Q1.

a) Let X be the monthly income of HK resident.

X~N (19000, 41502)

P (X>20000) = P ( > )

                    =P (Z>0.24)

                    =0.5 - 0.0948

                    =0.4052

 

b) P (15000<X<25000) = P ( < < )

                             =P (-0.96<Z<1.45)

                            =0.3315 + 0.4265

                             =0.758

 

c) P (X<24000) = P ( < )

                         = P (Z<1.20)

                         =0.5+0.3849

                         =0.8849

 

d) P (X<31000) = P ( < )

                         = P (Z<2.89)

                         =0.5 + 0.4981

                         =0.9981

 

e) P (9000<X<18000) = P ( < < )

                                  = P (-2.41<Z<-0.24)

                                  =0.4920 - 0.0948

                                  =0.3972

 

f) P (X<12000) = P ( < )

                         = P (Z<-1.69)

                         =0.5 - 0.4545

                         =0.0455

g) P (X>10000) = P ( > )

                         = P (Z>-2.17)

                         =0.5 + 0.4850

                         =0.9850

h) P (21000<X<30000) = P ( < < )

                                  = P (0.48<Z<2.65)

                                  =0.4960 - 0.1844

                                  =0.3116

 

i) P (X>16500) = P ( > )

                        = P (Z>-0.60)

                        =0.5 + 0.2257

                        =0.7257

 

j) P (X>19000) = P ( > )

                         = P (Z>0)

                         =0.5

 

Q2.

a)      P (punctual) = P (does not oversleeps and no traffic jam)

                 = P (does not oversleeps) × P (no traffic jam)

 =0.9 × 0.8

 =0.72

  Let X be the number of days he is punctual.

  X~ Bin (5, 0.72)

  f(X) = 5CX (0.72)X (1-0.72)5-X      for X = 0,1,2,…5

 

  P (X=4) = f (4) = 5C4 (0.72) 4 (1-0.72) 5-4 =0.3762

 

b) P (X3) = f (3) + f (4) + f (5)

                  = 5C3 (0.72) 3 (1-0.72) 5-3 + 5C4 (0.72) 4 (1-0.72) 5-4 + (0.72) 5

                       =0.2926 + 0.3762 + 0.1935

                  =0.8623

 

c)      Let Y be the number of week in which he is punctual in at least 3 days in the week.

Y~ Bin (14, 0.8623)

f(Y) = 14CY (0.8623) Y (1-0.8623)14- Y      for Y = 0,1,2,…14

 

P (Y=11) = f (11) = 14C11 (0.8623) 11 (1-0.8623) 3

                                    =0.1863

 

d) E (Y) = np

           =14×0.8623

           =12.0722

  Therefore, Peter is expected to be punctual for 12 weeks.

 

e)      P (punctual in the 1st semester and punctual in the 2nd semester)

= P (punctual in the 1st semester) × P (punctual in the 2nd semester)

=0.1863×0.1863

=0.0347

 

Q3

a)      Let X be the number of accidents per day.

X~ Poisson (λ=1.5)

f(X) =   for X= 0,1,2,…….

P(X2) = 1 - f(0) - f(1)

            = 1- - (1.5)

            = 1- 0.2231- 0.3347

            = 0.4422

Let Y be the number of day that at least 2 accidents in a period.

Y~ Bin (10, 0.4422)

f(Y) = 10CY (0.4422)Y (1-0.4422)10-Y      for Y = 0,1,2,3,…10

P (Y>6)= f(7) + f(8) + f(9) + f(10)

           =10C7 (0.4422)7 (1-0.4422)10-7 + 10C8 (0.4422)8 (1-0.4422)10-8 +

10C9 (0.4422)9 (1-0.4422)10-9 +(0.4422)10

=0.0688 + 0.0205 + 3.6045×10-3 + 2.857×10-4

=0.0932

 

 

b)      Let U be the number of weeks in which the road is labeled as ‘traffic black point’.

U~ Bin (25, 0.0932

E (Y) = np

=25 (0.0932)

=2.3298

 

c) P (labeled as a “traffic black point” in 3 consecutive periods)

= 0.09323

=8.0933×10-4

 

Q4

a)      The proportion of students who get score ’A’,

Let X be the total marks that a student can get.

X~ N (73.2, 102)

P (X>85) = P( > )

                   =P (Z> 1.18)

                   =0.5-0.3810

                   =0.1190

Let Y be the number of students who get score “A”.

Y~ Bin (25, 0.1190)

E(Y)= 25 (0.1190)

        =5.95

 Therefore, the expected number of students who get ‘A’ is 6.

 

b)      X~N (73.2, 102)

P (X>x) =1-0.9

P ( > )=0.10000000000000

P (0Z )=0.5-0.1000000

=1.2800

000x=86

  

 

c)      Let Q be the mark of the student.

X~N (73.2, 102)

P (X> Q) =1-0.75

P( > )=0.250000000000000

P (0Z )=0.5-0.25000000

=0.6700

000Q=79.9

 

Therefore the mark of the student is 79.9.

 

d)      P (X>60)

= P ( > )

=P (Z>-1.32)

=0.5 + 0.4066

=0.9066

 

e)      Let W be the number of student who can pass the course.

W ~ Bin (20, 0.9066)

f(W)= 20CW (0.9066)W (1-0.9066)20-W      for Y = 0,1,2,3,…20

f(18) = 20C18 (0.9066)18 (1-0.9066)20-18

     =0.2837

 

f) Let U be the number of student who can pass the course.

U ~ Bin (200, 0.9066)

f(U)= 200CU (0.9066)U (1-0.9066)200-U      for U = 0,1,2,3,…200

f(180) = 200C180 (0.9066)180 (1-0.9066)200-180

    =0.0890

 

  

Q5. Let X be the number of enquiries per week.

X~ Poisson (λ=1.2×7=8.4)

f (X) =  for X= 0,1,2,…….

f (5)=

   = 0.0784

 Let Y be the week that there are exactly 5 enquiries in the week.

Y~ Bin (52, 0.0784)

E (Y)= 52 (0.0784)

          =4.0751