledge representation similar to a
network of message passing objects (cf. Charniak and McDermott, 1985). The
objects represent concepts, which are related through certain semantic
relationships (inheritance of properties, causal relations, general two-place
predicates,É). This structure contains no explicit dynamics: new concepts,
predicates or propositions must be introduced from the outside.
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A cellular automaton (Wolfram, 1984), on the other hand, is an abstract
dynamical system, with a discrete internal space-time structure, but without
explicit semantics. It consists of an array of cells, which can be in different
states. There is a discrete time parameter, so that after each time unit which has
passed, all cells undergo a state-transition. The dynamical law is such that the
state of a cell at time t + 1 will be determined by the states of this cell and its
neighboring cells at the previous time t. The cells with their (discrete) state-
spaces correspond in our model to Boolean algebras. The information transfer
from a cell at time t to a neighboring cell at time t + 1 corresponds to a ÒdirectÓ
morphism, representing a unique causal path (cf. sect. 8.4).

Therefore, both semantic networks and automata can be conceived as
particular cases of the more general category of Boolean algebras. If such
structures are relatively easy to implement on digital computers, then we could
expect to encounter no major difficulties when trying to implement our
distinction formalism.
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CHAPTER 12: Formal deduction of representation
structures from a metarepresentational framework

12.1. Introduction

In the previous chapters, the sequence followed was basically inductive: starting
from known data (the formalisms of existing physical theories), a new, more
general framework was abstracted, in such a way that the given theories
(classical mechanics, quantum mechanics, relativity theory and thermo-
dynamics) could be recognized as special cases of the representations within this
framework, each characterized by particular features. These distinctive features
were shown to be determined by the way distinctions are conserved within each
representation.

In the present chapter I would like to examine in how far this sequence can
be followed in the inverse direction, i.e. in how far it is possible to postulate the
general framework from the beginning and then to deduce the representation
structures from these postulates, with a minimum of additional assumptions.

In order to do this I shall first have to make the basic concepts and
assumptions of the metarepresentational framework as explicit as possible.
More in particular I shall try to indicate the axioms needed for an unambiguous,
mathematical determination of the principles underlying the framework.

Of course this formalization is in the present stage of research only
provisional. At present, it will only be used to eliminate possible confusions
which may have arisen while reading the more informal text of the preceding
chapters, and to show that the framework is sufficiently powerful to allow the
derivation of some very general, yet non-trivial results, starting from minimal
assumptions.

After this definition of the framework I will reconstruct the fundamental
structures (i.e. the structures independent of the particular type of phenomenon
being represented) of the four physical theories by incorporating their respective
assumptions with respect to the conservation of distinctions.

This will be carried out in two stages: a) a general description of the specific
features of the representation we wish to explain, and the way they arise; b) an
attempt to define these features in a formally rigorous way, and to deduce them
from postulated features of the metarepresentation. Finally I will try to sketch
the features that can as yet not be deduced in this way.

12.2. Basic Concepts and Assumptions of the Metarepresentational
Framework

a) The phenomena we wish to represent within this framework are
representations and representation processes. Representations are (actual or
potential) abstract structures which allow us to classify and to anticipate external
phenomena. Representation processes are (simple or complex) information
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transfers happening within a representation or connecting this representation to
other representations.

The basic elements of representation structures are postulated to be
distinctions. A distinction can be intuitively understood as something allowing
to separate a class a of phenomena from its complement or negation a'(i.e. all
the phenomena which do not belong to a). According to the particular side (a or
a') of the distinction which is actualized the representation will be in a different
state. The global state of a representation can then be defined as the conjunction
of all the actualized sides of the distinctions constituting the representation.

A representation process can then be understood as something sending
present states onto future states of the same or of a different representation. In
order to determine which states will be actualized from a given state you should
know how the distinctions defining the initial state are related to the distinctions
defining the final state. This relation may be called a Òcausal relationÓ and can
be represented as a morphism of representations, i.e. a mapping preserving a
minimal part of the structure (defined by the distinctions) of the representation.

b) In order to formalize this framework we should first express the axioms
determining the static properties of distinctions. A very simple axiom system
was proposed by Spencer-Brown (1969). His Òdistinction algebraÓ is based on
just one operator (distinction) (implicitly) defined by two axioms (see sect.
11.2).

It can be shown that this formalism is equivalent to the much more complex
formalism of Boolean algebra which is based on four operators (negation,
conjunction, disjunction, and implication), and two constants (O and I), and for
which several axiom systems exists. Since the latter formalism is better known,
I will use these four operators (symbolized respectively by the signs Ò' Ò, Ò. Ò,
ÒOR Ò, and Ò< Ò, (cf. sect. 4.4 and 4.5), and assume that they obey the usual
axioms and theorems of Boolean algebra.

The static part of a representation will then be formally represented by a set
of variables (a, b, c, É) together with all their Boolean combinations (e.g. a.b, b
OR c', a.(b < c) É). I will further assume that the Boolean algebra defined in
this way is atomic. The atoms correspond to the maximal non-zero conjunctions
of variables or their negations. Therefore, they can be interpreted as representing
the states of the representation.

The distinction algebra of Spencer-Brown and its Boolean equivalent are purely
static: they cannot represent change. In order to model representation processes,
a further structure must be added: an algebra of morphisms. One way to express
this axiomatically is the following:

We can presuppose the axioms of set theory and view a distinction algebra as a
set of expressions provided with certain operations. A morphism can then be
defined as a function f from an algebra A to an algebra B which preserves the
basic operationsÊ:
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f: A ® B: a ® f(a) such that: f(a') = (f(a))'
f(a.b) = f(a).f(b)

(the preservation of the other operators and constants can be deduced from these
two requirements).

Theorem: the set of all Boolean algebras together with the set of all Boolean
morphisms provided with the operation of composition forms a category (cf.
sect. 11.4).

Proof:
- the composition of morphisms considered as functions is associative.
- the function which sends every element of a Boolean algebra B onto itself is a
morphism idA which possesses the identity property: for every f: A ® B and for
every g: C ® A we have:

idA * g = g and f * idA = f ■

Note: we could also postulate the existence of a category whose objects are
Boolean algebras and whose morphisms are defined by the axioms of category
theory. In this way no set-theoretical axioms are to be assumed, and hence the
axiomatic system remains simpler. In this case, however, it remains to be proven
that no additional axioms must be added in order to capture the fundamental
properties of the mapping of distinctions we wish to formalize.

On the other hand, such an axiomatization would be closer to the general
philosophy underlying the present attempt at formalization (cf. sect. 11.1 and
Heylighen, 1984), which aims at a maximal domain of application resting on a
minimal set of presuppositions. A consequence of this philosophy is that the
proofs of theorems are normally very simple, often so simple that they appear
trivial. This should not, however, be considered as pointing to a lack of
mathematical sophistication, but rather as an indication that the concepts and
postulates were initially well-chosen.

Interpretation: the category of all Boolean objects and Boolean morphisms can
be viewed as representing the general metarepresentational framework; specific
subcategories (i.e. subsets of objects and morphisms which are closed under
composition and which contain all the required identities) can be interpreted as
particular representation structures (e.g. the classical frame). Functors which
map one subcategory onto another one can be viewed as transformations of
these structures.

In order to make this categorical algebra into an adaptive metarepresentation we
should add one (or more) axioms determining Òdynamical constraintsÓ on the
representation processes within the framework. For the moment we have not got
a sufficient insight into the dynamics of distinctions to do this in an exhaustive
way. However, there is one constraint which appears to be necessary in any



- 173 -

case: consistency. In the static Boolean framework this assumption is already
implicitly present:

no two different states of the same Boolean object can be jointly actualized:
for every s1¹ s2 (atoms): s1.s2 = O.

This could be extended to morphisms by introducing (provisionally) the
following requirement:

Consistency axiom: if two morphisms f: A ® B and g: A ® B are inconsistent,
i.e. there is an element a in A such that: f(a).g(a) = O, then f and g cannot both
be actual.

Interpretation: this requirement may be viewed as a Òconservation of
consistencyÓ by morphisms: if two propositions b and c were initially
consistent, i.e. there is a proposition aÊ=ÊÊb.c ¹ O, then they remain consistent
after the actual morphisms were applied: f(b).g(c) ¹ O.

12.3. The Classical Representation Frame.

We will here summarize the analysis of chapters 4 to 6 by characterizing the
structure of ÒclassicalÓ representations by means of three basic conditions. This
will simplify the analysis of the basic non-classical representation structures,
since we will show that each non-classical representation is characterized by the
violation of one of those three requirements. This does not mean that these
conditions are assumed to be sufficient to define a ÒclassicalÓ representation.
We will here only show that they are necessarily entailed by the more general
condition of Òabsolute distinction invarianceÓ (ADI), which is assumed to be the
necessary and sufficient condition for ÒclassicalityÓ.

Each adaptive representation can be analyzed from three basic viewpoints:
1) the logical structure of the state space (or more generally of the set of
expressions);
2) the structure of time (and its relation to state space).
3) the algebraic structure of the set of dynamical operators.

In the classical frame these structures are very simple and regular:
1) the relation between states is trivial: either two states are identical or they are
orthogonal, i.e. the one implies the negation of the other one.
2) the relation between events (i.e. the states which are actualized) is a complete
or linear order: either two events are simultaneous (this means that they can be
identified as representing different aspects of the same state of the global
system) or the one precedes the other one.
3) the possible operators form a group: they can be inverted and composed with
each other without restraint.
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We must now show that these features (which will be designated by TO (trivial
orthogonality), LT (linear time) and GO (group of operators) respectively) are
directly implied by the ADI principle. Applied to the metarepresentational
formalism of the preceding section this principle can be formulated as followsÊ:

Definition: ADI holds iff the only morphisms which are allowed are those
which conserve all distinctions, i.e. the complete structure of the Boolean
algebra.

This means that all morphisms are isomorphisms, i.e. they are one-to-one into,
each distinct element is sent upon a distinct element. We can then define the
relation of isomorphy between Boolean objects: two objects are isomorphic if
there exists an isomorphism from the one to the other. This is clearly an
equivalence relation. Therefore, all objects of an ADI representation belong to
the same equivalence class.

This means that in practice these objects can be identified, since their
(internal) structures and their behavior with respect to (external) information
processes are the same. Therefore, we may assume that a representation
characterized by an ADI requirement consists of only one Boolean algebra
provided with its automorphisms.

Theorem: if a representation has the ADI property, then it also has the TO
property.

Proof: if a representation consists of only one object then its states are those of
this object. Since an individual object is assumed to have a Boolean structure, its
states are Boolean atoms, and these are necessarily orthogonal. ■

Theorem: if a representation has the ADI property, then it also has the LT
property.

Proof: whereas the structure of state space is determined by the possibility of
two states to be jointly actual (which possibility is excluded by TO except in the
trivial case of the states being identical), the structure of time is determined by
the possibility of two representation processes (corresponding to two
morphisms) to be jointly actual. In order to check this we should apply the
consistency axiom to the automorphisms characterizing an ADI representation.

Suppose we have two different automorphisms f, g: A ® A.
It is a basic property of atomic Boolean algebras that every Boolean element

can be written as a disjunction of atoms. Since disjunctions are by definition
conserved by morphisms, this means that we can restrict our attention to the
action of f and g on the set of atoms. f¹ g implies that there exists an atom s,
such that:

f(s)Ê¹ g(s).
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Since f and g are morphisms, they send atoms onto atoms. Therefore, f(s) and
g(s) are atoms and this implies:

f(s).g(s) = O.

This is in contradiction with the consistency axiom, unless we assume that f and
g cannot be jointly actual. This implies that f and g can only be subsequently
actual. Therefore, the different actual morphisms describing the changes of the
state of an ADI representation form a linear sequence (i.e. no branching occurs),
which can be interpreted as describing the order of time. ■

Theorem: if a representation has the ADI property, then it also has the GO
property.

Proof: the set of all automorphisms of a Boolean object forms a group under
composition. Indeed, since there is only one object which is both domain and
co-domain of the morphisms, composition is everywhere defined. The identity
morphism is an automorphism, and the inverse of an automorphism is again an
automorphism (the ADI property is indeed a conservation principle, hence it is
invariant for inversion). ■

Conclusion: we have proven the following propositions:
1) ADI < TO
2) ADI < LT
3) ADI < GO
Therefore, we have also proven the contraposition of these implications:
1Õ) NOT (TO) < NOT (ADI)
2Õ) NOT (LT) < NOT (ADI)
3Õ) NOT (GO) < NOT (ADI).

The first three propositions can be used to characterize the classical frame,
i.e. the representation structure determined by ADI. We will now examine the
three non-classical representation structures, i.e. structures characterized by the
respective negation of TO, LT and GO, and hence by the negation of ADI.

12.4. The Quantum Mechanical Frame.

As was shown in sect. 7.2 the representation structure of quantum mechanics
can be seen as an illustration of proposition (1Ó): the logical structure of the
quantum state space (the ÒHilbert spaceÓ) corresponds to the specific feature of
the quantum observation process (described as the Òcollapse of the wave
functionÓ, and formalized by the Òprojection postulateÓ), which is such that
different states can be sent upon the same state, contradicting the ADI principle.
Let us analyze this non-ADI feature in more detail.

This non-classical nature of quantum representations can be characterized in
many different ways (chapter 7): complementarity of subrepresentations, inde-
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terminacy, superposition of states, non-Boolean logic, non-Bayesian probability,
É We have summarized these descriptions by stressing the non-TO structure of
quantum mechanics, which is expressed most sharply by the ÒlogicalÓ version of
the superposition principle:

Superposition principle: for every two different states s1, s2 there exists a third
state s3 which is orthogonal neither to s1 nor to s2 (i), but which is orthogonal to
all states orthogonal to both s1 and s2 (ii).

We must now examine in how far this principle can be deduced from the
metarepresentational framework and from the basic properties of the
observation process (viewed as an information transfer between a microscopic
phenomenon and a macroscopic observation apparatus). Let us begin with the
observation process.

We will consider the observer together with his observation apparatus
(which can be viewed as an extension of his natural sense organs) as a basic
adaptive or cognitive system. This means that the information processed by the
observer is necessarily filtered, hence incomplete. This was expressed by the
principle that Òevery distinction implies an assimilationÓ. This principle can be
viewed as the consequence of an even more basic principle stating that a
representation cannot completely represent its own interaction with the outside
world, more in particular that it cannot have a complete Òself-knowledgeÓ.

The filtering of information itself is a relatively simple phenomenon which
is not restricted to quantum observations. For example, in statistical mechanics
observations result in ÒmacrostatesÓ which are by definition incomplete
representations of phenomena determined at the microscopic level.

What is typical of quantum processes is that the interaction effect which
goes back from the apparatus to the micro-object which was observed, cannot be
neglected. Since the observer cannot have a complete knowledge of this effect,
the perturbation of the state of the object will be partly indeterminate. Therefore,
each observation creates a specific indeterminacy, or, in the present
terminology, wipes out a specific set of potential distinctions characterizing the
phenomenon.

As shown by the Bohr thought experiment, the particular distinctions which
are wiped out depend upon the observation set-up (sect. 7.3). You could say that
each observation set-up is characterized by a particular (incomplete)
representation. On the other hand different set-ups, hence different incomplete
representations, are generally incompatible: they cannot be coordinated in one
integrated set-up, but they cannot be applied subsequently either, because the
first one would create an indeterminacy perturbing the results of the next one.
Therefore, we are left with a set of incomplete but mutually incompatible
(ÒcomplementaryÓ) representations, each describing the potential observation
results (distinctions) of a collection of (compatible) set-ups.

Let us now try to reformulate these rather intuitive ideas by using the
metarepresentational formalism. We shall assume that the (incompletely
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observable) microstate of the object could be represented by a classical
ÒmicroscopicÓ representation, i.e. by a single Boolean algebra C. The
distinctions belonging to this representation can be interpreted as representing
all the observable and hidden variables determining the quantum system.

The observation process can then be represented by an epimorphism (cf.
sect. 11.4) f, sending this complete microscopic representation onto an
incomplete macroscopic representation. The macroscopic representation is again
a Boolean algebra M, whose distinctions represent the macroscopically
distinguishable states of a collection of compatible observation set-ups.

For example, in the most simple case M would consist of only one
distinction: that between spin-up and spin-down, which is registered as the
difference between the detection of a particle behind a polarizer, and the
absence of that detection (signifying that the particle has not passed the
polarizer). In that case we have:

f: C ® M: a ® f(a), where f(a) is either u (spin-up) or u' (spin-down).

We may then define f-1(u) as the set of all microvariables (or simpler
microstates) in C which are sent by f onto the macrostate u. Since the
information transferred through f is incomplete, this set contains more than one
element (f is many-to-one). Therefore, f-1 is not a regular function.

However if we now wish to represent the possible macro-distinctions made by
another incompatible set-up (e.g. one for measuring the spin in the left-right
direction), then we must consider another macrorepresentation and another
observation epimorphism:

f1: C ® M1 e.g. where: M1 = {l, l'}

Now f1
-1 (l) corresponds to a different subset of C (or of its state space). Since

we can assume that both f and f1 will each send half of the states of C onto u,
respectively onto l, and the other half onto u', respectively l', the subsets
corresponding to these functions will not be disjoint. Their intersection
corresponds to the set of microstates which would be sent to u by f and to l by
f1.

However, since the representations are incompatible this intersection cannot
be observed, it corresponds to a proposition of the unobservable micro-
representation C, it does not correspond to an observable distinction. We will
therefore assume that the conjunction of the two observable propositions is zero,
even though the intersection of the corresponding subsets of microstates is not
zero.

Definition: Sm = {s Î S: f observation epimorphism: f(s) = m}

Interpretation: Sm can be interpreted as the minimal set of (orthogonal)
microstates which can be sufficiently enlarged by a single collection of
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compatible observation set-ups to become macroscopically distinguishable as a
proposition m of the macroscopic subrepresentation M. If m is an atom of M,
then the elements of S can be said to represent the hidden variables of the
observed system. These hidden variables, however, are not subjected to the
same restrictions as the traditional hidden variables since the macrostates m
viewed as subsets of hidden variables are not disjoint.

This allows us to define a non-trivial orthogonality relation between
macrostates (or macro-propositions):

Definition: a ^ b iff Sa Ç Sb = Æ

According to this definition two macrostates will be orthogonal if they belong to
the same classical subrepresentation determined by the same observation
epimorphism f. Macrostates belonging to different classical subrepresentations
will not be orthogonal since different distinctions are filtered out.

This construction also allows us to define a non-classical transition
probability between macrostates:

             N (Sm1 Ç Sm2)
Definition: P (m1 | m2) = --------------------
                N (Sm2)

where N is a measure on the microstate space.

Property: P does not obey the Bayes axiom for conditional probability. Indeed,
for Sm1 Ç Sm2 ¹ Æ:

P (m1 | m2) ¹ P (m1.m2) / P(m2) = P(O) / P(m2) = O

Theorem: the set of all macrostates (defined in this way) which encompasses
the atoms of all maximally allowed classical subrepresentations, satisfies the
superposition principle.

Proof: consider two different macrostates m1 and m2, characterized by the sets
Sm1 and Sm2, which are their inverse images through observation morphisms.

We can then always find a third state m3 which is determined by a
minimally distinguishable subset Sm Ì Sm1 È Sm2.

Then m3 is orthogonal neither to m1 nor to m2, since

Sm Ç Sm1 ¹ Æ and Sm Ç Sm2 ¹ Æ

Moreover m3 is orthogonal to all states m4 orthogonal to m1 and m2: suppose
m4Ê^Êm1 and m4Ê^Êm2, then:
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Sm4 Ç (Sm1 È Sm2) = Æ, but then also: Sm4 Ç Sm = Æ and hence m4 ^ m3.
■

Note: this construction clearly captures the basic non-classical feature of
quantum mechanics: the superposition principle (in a quantum logical context
this principle is sometimes formulated as Òthe atomic bisection propertyÓ or Òthe
irreducibilityÓ of a quantum lattice (Piron, 1976; Ivert and Sj�din, 1978)). It is
easily extended so that it further captures the basic properties which quantum
logic inherits from Boolean logic: completeness of the lattice, atomicity,
orthocomplementation and orthomodularity (see Ivert and Sj�din, 1978 for a
complete list of axioms).

However, there remains one axiom determining quantum logics which for
the moment does not seem to follow from the construction: the (atomic)
covering law. In order to explain this feature we should further specify adequate
restrictions on the non-atomic components of the lattice, e.g. by means of a
ÒclosureÓ operation (cf. sect. 11.3).On the other hand it has been shown by Aerts
(1981) that the covering law cannot be satisfied by a system consisting of two
non-classical separated entities. It thus remains to be studied in how far the
covering law can or should be introduced in the present construction in order to
model all essential properties of quantum representations.

12.5. The Relativistic Frame.

Relativity theory is characterized by the negation of the LT condition, hence by
the violation of the ADI principle: temporal precedence is no longer a linear
order relation but a partial order. This is analogous to quantum mechanics: a
strong property (TO or LT) is negated and replaced by an at first sight weaker
property (not all states are orthogonal or not all events can be temporally
ordered). However, if we look more closely at the fundamental structures of
these two theories, we find an additional property which is missing in the
classical frame.

In quantum mechanics, this can be found in the superposition principle
which does not only express that there are non-orthogonal states (i), but also that
these states can somehow be grouped in ÒsubspacesÓ such that they are together
orthogonal to the same other ÒsubspacesÓ of states (ii). It is this requirement
which provides the quantum state space with an additional ÒcoherenceÓ which is
lacking in classical state spaces.

An analogous phenomenon can be found in relativistic Òspace-timeÓ: space-
time is more than just an incompletely ordered set of events, it possesses a so-
called Òcausal structureÓ, which is determined by two distinct relations,
chronological precedence and horismotic precedence. This defines a topology
on space-time (in the classical frame, on the other hand, the topology must be
brought in from the outside, without clear motivation).

In the present approach we attempt to explain these additional structures by
looking at the non-ADI morphisms connecting different representations which
are ignored by the classical frame. Indeed, if we do not require ADI, then the
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representation structure will consist of different, non-isomorphic Boolean
objects, connected by generally non-invertible morphisms. Each object can be
interpreted as representing the potential states of a particular system at a
particular instant in time. The actualization of a particular state of an object can
be called an ÒeventÓ.

(In the classical frame we did not have to introduce events because all
objects were isomorphic and hence could be identified. In that way it suffices to
introduce one global state representing all the different subsystems. Events are
then merely subsequent global states.)

We should now examine the structure of the set of events. This structure is
determined by the graph of all the morphisms which can be jointly actualized.
This actualization is constrained by the consistency axiom. For the moment, we
will not study the detailed dynamical structure entailed by this axiom, we will
only make a rough classification of the different paths formed by the
concatenation of morphisms.

Definition: a set of morphisms f: A ®  B, g: B ®ÊC, hÊ:ÊCÊ® D, É. will be
called a ÒpathÓ if they can be sequentially composed, i.e. there exists a
morphism: p = É * h * g * f.

Such a path can be interpreted as a Ò(globally) causal relationÓ (in the sense of
sect. 8.5). Indeed the composability of the (local) morphisms f, g, h, É signifies
that they allow a (global) morphism p, which still transfers at least one
distinction from the initial object A to the final object (otherwise it would not be
a morphism). The consistency axiom can now be applied to compare ÒparallelÓ
paths, i.e. paths whose initial and final objects coincide (although the
intermediate objects may be different). Let us apply it first to cyclic paths.

Definition: a path p: A ® Z is cyclic if its initial and final objects coincide:
AÊ=ÊÊZ.

Property: a cyclic path has at least one parallel path: the identity morphism of
its initial object: idA.

Theorem: either a cyclic path p: A ® A is inconsistent with the identity
morphism of A and then it can never be actual, or it sends states onto weaker
propositions: sÊÎÊA atom, then s < p(s).

Proof: suppose the state s is actual. Then we have two possible cases:
1) p(s).sÊ=ÊO
2) p(s).s¹ O.

1) In the first case we have: p(s).idA(s) = p(s).s = O.
Therefore, p is inconsistent with the identity morphism, which signifies

according to the consistency axiom that p and the identity can not be jointly
actual. But since by definition every categorical object must have a
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corresponding identity morphism we cannot exclude idA and hence we must
exclude p.
2) Since s is a Boolean atom, this case implies that: p(s).s = s, and hence:
sÊ<Êp(s). ■

Interpretation: cyclic paths clearly cannot be used to transfer information:
either they cannot be actual or the information they convey (that p(s) should be
actual) is already contained in the state. This means that if we wish to represent
potentially information transferring processes then we should restrict ourselves
to non-cyclic paths. These paths can be further divided in two distinct classes:

Definition: an acyclic path is ÒchronologicalÓ if it has at least one different,
parallel path (which is evidently not an identity morphism).

Definition: a path is ÒhorismoticÓ if it has no parallel path.

Remark: clearly a horismotic morphism can never be inconsistent, simply
because there is no other path to be inconsistent with; for chronological paths
however the different conditions for consistency will have to be further
analyzed.

Theorem: the set of all (relativistic) objects together with the relations CP, HP
and P, which are determined by respectively the chronological paths, the
horismotic paths and the union of both sets of paths, form a Òcausal spaceÓ (as
defined by Kronheimer and Penrose, 1967).

Proof: the proof is analogous to that of sect. 8.5, with ÒeventsÓ replaced by
ÒobjectsÓ and Òcausal connectionsÓ by ÒmorphismsÓ. ■

Note: the causal structure can be viewed as the most fundamental feature of
relativistic space-time. However, it is not the only one. If we wish to completely
reconstruct space-time then we should also be able to determine features such as
the metric or the dimension of space-time, which in the existing theories are
introduced axiomatically. A possible approach to ÒderiveÓ these properties from
the properties of information transmissions between events is hinted at in
(Heylighen, 1984) and in sect. 8.3, page 109 (the Marzke-Wheeler
construction). It is clear, however, that a lot of research is still needed to
elucidate these problems.

12.6. The Thermodynamic Frame.

The non-classical feature of the set of theories we roughly denote by the term
ÒthermodynamicsÓ, resides in the irreversibility of the processes described
within their representation. Therefore, the operators used to represent such
processes cannot form a group (in the best case only a monoid or semigroup).
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Therefore, the representation is characterized by the negation of the GO
property and hence, once again, by the negation of ADI. In order to represent
this in the metarepresentational framework, it suffices to consider not only
automorphisms (representing the reversible transformations) but also
endomorphisms (representing internal processes with a loss of distinctions, i.e.
an increase of entropy).

However, it would be interesting to find which Òadditional structureÓ
characterizes thermodynamic evolution. Since the thermodynamic theories are
much less Òwell-formalizedÓ than quantum mechanics or relativity theory, it is
at the moment not clear which structures are really fundamental. We can only
hope that the metarepresentational framework will prove to be a useful guide in
the further analysis of irreversible processes.

12.7. Conclusion

We have described a possible way to formalize the metarepresentational
framework, whose basic ideas were explained on a more intuitive level in the
thesis. The formalism is based on a fairly simple collection of postulates: the
axioms of distinction algebra (or equivalently of Boolean algebra), the axioms
of set theory (possibly replaced by those of category theory), and finally a newly
introduced axiom requiring the consistency of parallel morphisms.

With this axiom system we have shown that the basic properties of the
classical representation frame could be derived from the requirement of absolute
distinction invariance: orthogonality of states, linearity of time and the group
structure of the operator algebra.

The three basic, non-classical representation structures (quantum mechanics,
relativity theory and thermodynamics) could then be characterized by the
respective negation of these three properties. Finally, we have shown that in the
case of quantum mechanics and relativity theory additional structures could be
deduced: respectively the structure entailed by the superposition principle, and
the causal structure of space-time.
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