
 

 

ComprehensiveStatisticsAssignment 2 bs
t9
911

Arnab BoseMarch 1, 2002



ISI Comprehensive Statistics Assignment 

Page 1 

Assignment for Rolls 9 and 11 
POPULATION TOTAL ESTIMATION FOR NSSO SAMPLING DESIGN 

Due to some error in the implementation of Lahiri's scheme for circular systematic 
sampling with pi-proportional to size `in two half-samples (supposed to be 
independent), a complex sampling scheme arose and the two half-samples turned out 
to be dependent. The task is to obtain an unbiased estimate of the population total and 
a variance estimate for it. The mean squared error of the resulting estimators for the 
intended (Lahiri's) and the actual sampling schemes should also be compared through 
simulation. 

Preliminaries 
For the purpose of this assignment, extend the definition of modulus from integers to 
real numbers as follows: 

 mod(a,b)=r s.t. a=r+b×n, where r∈[0,b), n is integer. 

Some Sampling Schemes 
We are given N units with size measures S1, S2, …, SN. We are to choose a sample of 
size n from the N units. Let the total of the sizes be S=∑Si . Define the probability 
measures pi as pi=Si/S. Let c0=0, c1=p1, c2=p1+p2, …, cN=1 be the cumulative 
probabilities. 

Define the function k(u)= min{i: ci>u}. 

Sampling Scheme 1 
Get an observation u from Uniform(0,1). Select the unit with the index k(u) as the 
first unit in the sample. Change u to mod(u+1/n, 1), and select the k(u)th unit again 
into the sample. Repeat this procedure n times, so that a sample of size n is obtained. 

Note: This scheme allows a unit to be present more than once in the sample. 

This scheme is simple enough to allow straightforward calculation of inclusion 
probabilities: 

 πi= npi if npi <1, 

  1 otherwise. 

This can be also written as 

 πi=n length({mod(x,1/n): x∈(ci-1, ci)}) where length of a subset of reals has its 
usual meaning. 

Second order inclusion probability can also be obtained as 

 πij=n length({mod(x,1/n): x∈(ci-1, ci)} ∩ {mod(x,1/n): x∈(cj-1, cj)}). 
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The higher order inclusion probabilities can also be expressed similarly. 

Sampling Scheme 2 
This scheme is almost same as Scheme 1, except for the fact that repetitions are not 
allowed here. We essentially follow scheme 1, and to handle repetitions we skip the 
units that are already included in the sample. In case we have continuously skipped a 
pre-fixed number of units, we keep the units we already have in the sample and set 
u=ci-1 where the first unit from the top that has not already been included is the ith 
unit. This will make ith unit to be the unit included next. This procedure is carried out 
like this as long as a sample of size n is not obtained. The number of continuous skips 
before we start from the top is usually taken as 15 or 20. Let us call this number 
MAX_REPEATS. 

Note: Although this is the original scheme that was supposed to be used by NSSO, it 
has an undesirable quality. This scheme gives bias to the inclusion of the first unit if 
pi>1/n (i.e. Si>S/n) for some i. Also if pi>2/n for any i, then we will have π1=1 
irrespective of size of first unit! 

Note that the second scheme reduces to the first scheme and both the schemes are πps 
schemes when pi<1/n for all i. 

Sampling Scheme 3 
Instead of using sampling scheme 2 independently to the first half-sample obtained, a 
mistake was made and the result was the following scheme for the second half-
sample. First we have to have a first half-sample of size n chosen beforehand. Then as 
before a random number u was observed from the Uniform(0,1) distribution. From 
then on, scheme 2 was implemented for choosing 2n units, pretending that n units (i.e. 
the first half-sample) are already chosen and remaining n units are needed to be 
chosen without replacement. 

Observations 
For the subsequent calculations, let us denote by ai, aij the inclusion probabilities for 
first half-sample, by bi, bij the inclusion probabilities for second half-sample, and by 
πi, πij the inclusion probabilities for the combined sample. Also let us denote by Ai the 
event that ith element is included in 1st half-sample, and by Bi the event that ith element 
is included in 2nd half-sample. 

Independent Half-Samples 
Originally, the first and second half-s1amples were both supposed to be independently 
chosen using scheme 2. This would ensure the basic necessity for the estimablility of 
variance of HTEŶ , since independence guarantees that all second order inclusion 
probabilities will be positive (because the first order inclusion probabilities are 
positive for each half-sample). We can calculate the combined inclusion probabilities 
in terms of half-sample inclusion probabilities as follows: 
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πi=P(Ai∪Bi)=P(Ai)+ P(Bi)-P(AiBi)=ai+bi-aibi .................................................Eqn 1(a) 

πij = P(AiAj∪AiBj∪BiAj∪BiBj) 

 = P(AiAj)+P(AiBj)+P(BiAj)+P(BiBj) 

  -P(AiAjBi)-P(AiAjBj)-P(AiAjBiBj)-P(AiBjBiAj)-P(AiBjBi)-P(BiAjBj) 

  +4P(AiAjBiBj)-P(AiAjBiBj) (by the inclusion exclusion principle) 

 = aij+aibj+biaj+bij-(aijbj+aijbi+aijbij+aijbij+aibij+ajbij)+3aijbij 

 = aij+aibj+biaj+bij-aij(bj+bi)-(ai+aj)bij+aijbij ................................................ Eqn 1(b) 

Dependent Half-Samples 
However, a ‘defective’ method was used, where first half-sample was chosen by 
scheme 2 and the second half-sample was chosen (given the first half-sample) by 
scheme 3, given the first half-sample. Observe that even now all the second order 
inclusion probabilities are positive since: 

πij >P({k(u)=i for the first u in scheme 2} ∩ {k(u)=j for the first u in scheme 3}) 

 = pipj where pk=Sk/S is the probability measure corresponding to unit k, since 
the events are independent. 

So even in the defective scheme, it is possible to get an unbiased estimator for the 
variance of HTEŶ . 

The Algorithm for Inclusion Probabilities 
Observe that for scheme 1, instead of u it suffices to know mod(u,1/n) in order to find 
out the sample. This is because after observing u, we choose units k(mod(u+i/n,1)) for 
i=1, 2, …, n. If we change u with mod(u,1), we will find the same units in a different 
order. 

The same is true for schemes 2 and 3 if it is guaranteed that one cycle will be 
completed (i.e. n turns will be completed) before getting MAX_REPEATS number of 
consecutive elements that are already in the sample. This is because if we start with 
any mod(u+i/n,1) instead of u, we will complete the same first cycle. If we don’t 
already have n elements, we will not get anything new pursuing the next values of u’s. 
This is because we will get back the 1st element on the n+1st turn, 2nd on the n+2nd 
turn, and so on, and ultimately exceed MAX_REPEATS turns. After that all the 
elements we get will clearly be the same as before. 

So let us consider this case first, i.e. when the sample is determined by mod(u,1/n).  

If the sample is determined by mod(u,1/n) 

Let us therefore wlg take initial u in (0,1/n). 

Let us divide the real line from 0 to 1 into proportions given by the Si’s. Then the ith 
segment formed will have size pi. Let us also divide the interval into n equal parts. 
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Figure 1: Interval Representation 

During the first cycle, units are picked from each interval of size 1/n. The process can 
be represented graphically if we position these intervals one below other. Then if a 
vertical line is drawn passing through u, all units that intersect the line will be chosen.  

0

u

1/n

( -1)/n n 1  

Figure 2: Stacked Interval Representation 

If we increase or decrease u, there will be a point when this vertical line will cross 
over one of the size marks. It is clear that when it does so, the points that we pick up 
in the first n turns while forming the sample will no longer be the same as that of the 
old sample. It is also clear that as long as it does not cross any mark, we will always 
get the same set of points in the first n turns. Since these points comprise of the 
sample points for with-replacement scheme, the sample we obtain is same as long as u 
does not cross any of the size marks. Also since after getting these points continuous 
repetitions are bound to occur if we continue a without-replacement scheme - thus 
fixing the future points of the sample, the same can be said about those schemes. 

Hence it will be easy to identify the different possible samples if we superimpose the 
size marks in these 1/n-length intervals. Each of the sub-intervals formed by the 
superimposed size marks will denote one possible sample. Moreover, the probability 
of the occurrence of any sample will be the probability of mod(u,1/n) falling in that 
sub-interval, which is n times the length of that sub-interval. 

0 1/n

u

 

Figure 3: Superimposed Interval Representation 

Immediately with the help of this representation we find that the total number of 
possible samples is N, since there are N sub-intervals of (0,1/n) in the figure. Let us 
denote the sample corresponding to the ith sub-interval as si. Then we have for any 
function f of the sample, 

)P()f())E(f(
1

i

N

i
ii sss ∑

=
= ...................................................................................Eqn 2(a) 

In particular, if we take  

f(s)=1s(ith unit), then we get E(f(si))=πi, and taking  

f(s)=1s(ith unit)1s(jth unit) gives us E(f(si))=πij (for one half-sample only). 
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Using equations 1(a) and 1(b), we can immediately get the inclusion probabilities for 
a combined sample formed by two independent half-samples. 

For two dependent half-samples 
There can be at most N first half-samples, and for each of them there can again be N 
second half-samples. Let us denote the first half-samples as si’s second half-samples 
as ti’s. Then we have P(si ∩ ti)=P(ti | si)P(si). Using the superimposition technique we 
can calculate theses probabilities. 

We have 

∑∑
= =

=
N

i

N

j
iijjiji ssttsts

1 1

)P()|P(),f()),E(f( ......................................................... Eqn 2(b) 

giving us the inclusion probabilities for  f(s,t)=1s,t(ith unit) and f(s,t)=1s∪t(ith 
unit)1s∪t(jth unit) we get the first and second order inclusion probabilities as the 
expectations. 

If the sample is not determined by mod(u,1/n) 

This may happen only when there is a unit with size large enough to let us have 
MAX_REPEATS+1 repetitions of itself, making us start over before completing the 
first cycle. If this happens for any some initial u, then it will happen for mod(u,1/n) as 
well. So it is sufficient to test this for u in (0,1/n). 

If we find for some initial u∈(0,1/n) that we will need to start over, then taking 
mod(u,1/n) will not suffice for all u within that specific sub-interval of (0,1/n). Hence 
for such u’s we will have to consider n possible samples that originate by taking the 
initial random start as u, u+1/n, …, u+(n-1)/n. Each of these samples will have a 
probability equal to the length of the sub-interval (i.e. the normalised size intervals) 
where u belongs. 

We are now in a position to write an algorithm for calculating the inclusion 
probabilities. 

The algorithm 
1. Given the population size N, sample size n, and the size measures Si’s, form the 

probabilities by pi=Si/∑Si . Define c0=0, c1=p1, c2=p1+p2, …, cN=1. Then collect 
the mod(ci,1/n)’s for i=0 to N-1 into an array SImp[] (of size N+1) and sort it in 
ascending order. Define SImp[N+1]=1/n. 

2. Enumerate all possible N number of first half-samples by taking pk∈(SImp[k], 
SImp[k+1]). For definiteness, take pk=(CuS[k]+CuS[k+1])/2. 

3. Is it known that the schemes are independent? If yes go to step 5. 

4. For each of these first half-sample, again generate N number of second half-
samples. Use equation 2(b) to find out the inclusion probabilities. Go to step 6. 
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5. Calculate the inclusion probabilities for the first half-sample using equation 2(a). 
Enumerate all possible second half-samples now, in the same way as step 2. 
Calculate the inclusion probabilities for the second half-samples again by using 
equation 2(a). Now use equations 1(a) and 1(b) to compute the inclusion 
probabilities for combined sample. 

6. End of algorithm. 

Once we find the inclusion probabilities for the observed sample, we can estimate the 
population total and also find exact variance (if we have calculated all the inclusion 
probabilities) or an unbiased estimate of the variance (if we have calculated inclusion 
probabilities for the units in observed sample only) of this estimator using the 
formulae derived by Horvitz and Thompson: 

∑
=

=
n

i i

i
HTE

y
Y

1

ˆ
π

..................................................................................................Eqn 3(a) 
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(if we take πii=πi) ....................................... Eqn 3(b) 
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πππ

πππ
(if we take πii=πi) ........................................Eqn 3(c) 

Note: Higher order inclusion probabilities can also be calculated if needed by the 
method mentioned here. 

Simulation 
A program was written which generates random values for sizes from Uniform 
distribution 1 to 10000, and the values associated to the units. It then uses the 
sampling schemes (original and ‘defective’) to get to pair of half-samples. After 
getting the samples it generates values associated to those units from some predefined 
distribution. Then the inclusion probabilities and hence the variance estimates are 
calculated for only the units included for both the schemes using equation 3(c). The 
whole process is repeated several times, and number of times the original method 
gives lesser variance is obtained. 

In the beginning, the program was not fast enough with high values of N since the 
time needed for calculating inclusion probabilities increases by the order of N2. Same 
is true for n also. The code very slow - estimated time to complete one for n=20 and 
N=500 simulation was about 42 hours in my 166MHz PC! That is why some speed 
increasing algorithms like binary search were needed. After many revisions of the 
program, the time was drastically reduced to about 1 minute and that too for 
computing actual variance (using equation 3(b)) instead of variance estimate! Still the 
speed was not sufficient to work with the magnitude of data in the original problem 
that NSSO was facing. The table below summarises the results that were obtained. 
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Table 1: Summary of Simulations 

‘Defective’ Variances ‘Non-defective’ 
Variances Y Values N n 

Proportion 
of times 

‘defective’ 
was better Min Max Avg. Std. 

Dev. Min Max Avg. Std. 
Dev. 

Normal(50,25) 
truncated 

below at 10 
1000 40 100% 

68
.7

70
3 

44
0.

92
70

 

18
6.

69
80

 

81
.3

70
0 

86
.6

13
1 

45
0.

94
10

 

19
4.

61
26

 

81
.5

60
0 

Normal(50,25) 
truncated 

below at 10 
500 20 100% 

90
.0

77
2 

11
32

.1
70

0 

30
8.

46
05

 

22
7.

21
00

 

98
.5

67
2 

11
43

.6
10

0 

32
1.

98
30

 

22
6.

80
92

 

Exponential 
with location 
25, scale 25 

500 20 100% 
83

.3
33

3 

78
3.

96
20

 

31
3.

76
94

 

16
3.

74
86

 

98
.3

17
9 

79
5.

30
10

 

32
5.

67
39

 

16
4.

68
09

 

For each set-up 100 populations were generated from uniform 1 to 10000 distribution, 
and the exact variances for the two schemes were calculated using equation 3(b). 

Each time, the variance for the ‘defective’ scheme turned out to be better, although 
sometimes only marginally. This is not totally unanticipated, since intuitively one 
should expect less variance for the dependent scheme since there it is ensured that all 
units chosen will be different, guaranteeing more information than the independent 
method. This is somewhat like without replacement sampling being better than with 
replacement sampling. However, it is rather surprising that ‘defective’ scheme always 
gave lesser variation, for the entire 300 populations that were generated. This 
indicates that perhaps, it can be proved analytically that ‘defective’ scheme is always 
better. 

Appendix 
Since the program is taking so long an approximate method is suggested (in fact 
included in the program, activated by #define APPROX). We can arrange the 
probabilities of N possible samples in ascending order, and then ignore the first few 
half-samples (for both first and second sampling), which have total probability just 
less than some predefined α. 

The N2 (combined) samples that we are considering for the algorithm for the defective 
scheme can be enumerated by the rectangles in the following figure. Note that not all 
of them will be different, in fact many will actually turn out to be the same sample. 
The probability of obtaining a sample is proportional to sum of all the areas of the 
rectangles, which correspond to that sample. The shaded portion of the figure denotes 
the samples that we are ignoring in our approximation. 
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Figure 4: Graphical Representation of Probabilities of Samples 

Note: Although the representation gives a feeling of independence, actually that is 
false. This is because the Second Half Samples will not all be same over a row since 
they depend on the First Half Sample. 

The maximum probability measure of each half-sample that is being ignored is α. The 
maximum probability measure of combined sample being ignored can be calculated 
from the figure: 2α-α2. The maximum difference in first order or second order 
inclusion probabilities caused by this approximation is therefore 2α-α2. Using this 
one can come to a value of α that will give desired accuracy. 

This approximation technique poses some problems. One is that the accuracies are 
established using the assumption that sample is determined by mod(u,1/n). Another 
serious problem is that the approximate inclusion probabilities may sometimes turn 
out to be zero. Due to these problems and upcoming deadline for submission of the 
assignment, this line of thought was abandoned. 
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Supplement 
Let us denote by ai and aij the inclusion probabilities for the first half-sample, and by 
di and dij the conditional inclusion probabilities for the second half-sample given the 
first half-sample. Let s denote the first half-sample and t be the second half-sample. 

Then a computationally cheaper estimate of Y is 
2

ˆ
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�		
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=
∑∑∑
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j

si i

i y
d

y

a
y

Y .  

To prove that this is an unbiased estimate, let E1 denote expectation on the first half-
sample and E2 denote conditional expectation on the second half-sample given the 
first half-sample. Then we have: 
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We can similarly calculate the variance of this estimate. Let V1 denote variance on the 
first half-sample only and V2 denote conditional variance on the second half-sample 
given the first half-sample. Then, 
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Here the second expectation is difficult to simplify analytically. However, a computer 
program can calculate it by using equation 2(a). 

Notice that an unbiased estimate of the variance would be 

( ) ∑∑∑∑
∈ ∈∈ ∈

���
 !!"

#
−
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 !!"

#
−

=
ti tj ijji

jiij
ji

si sj ijji

jiij
ji ddd

ddd
yy

aaa

aaa
yyYV ˆ2ˆ  if all the aij’s and dij’s were 

positive. But since most of these probabilities are zero, this is not actually an unbiased 
estimate for the variance.1 

The program for simulation was modified to evaluate this variance along with the 
previous two variances and comparison was made. Out of 100 populations generated 
with N=1000, n=30, Si’s uniform 1 to 10000, and Yi’s distributed normally with mean 
50 and variance 25, in all cases the ‘defective’ method had the least variance for the 

                                                           
1 Note that for any actual sample (which has a positive probability of occurrence) this variance estimate 
is well defined. However, the expectation of this expression will be always greater than the actual 
variance since it will miss all terms inside the summation with either aij=0 or bij=0, from the actual 
variance. 
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HTE, and the new estimate for the ‘defective’ method had the most variance. The 
summaries of the variances obtained are tabulated below. 

Table 2: Summary of simulation with the new estimate 

‘Defective’ HTE 
Variances 

‘Non-defective’ HTE 
Variances New estimate variances 

Avg. Min Max Avg. Min Max Avg. Min Max 
18

6.
22

94
 

87
.1

71
9 

53
8.

29
10

 

19
4.

15
64

 

94
.6

86
1 

54
1.

91
80

 

33
04

.0
11

0 

17
30

.1
70

0 

88
90

.3
20

0 

Thus the new estimate for the ‘defective’ method has about 18 times more variance 
than the HTE on average! 

We could improve the variance a little by obtaining an unordered estimate using the 
new estimate. Let f(s,t) be the new (‘cheaper’) estimate. Then the unordered estimate 

would be g(s,t)=
f(s,t)P(s,t)+f(t,s)P(t,s)

P(s,t)+P(t,s)   where P(s,t)=probability of obtaining s as the 

first half-sample and t as the second. This will have better variance by the virtue of 
being unordered (wrt the first and the second half-samples). Also it will be unbiased 
since 
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