Coordinate Geometry

Distance Between Two Points

The distance between $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ is $P_{1} P_{2}=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.

Point of Division

If $P(x, y)$ divides the line segment joining $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ internally in the ratio $\frac{P_{1} P}{P P_{2}}=r$, then the coordinate of P are given by

$$
x=\frac{x_{1}+r x_{2}}{1+r} \quad \text { and } \quad y=\frac{y_{1}+r y_{2}}{1+r} .
$$

If P lies on the produced line of $\mathrm{P}_{1} \mathrm{P}_{2}$, it is the external point of division and r is negative.

$r<-1$

$-1<r<0$

If P is the midpoint of $\mathrm{P}_{1} \mathrm{P}_{2}$, then $r=1$ and the coordinates of P are given by $x=\frac{x_{1}+x_{2}}{2} \quad$ and $y=\frac{y_{1}+y_{2}}{2}$.

Area of Triangle

(a) Area of Triangle $\mathrm{OAB}=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)$

(b) Area of Triangle $\mathrm{ABC}=\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}-x_{2} y_{1}-x_{3} y_{2}-x_{1} y_{3}\right)=\frac{1}{2}\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{2} & y_{2} \\ x_{3} & y_{3} \\ x_{1} & y_{1}\end{array}\right|$

In general, the area obtained by the formula is positive if the vertices are taken in anti-clockwise direction, and the result is negative if the vertices are taken in clockwise direction.
(c) Area of Polygons $=\frac{1}{2}\left|\begin{array}{cc}x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} \\ x_{1} & y_{1}\end{array}\right|$
where $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ are taken in anti-clockwise direction.

Inclination and Slope
Slope $m=\tan \alpha=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Angles between Two Lines

$$
\begin{aligned}
\theta & =\alpha-\beta \\
\tan \theta & =\tan (\alpha-\beta) \\
& =\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
& =\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}
\end{aligned}
$$

Since θ is an acute angle and $\tan \theta>0$,

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

From above formula,
we get If $L_{1} / / L_{2}$ then $m_{1}=m_{2}$
and If $L_{1} \perp L_{2}$ then $m_{1} m_{2}=-1$.

Equations of Straight Lines

(A) Point-Slope Form

$$
\frac{y-y_{1}}{x-x_{1}}=m
$$

(B) Slope-Intercept Form

$$
y=m x+c
$$

(C) Two Point Form

$$
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

(D) Intercept Form

$$
\frac{x}{a}+\frac{y}{b}=1
$$

(E) General Form

$$
A x+B y+C=0
$$

Normal Form
$\mathrm{OA}=p \cos \theta$

$$
\mathrm{AB}=p \sin \theta
$$

$$
\text { where } p \text { is positive }
$$

Coordinates of $A=(p \cos \theta, p \sin \theta)$
Slope of $O A=\frac{p \sin \theta-0}{p \cos \theta-0}=\tan \theta$
Slope of the line $L=-\frac{1}{\tan \theta}$

Equation of the Line L :

$$
\begin{aligned}
& \frac{y-p \sin \theta}{x-p \cos \theta}=-\frac{1}{\tan \theta} \\
& y \tan \theta-p \sin \theta \tan \theta=-x+p \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& y \frac{\sin \theta}{\cos \theta}-p \sin \theta \frac{\sin \theta}{\cos \theta}=-x+p \cos \theta \\
& y \sin \theta-p \sin ^{2} \theta=-x \cos \theta+p \cos ^{2} \theta \\
& x \cos \theta+y \sin \theta-p=0
\end{aligned}
$$

where $p(>0)$ is the length of normal and $\theta(0<\theta<2 \pi)$ is the inclination of normal.

Conversion of General Form to Normal Form

Comparing the General Form and Normal Form of the same straight line:

$$
\left\{\begin{array}{l}
A x+B y+C=0 \\
x \cos \theta+y \sin \theta-p=0
\end{array}\right.
$$

Slope of the line $=-\frac{A}{B}=-\frac{1}{\tan \theta}$
i.e. $\tan \theta=\frac{B}{A}$

$$
\sin \theta= \pm \frac{B}{\sqrt{A^{2}+B^{2}}} \text { and } \cos \theta= \pm \frac{A}{\sqrt{A^{2}+B^{2}}}
$$

The equation in Normal Form is $\frac{A x+B y+C}{ \pm \sqrt{A^{2}+B^{2}}}$.

Notice:

1) The sign we take must be opposite to that of C.
2) If $C=0$, the sign we take must be same of B.
3) For the line $A x+B y+C=0$, the perpendicular distance from the origin to the line is

$$
p=\left|\frac{C}{\sqrt{A^{2}+B^{2}}}\right|
$$

Distance Between a Point and a Line

Let the distance between the point $\left(x_{1}, y_{1}\right)$ and the line $A x+B y+C=0$ $(x \cos \theta+y \sin \theta-p=0)$ be d.

The equation of the line L_{2} which passes through $\left(x_{1}, y_{1}\right)$ and parallel to $A x+B y+C=0$ is $x \cos \theta+y \sin \theta-(p+d)=0$.
Since $\left(x_{1}, y_{1}\right)$ is on $L_{2}, x_{1} \cos \theta+y_{1} \sin \theta-(p+d)=0$
$d=x_{1} \cos \theta+y \sin \theta-p$

$$
\therefore \quad=\left|\frac{A x_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}}\right|
$$

$L: A x+B y+C=0$ $x \cos \theta+y \sin \theta-p=0$

Distance Between Two Parallel Lines

For two parallel lines $\left\{\begin{array}{l}A x+B y+C_{1}=0 \\ A x+B y+C_{2}=0\end{array}\right.$, there distance apart $d=\left|\frac{C_{1}-C_{2}}{\sqrt{A^{2}+B^{2}}}\right|$.

Family of Straight Lines

Family of straight lines are the lines whose have something in common.
I. Lines with Same Slope (m) $y=m x+k$ or $A x+B y+k=0 \quad$ where k is a real number. e.g. $\left\{\begin{array}{l}y=2 x \\ y=2 x+1 \\ y=2 x-2 \\ \vdots\end{array}\right.$

2. Lines through Common Point (a, b) $\frac{y-b}{x-a}=m \quad$ or $\quad y=m(x-a)+b \quad$ where m is a real number.
e.g. $\left\{\begin{array}{l}y=x+1 \\ y=2 x+1 \\ y=-3 x+2 \\ \vdots\end{array}\right.$

3. Lines through Intersection Point of Two Straight Lines L_{1} and L_{2}.

Given that $\quad L_{1}: A_{1} x+B_{1} y+C_{1}=0$
and $\quad L_{2}: A_{2} x+B_{2} y+C_{2}=0$.
The family of straight lines passing through the intersection point of L_{1} and L_{2} is $L_{1}: A_{1} x+B_{1} y+C_{1}+k\left(A_{2} x+B_{2} y+C_{2}\right)=0$ where k is a real number.
Each value of k will give an equation of one of the lines in the family.

Circles

Distrubuted by 4D Class Website: http://hk.geocities.com/firedplkcc (c) All Right Reserved 2003
I. Circle with centre $(0,0)$ and radius r. By distance formula

$$
\begin{aligned}
& r^{2}=(x-0)^{2}+(y-0)^{2} \\
& x^{2}+y^{2}=r^{2}
\end{aligned}
$$

II. Circle with centre (h, k) and radius r.

By distance formula

$$
\begin{aligned}
r^{2} & =(x-h)^{2}+(y-k)^{2} \\
& =\left(x^{2}-2 h x+h^{2}\right)+\left(y^{2}-2 k y+k^{2}\right) \\
x^{2} & +y^{2}-2 h x-2 k y+h^{2}+k^{2}-r^{2}=0
\end{aligned}
$$

III. General Form

$$
x^{2}+y^{2}+D x+E y+F=0
$$

Find Centre and Radius
Consider
two
equations
$x^{2}+y^{2}+D x+E y+F=0$
and

$$
x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}-r^{2}=0 .
$$

$$
\left\{\begin{array}{l}
D=-2 h \\
E=-2 k \\
F=h^{2}+k^{2}-r^{2}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
h=-\frac{D}{2} \\
E=-\frac{E}{2} \\
r=\sqrt{h^{2}+k^{2}-F}=\sqrt{\left(\frac{D}{2}\right)^{2}+\left(\frac{E}{2}\right)^{2}-F}=\frac{1}{2} \sqrt{D^{2}+E^{2}-4 F}
\end{array}\right.
$$

Equation of Circle with diameter ending at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
\left(\frac{y-y_{1}}{x-x_{1}}\right)\left(\frac{y-y_{2}}{x-x_{2}}\right)=-1
$$

Intersection of a Line and a Circle

For a line $y=m x+c$ is a tangent to a circle $x^{2}+y^{2}+D x+E y+F=0$.
If $\quad \Delta>0, \quad$ there are two points of intersection.
If $\Delta=0, \quad$ there is only one point of intersection.
If $\quad \Delta<0, \quad$ there is no point of intersection.

Tangents to a Circle

Conditions for a line $y=m x+c$ is a tangent to a circle $x^{2}+y^{2}+D x+E y+F=0$.

1) $\Delta=0$
2) Line from centre to the line = radius
I) Tangents with Given Slope
(C.D.)
II) Tangent at a Point on Its Circumference (C.D.)
III) Tangents from External Point (C.D.)

Length of Tangent

$$
d=\sqrt{x_{1}^{2}+y_{1}^{2}+D x_{1}+E y_{1}+F}
$$

$$
\left(x_{1}, y_{1}\right)
$$

Circles Touches Each Others
I. Touch Externally

$$
C_{1} C_{2}=r_{1}+r_{2}
$$

II. Touch Internally

$$
C_{1} C_{2}=r_{1}-r_{2}
$$

Family of Circles

I. Concentric Circles
$x^{2}+y^{2}-2 h x-2 k y-F=0 \quad$ where F is a real number.
or $(x-h)^{2}+(y-k)^{2}=r^{2}$ where r is a real number.
e.g. $x^{2}+y^{2}-2 x+y-F=0$

II. Circles Through Intersection of a Line $L: A x+B y+C=0$ and a Circle $C: x^{2}+y^{2}+D x+E y+F=0$.
$x^{2}+y^{2}+D x+E y+F+k(A x+B y+C)=0$
where k is a real number.
Or $\quad x^{2}+y^{2}+(D+k A) x+(E+k B) y+(F+k C)=0$

II. Circles Through Intersection of a Circle $1 C_{1}: x^{2}+y^{2}+D_{1} x+E_{1} y+F_{1}=0$ and a Circle $2 C_{2}: x^{2}+y^{2}+D_{2} x+E_{2} y+F_{2}=0$.

$$
x^{2}+y^{2}+D_{1} x+E_{1} y+F_{1}+k\left(x^{2}+y^{2}+D_{2} x+E_{2} y+F_{2}\right)=0
$$

where k is a real number.
Or

$$
(1+k) x^{2}+(1+k) y^{2}+\left(D_{1}+k D_{2}\right) x+\left(E_{1}+k E_{2}\right) y+\left(F_{1}+k F_{2}\right)=0
$$

When $k=-1$, the equation above becomes an equation of a straight lipe

$$
L:\left(D_{1}-D_{2}\right) x+\left(E_{1}-E_{2}\right) y+\left(F_{1}-F_{2}\right)=0
$$

If there are two points of intersection, L is the common chord of the two given circles.
If there is only one point of intersection, L is the common tangent of the two given circles.
If there is no point of intersection, L is the radial axis of the two given circles.
The family of circle through the intersection of a C_{1} and C_{2} can be reduced to the family of circle through the intersection of C_{1} or C_{2} and its common chord L.
i.e. $\quad x^{2}+y^{2}+D_{1} x+E_{1} y+F_{1}+k\left[\left(D_{1}-D_{2}\right) x+\left(E_{1}-E_{2}\right) y+\left(F_{1}-F_{2}\right)\right]=0$
or $\quad x^{2}+y^{2}+D_{2} x+E_{2} y+F+k\left[\left(D_{1}-D_{2}\right) x+\left(E_{1}-E_{2}\right) y+\left(F_{1}-F_{2}\right)\right]=0$

Locus Problem

Locus is the path described when a point moves on a plane under certain condition. If the coordinates of the moving point is (x, y), the relationship between x and y, i.e. $F(x, y)=0$ is the equation of the locus.

