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Social interaction, treatment and modelling changes in the number of drug users  
 
General introduction 
In this paper I want to focus on two mechanisms that may help to explain levels of drug use in 
a society: observational learning and self-reinforcing social stigma effects. In short, before 
deciding whether to experiment with drugs or not potential users learn about the dangers (and 
attractions) of using drugs by observing what happened to previous users and they consider 
the amount of stigma associated with taking drugs. 
 
The general approach is very much inspired by Schelling’s (1978) book on “Micromotives 
and Macrobehavior.” He shows how social science may produce counterintuitive (but true) 
results by focusing on social interaction. One well known example is how we may end up 
with completely ethnically segregated neighbourhoods even if everyone wants to live in a 
mixed neighbourhood with, say, 60% of their own ethnic group and 40% of the minority. To 
me this showed the importance of focusing on social interaction between heterogeneous 
agents instead of assuming a “representative agent” as is often done in the economics 
literature (see Kirman). 
 
A second inspiration for the current paper, is theories of bounded rationality and learning in 
evolutionary game theory (see Conlisk (1996) and Michihiro(1996)). This is partly because I 
encountered some formal problems with my original model (equilibrium selection in a 
situation with multiple equilibria), but also because they seemed to offer a more plausible 
interpretation of what was going on. In the original framework I had to make quite strong 
assumptions about rationality and learning. Hence, evolutionary game theory offered at least a 
potential way of both becoming more precise (reduce the number of plausible equilibria) 
without adding more implausible assumptions. In fact, weaker assumptions could produce 
better predictions. That at least, was the idea at the outset of my research.  
 
The structure of this paper follows my line of inspiration chronologically. First of all I will 
formalize the micromotives I want to explore. From the microfoundations I then create a 
macromodel of the equilibrium level of drug use in a society. I then explore the implications 
of the macromodel. One of these is the potential existence of multiple equilibria and I this 
raises the issue of using evolutionary game theory. But, as I then discovered, evolutionary 
game theory cannot be used just to eliminate some of my equilibria, I had to reinterpret the 
whole model (including the microfoundations) in an evolutionary game theory frame.  
 
The microfoundation 
Assume that each individual (i) who turns 15 in time period (t) decides whether to use drugs 
based on a comparison of the expected utility of using drugs [EUit(D)] and the expected utility 
if you chose to abstain from drugs [EUit(A)]. The underlying assumptions is that the choice of 
whether to use drugs is at least influenced by some kind of calculation, as opposed to purely 
emotional or norm based behaviour. Moreover, for the sake of simplicity the choice is 
assumed to be a one upon a lifetime choice i.e. only people who decided not to experiment 
with drugs cannot later choose to do so.  
 
 (1) Use drugs iff: )()( AEUDEU itit >  
 
What is )(DEU it and )(AEU it ? The last - )(AEU it  - is assumed to be a constant. To work 

out )(DEU it  we need to consider the possible consequences of experimenting with drugs. For 



the sake of simplicity I shall assume that there are only two possible outcomes for individuals 
who experiment with drugs. Either you have a “junkie career” (unhappy) or you have a 
“yuppie career” (less unhappy). This assumption is meant to capture the fact that not all 
individuals who experiment with drugs end up as stereotypical “junkies.” In fact, only a very 
small minority of drug experimenters end up as junkies.  
 
The two possible outcomes of experimenting with drugs -  becoming a yuppie or a junkie – 
result in certain payoffs. A very simple way of formalizing this would be to say that )(JU it is 
the total (discounted) sum of utility you receive if you end up as a “junkie” (for individual I at 
time t) while )(YU it is the total sum of utility if you en up as a yuppie. Note that )(JU it does 
not represent annual utility as a junkie. It represents the total (discounted) sum of utilities 
from the rest of your life if it turns out that experimenting with drugs results in addiction. 
Hence, it may include some years as a happy users (a yuppie), then some years as a junkie and 
then, finally, some years as a non-users (treated or “matured out”). The same goes for U(Y). It 
does not only include years as a happy drug users, but also years as a non-users after being a 
“happy user.”  
 
Some individuals end up as junkies and some end up as yuppies, but nobody knows in 
advance what he or she will become. Hence, in order to work out the expected utility of taking 
drugs, we the individual must estimate the probability of becoming a junkie. One way of 
doing so, would be to observe the outcome of previous generation’s experimentation with 
drugs. The probability of becoming a junkie could then be estimated by the share of junkies 
(j) of all drug users (d = j+ y) in the last time period for which information is available.  
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I do not claim that this is the only, best or rational way to estimate your probability of 
becoming junkie. It does, however, seem like one plausible factor that could affect your 
estimate. If many of the current users are junkies then one would expect people to believe that 
the probability of becoming a junkie (if you become a user) is high.  
 
Finally, in order to capture the effects of social stigma I introduce a “moral cost” of 
experimenting with drugs ( itm ). One might think about this as the cost of doing something 
that many people dislike – i.e. the cost of being an “outcast.” I shall also assume that 
individuals have different moral costs i.e. they differ in the extent to which they are 
influenced by social disapproval. The exact nature of the distribution of moral cost is 
important and I will experiment with different types; uniform distributions and normal 
distributions.  
 
Altogether then, the expected utility of experimenting with drugs for an individual at a point 
in time is the utility he will receive in the two possible outcomes (junkie career or yuppie 
career) multiplied by their respective probabilities and adjusted for social stigma: 
 

(3) ( ) itititititit mYUpJUpDEU −−+= )(1)()(  
  
One might argue that the formulation so far ignores many issues that are central to addiction. 
For instance, I do not explicitly model discounting which many people argue is an important 
phenomena when trying to explain addiction. I do not deny the importance of discounting, but 
the focus in this paper is something else, namely the effects of interaction through 



observational learning and social stigma. I want to isolate this and to do so I do not want to 
bring in more complications than necessary. Hence, more explicit modelling of discounting is 
left to be explored at a later stage. 
 
Aggregation 
So far all I have is a very general formulation of the decision problem. What I want, however, 
is an expression of the aggregate result if people make their decisions based on the 
microfoundation just described. This requires several assumptions, both in terms of 
simplifying assumptions and in terms of more substantial assumptions about the mechanisms 
of aggregation.  
 
In order to make it easier to get analytic results, I now make the following simplifying 
assumptions:  
(4) tit pp =   i∀  (every individual uses the same probability of becoming a junkie) 

(5) (.)(.) UU it =   it∀  (the utility of ending up as a junkie, a yuppie or an abstainer is 
the same for every individual at all times) 
 
This means that every individual uses the same probability of becoming a junkie and that the 
utility of ending up as a junkie or as a yuppie is the same for every individual at all times. The 
decision problem for the individual is then reduced to comparing )(AEU to the following 
expression: 

(6) ( ) ittit mYUpJUpDEU −−+= )(1)()(  
In this formulation there is only one variable that change over time: the probability of 
becoming a junkie. From a given starting point with an arbitrary share of drug users in the 
population, the process will then be as follows: Based on the current share of junkies the 
individuals in the new generation will calculate the expected utility of experimenting with 
drugs. They will then compare this to the expected utility of the alternative. What we need to 
find out more about the aggregate result is to work out how changes in p affect expected 
utility and how this, in turn, affect the size of the group than begins to experiment with drugs. 
 
A rise in the probability of becoming a junkie leads to a reduction in the expected utility of 
experimenting with drugs; the size of the reduction is determined by: 
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I assume that this is negative i.e. that the utility of a career as a junkie is lower than the utility 
of a career as a yuppie [ )()( YUJU < ]. Note that the difference is a constant i.e. the 
relationship between changes in p and the expected utility of experimenting with drugs is 
linear. Note also that the degree to which expected utility change depends on the difference 
between utility of junkie career and utility of yuppie career; the more “unhappy” the junkies 
are relative to the “yuppies” the larger the reduction in expected utility when there is a rise in 
p. One would expect that this translate into a “large” reduction in the number of individuals 
who wants to use drugs. The question is then what kind of relationship we have between 
changes in expected utility and people starting to use drugs. 
 
How does changes in expected utility relate to changes in the number (or share) of people 
starting to use drugs. Recall that the decision-rule used by individuals is.  

Use drugs iff  )()( AEUDEU it >  



Since the partial derivative of EU(D) with respect to p is a constant, we have the following 
relationship: 

Relationship p and EU(D)
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In words: An individual (in the incoming generation) decides to use drugs is his expected 
utility is above some constant (here EU(A)). The expected utility depends linearly on p – the 
probability of becoming a junkie.  
 
How do we translate this micro-mechanism into an aggregate equation? The easiest way to do 
this is that say that moral costs are uniformly distributed. We would then have that the share 
of the new generation that begins to experiment with drugs is a linear function of p. If moral 
costs are not uniform, then there is not a one-to-one relationship between changes in expected 
utility and changes in the number of people entering drug use. This is an extension I will 
study later.  
 
Assuming a uniform distribution is necessary, but not sufficient. I also have to make sure that 
the cut-off points “appropriate.” For instance, imagine that the “limit” for using drugs is very 
high, then it might be the case that a small reduction in fear is not enough to make anyone 
begin to experiment with drugs. Hence, when the “cut-off points” are “outside” the relevant 
interval the relationship between changes in p and changes in the number of drug users is not 
a continuous linear function. In order to make thinks work I then either have to make the 
model more complicated to account for the mentioned possibility (that changes in p do not 
affect the number – either because everybody wants to use it even if p changes slightly or 
because nobody wants to use it despite the change in p). The easiest way out is simply to 
assume that the “limit” is at p=0. That is, I assume values [for EU(A), U(J), U(Y)] which 
implies that at p=0 everybody use drugs and at p=1 nobody use drugs. By doing so I assume 
away the possibility that changes in p do not affect the number of users.  
 
The aggregate results 
The share of yuppies in the whole population at any point in time (yt) can be found by taking 
last years share, subtracting the share that leaves the group every year and adding the share of 
the new generation that starts to use drugs and. I shall assume that the exit process is 



exogenous i.e. there is a certain percentage of the yuppies ( 1β ) that leave the group every year 
(they might die, quit, or become junkies). The “input” process, however, is endogenous. 
Based on the microfoundation described above the size of the group of new users depends 
linearily and negatively on p. It also depends on the size of the new generation. We may use gt 
to symbolize the size of the new generation as a share of the total population (assume this is a 
constant for now)1. Finally, we know that the degree to which a change in p affects expected 
utility (and hence also the size of the new group of users) depends on U(J)-U(Y). 
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where  
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As for the size of the group of junkies, we may write this as the share of junkies last year, 
subtract those leave (exogenously determined; d1% leave the group every year) and those who 
enter (every year d2% of the yuppies become junkies). The aggregate dynamics for the size of 
the junkie group is then: 
 

(11) 12111 −−− +−= tttt yjjj δδ  
 
Some results 
If one tries to solve () and () as a system of difference equations one will soon discover that 
this is rather difficult since there are no standard solution techniques for non-linear difference 
equations. It is however, possible to find potential stationary equilibria by setting inflow equal 
to outflow: 

(12) )(21 yj
y

y
+

= ββ  

(13) yj 21 δδ =  
 

It is then easy to find that one stationary state is given by: 
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1 Assuming a constant g (the new generation as a share of the old) is not as innocent as it sounds. Since there is a 
new generation every year the outflow must be equal to g every year in order for g to be constant. If there were 
no deaths then each new generation would represent a smaller and smaller share of the existing population (i.e. g 
would not be constant). Hence, when assuming g is constant I also have to include deaths in the model. The total 
number of deaths every year should be equal to g, but I also believe I have to make some assumption about the 
distribution of death across different groups. Maybe that the same percentage dies in every group (although 
implausible this is perhaps what I have to assume or?). I have already assumed a certain percentage that leaves 
both groups (junkies and juppies) every year, so deaths cannot be larger than this. I have not specified the 
percentage deaths among abstainers or the proportion of exiting junkies who die relative to those who are 
treated. It is possible I have to be more explicit about this, but I was hoping that it was possible to sidestep the 
issue by arguing first that this is a minor problem (the effects on the relative shares of junkies/abstainers/yuppies 
may be small) and/or that it can be assumed using the “free” variables that I have not specified (mentioned 
above). I am not entirely happy with this and will try to take a closer look at it later. 
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There is also another stationary state, namely y*=0 and j*=0. 
 
The main interesting feature of the solutions so far emerges if we examine the total number of 
users (d=j+y). In equilibrium this is a very user friendly expression: 
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What is interesting about this, however, is that the parameter d1 does not appear in the 
solution to d*. This is interesting because d1 might be interpreted as a policy controlled 
parameter. That is, the number of people that “exit” from the junkie group every year depends 
on how much money the authorities choose to spend on treatment. More money spent on 
treatment means a higher exit rate (a higher d1). One might expect that more treatment for 
junkies would reduce the overall number of drug users, but in my model this is not true as one 
can see from the fact that d1 does not appear in the solution for d*. Given the non-intuitive 
nature of this conclusion it requires some elaboration. 
 
Removing one user (a junkie) immediately reduced the number of drug users by one. 
However, because the number of junkies is reduced, the fear of using drugs among potential 
users is also reduced (they no longer see as many junkies as before). When the fear of using 
drugs is reduced, more people will start to use drugs and this increases the number of users. 
And, although not intentionally designed to do so, in my model the two effects balance each 
other exactly. That is: Eliminating one junkie will result in one more yuppie and the net effect 
on the number of drug users is zero. 
 
Having noticed that d1 is not a part of the solution to d*, we might look closer at exactly the 
variables that enter the solution. Previously b2 was defined as: ( )gYUJUf ),()(2 −=β , so: 
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Or, as one would expect, the share of drug users depends on the utility difference between a 
yappie career and a junkie career.  
 
 
Extensions, criticism and moving towards evolutionary game theory 
Extension 
One of the extensions that I have tried to work with is to experiment with different ways of 
including social stigma. So far I have simply assumed that it is uniformly distributed. One 
extension could be to assume a normal distribution. Another (not mutually exclusive) 
extension could be to make the stigma dependent on the number of people engaged in the 
activity. This could be done linearly as in: 
 (18) mit = k i (1-dt) 
In which case the social stigma cost of using drugs is reduced the more people who do so. 
This is probably plausible for some interval, but the effect could also be modelled like this: 
 (19) mit = k i (0.5-dt) 



In which case we would have a kind of “conformity” effect. People would tend to do what the 
majority does. (The expression would be negative when more than 50% use drugs and this 
means that in the expression for expected utility of drugs the moral cost becomes a moral 
benefit since subtracting a negative number is the same as adding). At least locally speaking it 
does not seem implausible to argue that in a group where almost everybody uses drugs there 
is a “social” pressure towards using drugs and not the other way around. When experimenting 
with these formulations I soon faced a new problem: multiple equilibria. In itself this is not a 
problem: if the context is one in which multiple equilibria really can (or do) exist, then it is 
only an advantage if our model reflects this. If however, some of the equilibria are less likely 
to appear, then we might try to find solution concepts that eliminate these. 
 
Criticism 
After presenting the model described above, I am often asked whether I really believe that 
potential addicts “calculate” the costs and benefits and based their decision on this 
calculation. The underlying criticism being that the decision to use drugs cannot be modelled 
as a “rational choice.” There are several possible reactions to this line of criticism. One would 
be to argue that the model is an “ideal type” that simply exaggerates a tendency. That is, all I 
need is that people at least to some extent consider the incentives they are facing before using 
drugs. One might also try to defend the assumption using Friedman “as-if” justification – 
arguing that even if people do not calculate the way described above it often seems like their 
behviour can be well described as if they did. One might also, of course, stand hard and argue 
that people really do calculate. For instance, I recently read a report about how the number of 
births in Norway was highly correlated with “the profitability” of giving birth on special 
dates. In short, in the past ten years the Norwegian laws about maternity benefits and so on 
has been changed four times. On all four occasions there was a significant difference in the 
number of births in the “profitable” direction AND the law was not announced nine months in 
advance so there was little possibility of “planning” to be profitable in that sense. All in all, it 
seems like women, consciously or unconsciously was responsive to incentives even when it 
comes to such an “involuntary” matter as the date of giving birth. For better or worse, 
however, people who dislike rational choice models have probably heard all of these 
arguments and are unlikely to be moved much. My best reply, then, would be to create a 
model based on weaker assumptions about rationality and examine if my results still hold.   
 
Possible answer: Use Evolutionary Game Theory 
I am recently new to the field of evolutionary game theory, but it seems at least to be 
concerned about the same topics mentioned above – both the problem of multiple equilibria 
and the problem of excessively strong rationality and information assumptions. For instance, 
Ritzberger and Weibull (1995, 1371) note that “the rationalistic foundation of this [Nash 
equilibrium] approach is quite demanding” and among the alternatives they argue that 
“particularly promising seems the approach taken in evolutionary game theory.” In the rest of 
this paper I will then try to reformulate my model in an evolutionary frame. Based on this I 
will end by comparing the two approaches and trying to be slightly critical of the claims of 
evolutionary game theory. 
 
Stability and equilibria selection: Using EGT as an add-on! 
In the model as it is there are already two stationary equilibria. First a situation in which there 
are no drug users (j*=0, d*=0), and – second - the more interesting solution developed above. 
It is rather obvious that (0,0) is not a very stable equilibria. It is not stable in the sense that as 
soon as somebody somehow (trembeling hand!) start to use drugs, the dynamics is such that 
we at once move farther and farther away from (0,0). In other words; a small deviation from 



that equilibria leads us away from it. The opposite is the case with the other equilibria. If – 
somehow, too many people use drugs (more than the equilibrium level), the level be reduced 
since many in the new generation will be very “scared” given the high level of junkies. Hence 
the second equilibrium is stable, the first is not. And, conversely, when few people use drugs 
the level of “fright” is low and more people will start. (see Appendix 1 for the results of a  
computer simulation using some arbitrary starting values). 
 
Hence, my initial hope that the concept of evolutionary stability could help me in solving 
problems of multiple equilibria has not really been tested yet. One might say that my 
dismissal of the zero-solution was based more on evolutionary arguments than on Nash 
demands. This may be true, but I have some small queries. For something to be evolutionary 
stable it has to be a Nash equilibrium (the strategy is the best response given the other 
strategies) AND it has to be “mutant resistant” in the sense that the strategy has to give the 
highest payoff even if the population is invaded by some small fraction who also plays your 
(“mutant”) strategy. I am unsire whether this is enough and I am also unsure about whether it 
is necessary. It is not necessary in the sense that I could just use  Selten’s “trembeling hand” 
refinement of Nash in order to eliminate the zero-option. And the ESS concept may not be 
enough in the sense that in a zero equilibrium there is no drug users to imitate (if the 
underlying logic in the evolutionary setup is that agents imitate the ones with higher payoff). 
If the underlying logic is that people follow a “trial and error” approach it is easier to use ESS 
to dismiss the zero-solution. But, this all points to the need for specifying the whole model in 
en evolutionary frame instead of just trying to add it after working out the equilibria (at which 
point you would probably say: of course!). 
 
An evolutionary setup 
Given my limited knowledge and experience with evolutionary game theory (EGT), I will 
simplify the model as much as possible. Hence, while the original model contained some 
individual heterogeneity, I will avoid this in the evolutionary frame. In fact, the only reson I 
introduced heterogeneity (different sensitivity to social stigma) in the original model, was the 
desire to avoid that I would only get corner solution (either everybody or nobody start to use 
drugs). In fact, one might consider it a strength of EGT that it is possible to end up in 
equilibrium with mixed populations (both users and non-users) even if people’s underlying 
preferences are identical. In any case, there is at least no need to introduce heterogeneity of 
the kind I had in order to get a mixed equilibrium.  
 
How do we get a mixed population equilibrium? EGT simply interprets the probabilities 
placed on the various strategies in a mixed strategy as expression of the share of people in the 
population that will play that strategy. This is the so called “mass-action” interpretation of 
Nash equilibrium points. 
 
What are the strategies and their payoffs? There are only two possible strategies: Either you 
use drugs or you do not. Previously I assumed that choosing not to experiment with drugs 
yielded a payoff of EU(A), which later was assumed to be a constant (in which case I should 
write U(A) instead of EU(A)) And the expected yield from experimenting with drugs was: 

(20) ( ) ittit mYUpJUpDEU −−+= )(1)()(  
I have to reformulate this for several reasons. First of all I want to include the social stigma 
effect and this means that the payoff from “not using drug” can no longer be assumed 
constant. Instead it varies with the share of the population that use drugs. Indeed, this seems to 
be one of the strong points of EGT – its ability to model behaviour where the payoff depends 
on the share of the population that use the other strategies.  



 
Second, whereas I previously assumed that individuals estimated pt (the probability of 
becoming a junkie) by the share of current junkies out of the total number of current users 
(j+y, or simply d), this seems wrong in an EGT frame. The relevant parameter is the actual 
payoff received, not what individuals mistakenly expect based on incorrect estimation of p. It 
is the actual payoff that will make other people imitate (or avoid) a strategy. And, if we 
assume standard “replicator dynamics” the growth rate of the population using or not using 
drugs depends on the difference between the (actual) payoff of the current strategy and the 
average (actual) payoff of the alternative strategy. In short, given that the payoff should 
reflect actual values, it seems wrong to use the same definition in the EGT frame as I did in 
the original model. 
 
The problem is probably more deeply rooted. Whereas I originally put quite a lot of effort into 
creation good microfoundations for the original model (and justifying the linear relationship), 
EGT tend to assume that there is some kind of process in the background (imitation, 
conscious or unconscious learning or trial and error) that generate a replicator dynamics. On 
the one hand this is strength in the sense that the aggregate results are compatible with many 
different micro-stories. That is, it has been shown that the replicator dynamics applies for 
several types of underlying processes (such as the ones mentioned above) given some 
additional assumption (about how often people evaluate their decisions and so on; for instance 
R+W assume it is a poisson process). Relying on the replicator dynamics is also a strength in 
the sense that within EGT there is a set of tools ready to be used so you do not have to invent 
the wheel every time you create a model. On the other hand, it might not be equally well 
suited for all kinds of models and purposes. In the original model the main force “driving” the 
result was exactly the “fear” and how it changed over time (depending on the levels of 
yuppies and junkies). Whether the fear really was well grounded or true was not the question. 
Moreover, by deriving the microfoundation myself I made the connections more precise, 
explicit and I did not have to use the assumptions needed to produce the replicator dynamics. I 
am not arguing that one is better than the other, just noting that the various approaches has 
pros and cons and that these varies depending on what you want with the model. 
 
Finally, the last blow to the reformulation of the model in an EGT frame occurred when I 
tried to pursue the “generational” interpretation. Previously I assume that every new 
generation made up their minds about drugs and that it was a once upon a lifetime decision. It 
might be possible to do this in EGT.  
 
The lesson then, is to use EGT only to examine the stigma mechanism without pretending to 
be able to translate the whole model. I then have the following strategies and payoffs 
(assuming the social stigma mechanism mentioned previously: 
 
Strategy Payoff 
Abstain (A)  
(i.e. Not experiment with drugs) 

U(A)+(0.5-d) 

Drugs (D) 
(i.e. Experimenting with drugs) 

pU(J)+(1-p)U(Y)-(0.5-d) 

 
In equilibrium the payoffs must be equal (since only there is there no incentive to change 
strategy), which implies that: 
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I cannot really make up my mind whether this is plain silly or whether there really is a lesson 
in that conclusion. First, some restrictions clearly have to be put on the constants so that the 
share of drug users does not fall below zero or above 1. Second, the sign of U(A) seems 
wrong (but this depends on d again). It also seems difficult to compare this to the previous 
model (since b1 b2, d1 or d2 does not enter into this model), but this could be fixed with more 
complicated expressions for utility. As mentioned a junkie career consists of some years as a 
happy user, some times as an unhappy user and finally (on average) some time as an abstainer 
(after being a user). That is: 
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In short: The total expected utility of a junkie career - U(JC) – is the sum of years in the 
various states (first as yappie, then junkie, then abstainer after being a junkie) multiplied by 
the annual utility of being in that state. The total expected utility of a yuppie career is simply 
the number of years as a yuppie multiplied by the annual payoff in that state added to the 
annual payoff of being an abstainer after first having been a yuppie multiplied by the number 
of years in that state.2 Note also that I have takes some liberty with the notation here: U(J) and 
U(Y) now represents annual utility, while total utility - what I previously labelled U(J) and 
U(Y) - is now labelled (JC) and U(YC). 
 
Using the same set of assumptions as before about inflow and outflow rates, the average time 
as a yuppie for a person who enters the yuppie group is: 
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Similarly, the average time (years) as a junkie (given that you become a junkie) is: 
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We the 
Strategy Payoff 
Abstain (A)  
(i.e. Not experiment with drugs) 

U(A)+(0.5-d) 

Drugs (D) 
(i.e. Experimenting with drugs) )5.0(
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And the solutions becomes: 

                                                 
2 Note that it would be easy to include discounting at this point, but so far I do not see that it adds much to the 
analysis of social interaction. Although on second thought it could have a great impact in the sense that the state 
of the  “scary” addicts may be believed by potential addicts to be far ahead in time and hence discounting 
reduces the importance of the fear factor. 
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One could also eliminate p by examining the inflow parameters. We know the average 
number of years spent as a yuppie and we know the percentage of yuppies that every year 
become junkies. This allows us to work out the probability that the individual will become a 
junkie. I have not done so, however, because I already have a solution in which treatment 
effort (increasing 1δ ) reduces the number of drug users. However, it is a very different model 
since the main driving force is no longer the “fear” but “social stigma.” It does, maybe, point 
to a need to use more complex utility functions in the original frame. That is, I should 
formulate it in a way that allows a person to ask questions like “If you increase the average 
time period by some measure how will this affect the equilibrium size of the groups?” 
 
Conclusion 
My attempt to reformulate the model in evolutionary game theory was unsuccessful. While 
the old frame seemed good at handling the “fear” mechanism, the evolutionary frame (within 
my limited abilities) was not. On the other hand, the evolutionary frame could much easier 
handle the “social stigma” mechanism. I will continue to work on both in order to create a 
better unified treatment of the two. 
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Appendix 1: 
 
I ran some simulations to examine the speed of convergence. The figure below shows the 
result from one such simulation in which the starting point was set as follows: 

60000Y0 (yuppies) 

10000J0 (junkies) 

0,142857Initial probability of becoming a junkie 

70000Total drug users 

30000(b1) 

0,2(b2) 

0,05(d1) 

0,07(d2)  
 
I wanted to examine how fast the system converged upon equilibrium so I introduced a 
“shock” after about 50 periods. The number of junkies was then about 62 000 and I just 
assumed an exogenous shock that reduced their numbers to 50 000. It turned out that the 
system returned to (the same) (almost) equilibrium after about 25 years.  
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