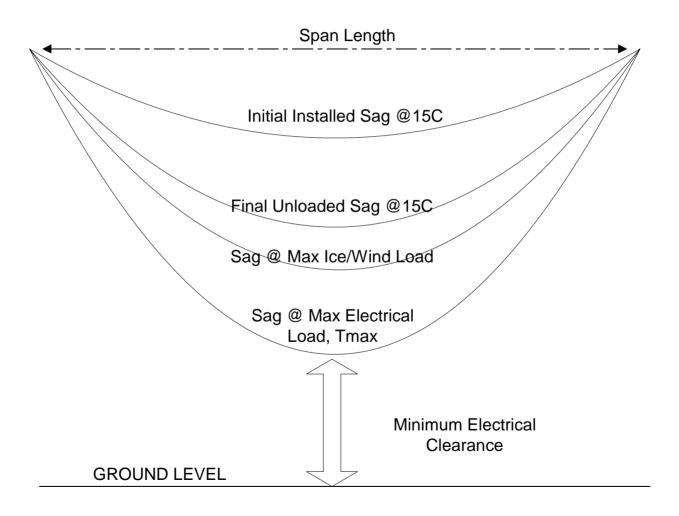
Sag-tension Calculations


A Tutorial Developed for the IEEE TP&C Line Design Subcommittee

Based on a CIGRE WG B2.12 Technical Brochure under Development Dale Douglass June, 2005

CIGRE & IEEE Websites

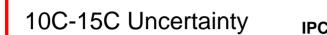
- CIGRE WG B2.12 Electrical Effects in Lines http://www.geocities.com/wg_12/index.htm
 - Technical Brochure 244 Conductors for Uprating of Existing Lines
 - Probabilistic Ratings & Joints
- IEEE Towers Poles & Conductors
 http://www.geocities.com/ieee_tpc/index.htm
 - IEEE Standard 738 1993
 - Panel Sessions Jan 28 (Las Vegas) June 4 (SF)

Sag-tension Envelope

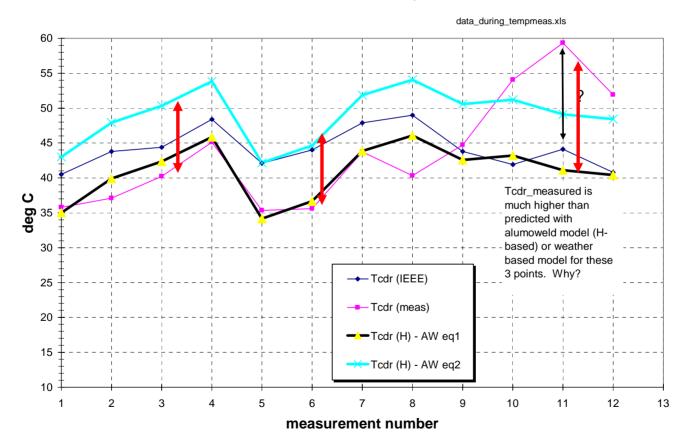
June 6/13/05

IEEE TP&C Tutorial

SAG10 Calculation Table


De	sign Po	ints				Final			Initial		
Temp	Ice	Wind	K	Weight	Sag	Tension	RTS	Sag	Tension	RTS	
F	in	psf	1ь/	f 1b/f	ft	1Ъ	8	ft	1Ъ	8	
0.	.50	4.00	. 30	2.509	23.91	13142.	41.7	23.03	13647.	43.3	
						7064.	A		7718.2	¥.	
						6078.	S		5929.3		
32.	1.00	.00	.00	3.715	29.08	16026.	50.9	29.08	16026	50.9	
						8543.	A		8543.2		
						7483.	S		7483.		
-20.	.00	.00	.00	1.094	16.04	8532.	27.1	13.55	10103	32.1	
						4361.	A		6269.7	A.	
						4171.			3834.8	3	
0.	.00	.00	.00	1.094	17.39		.(25.0*)	14.43	9485.	30.1	
						3727.	A		5820.2	Ŧ	
						4148.	S		3665.8	3	
60.	.00	.00	.00	1.094	21.48	6379.	20.3	17.45	7847.	24.9	
						2125.	.A.		4532.2	ł	
						4254.	S		3315.8	5	
212.	.00	.00	.00	1.094	29.71	4619.	14.7	26.07	5259.	16.7	
						-32.	Α.		1872.7	Ŧ	
						4652.	. S		3387.2	3	
302.	.00	.00	.00	1.094	32.46	4231.	13.4	30.94	4437.	14.1	
						-94.	Α.		610.2	Į.	
						4325.	S		3827.5	5	

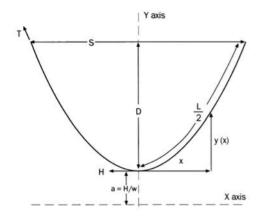
^{*} Design Condition
June 6/13/05


IEEE IP&C LUTORIAI

From Alcoa-Fujikura SAG10 program

A Bit of Perspective

IPC measurements, 1997


Some Questions

- Why can we do calculations for a single span and use for an entire line section?
- How are initial and final conditions defined?
- Why not run the maximum tension to 60% as the NESC Code allows?
- Why do I see negative tensions (compression) in aluminum at high temperature?

The Catenary Curve

- HyperbolicFunctions & Parabolas
- Sag vs weight & tension
- Length between supports
- What is Slack?
- What if the span isn't level?

The Catenary – Level Span

$$y(x) = \frac{H}{w} \cdot \left[\cosh\left(\frac{w \cdot x}{H}\right) - 1 \right] \cong \frac{w \cdot x^2}{2 \cdot H}$$

$$D = \frac{H}{w} \cdot \left\{ \cosh\left(\frac{w \cdot S}{2 \cdot H}\right) - 1 \right\} \cong \frac{w \cdot S^2}{8 \cdot H}$$

$$L = \left(\frac{2H}{w}\right) \sinh\left(\frac{Sw}{2H}\right) \cong S\left(1 + \frac{S^2 w^2}{24 H^2}\right)$$

Catenary Sample Calcs for Drake ACSR

- 1.094 lbs/ft Bare Weight
- 31,500 lbs Rated Breaking Strength
- 600 ft span

$$D = \frac{6300}{1.094} \left[\cosh \left(\frac{1.094 \cdot 600}{2 \cdot 6300} \right) \right] = 7.831 \ ft \ (2.387 \ m)$$

$$L = \frac{2*6300}{1.094} \sinh\left(\frac{1.094*600}{2*6300}\right) = 600.272 \ ft \ (182.963 \ m)$$

Catenary Calculations

What Happens when the weight of the conductor changes

Ice & Wind Loading

- Radial ice (Quebec)
- Wind Pressure (Florida)
- Wind & Ice Combined (Illinois)

What about changes in loading?

NESC Loading District								
	Heavy	Medium	Light	Extreme wind loading				
Radial thickness of ice (in) (mm)	0.50 12.5	0.25 6.5	0 0	0				
Horizontal wind pressure (lb/ft²) (Pa)	4 190	4 190	9 430	See Fig 2-4				
Temperature (°F) (°C)	0 -20	+15 -10	+30	+60 +15				
NESC safety factors to be added to the resultant (lb/ft) (N/m)	0.30 4.40	0.20 2.50	0.05 0.70	0.0				

June 6/13/05

IEEE TP&C Tutorial

Iced Conductor Weight

$$w_{ice} = 1.244t (D_c + t)$$

ACSR Conductor	D _c , in	w _{bare} , lb/ft	w _{ice} , lb/ft	$\frac{\mathbf{w_{bare}} + \mathbf{w_{ice}}}{\mathbf{w_{bare}}}$	
#1/0 AWG -6/1 "Raven"	0.398	0.1452	0.559	4.8	
477 kcmil-26/7 "Hawk"	0.858	0.6570	0.845	2.3	
1590 kcmil-54/19 "Falcon"	1.545	2.044	1.272	1.6	

What happens when the conductor weight changes?

- Bare weight of Drake ACSR is 1.094 lb/ft
- Iced weight is:
 - -1.094 + 1.244*1.0*(1.108+1.0) = 3.60 lb/ft
- Tension increases by a factor of 3.6 unless the length of the conductor changes.

SAG10 Calculation Table

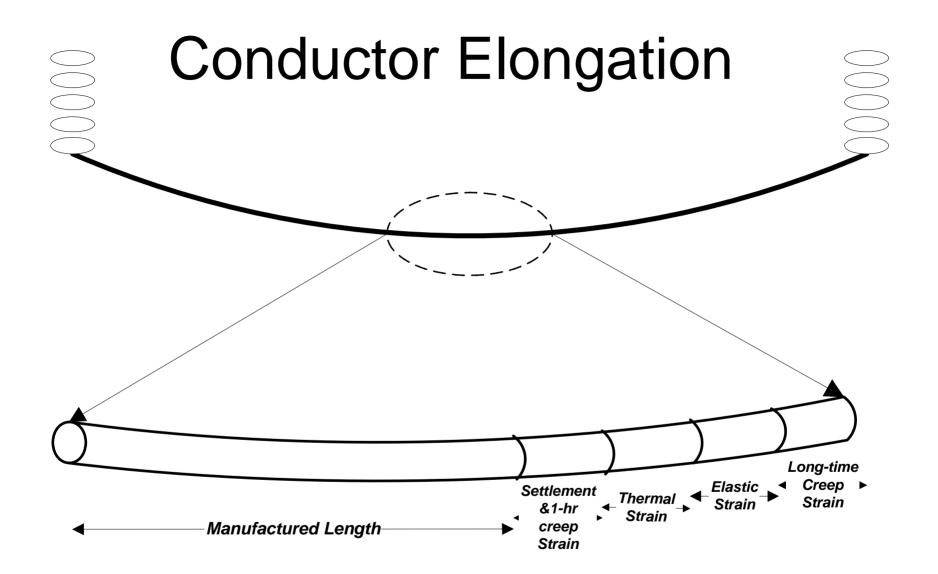
Design Points						Final	I	nitial
Temp	Ice	Wind	K	Weight	Sag	Tension RTS	Sag	Tension RTS
F	in	psf	1b/:	f 1b/f	ft	1ь %	ft	1b %
0.	. 50	4.00	.30	2.509	23.91	7064.A	23.03	13647 43.3 7716.A
32.	1.00	.00	.00	3.715	29.08	6078.S 16026.50.9 8543.A	29.08	5929.S 16026. 50.9 8543.A
-20.	.00	.00	.00	1.094	16.04	7483.S 8532. 27.1 4361.A	13.55	7483.S 10103. 32.1 6269.A
0.	.00	.00	.00	1.094	17.39	4171.S 7875. 25.0* 3727.A	14.43	3834 S 9485.30.1 5820.A
60.	.00	.00	.00	1.094	21.48	4148.S 6379. 20.3 2125.A	17.45	3665.S 7847. 24.9 4532.A
212.	.00	.00	.00	1.094	29.71	4254.S 4619. 14.7 -32.A	26.07	3315.S 5259. 16.7 1872.A
302.	.00	.00	.00	1.094	32.46	4652.S 4231. 13.4 -94.A 4325.S	30.94	3387.S 4437. 14.1 610.A 3827.S

* Design Condition
June 6/13/05

IEEE IP&C LUTORIAI

From Alcoa-Fujikura SAG10 program

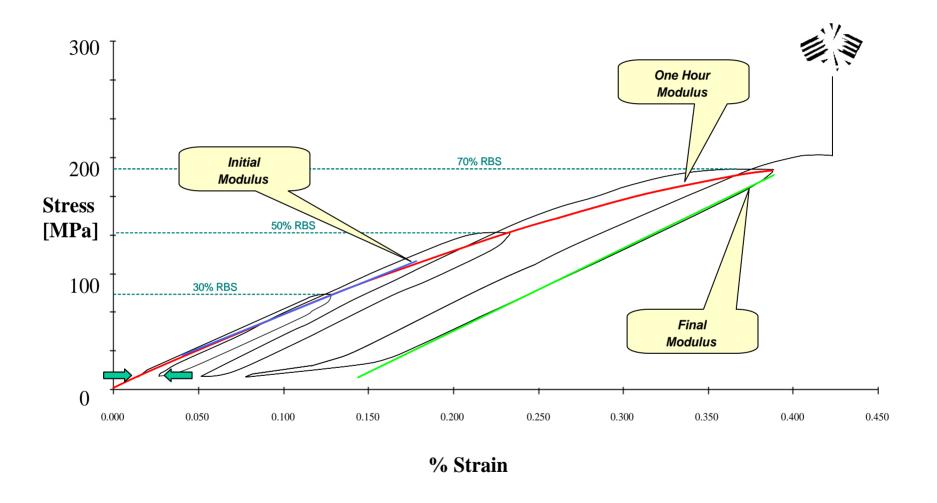
Conductor tension limits

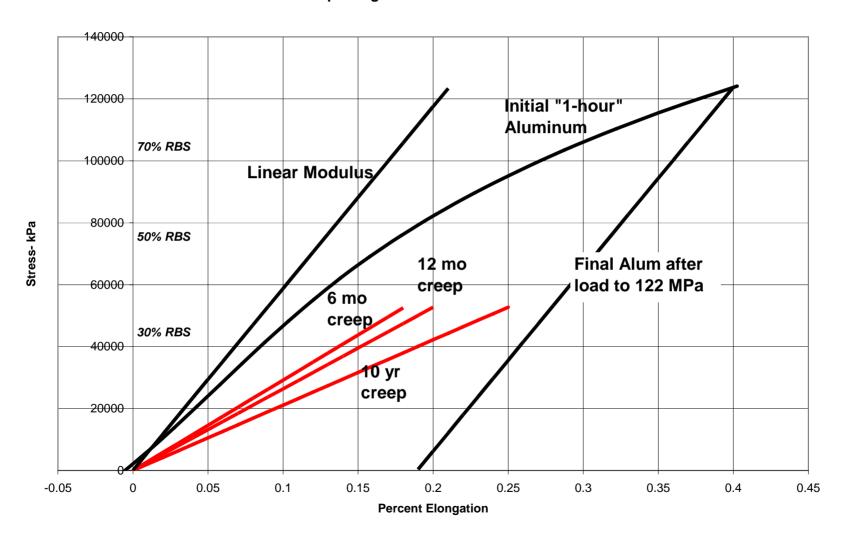

- Avoiding tension failure (Safety factor)
- Limiting vibration (H/w, %RBS)
- Designing with less sag

Tension Limits and Sag

Tension at 15C	Tension at max	Tension at max	Initial Sag at	Final Sag at
unloaded initial	inloaded initial ice and wind		100C - meters	100C - meters
- %RTS	load - %RTS	load - kN		
10	22.6	31.6	14.6	14.6
15	31.7	44.4	10.9	11.0
20	38.4	53.8	9.0	9.4
25	43.5	61.0	7.8	8.4

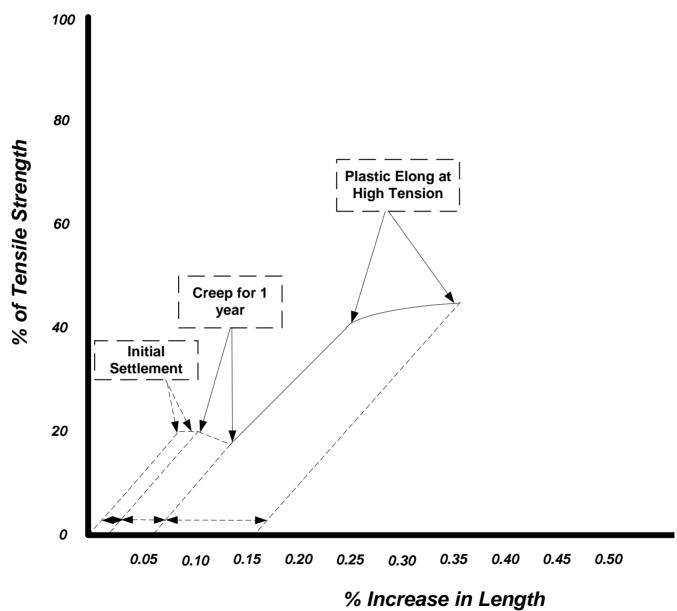
Conductor Elongation


- Elastic elongation (springs)
- Settlement & Short-term creep (before sagging)
- Thermal elongation
- Long term creep (After sagging, over the life of the line)


Thermal Elongation

	International Annealed Copper Standard	Commercial Hard-Drawn Copper Wire	Standard 1350-H19 Aluminum Wire	Galv. Steel Core Wire	
Conductivity, % IACS @ 20°C	100.00	97.00	61.2	8.0	
Coefficient of Linear Expansion 10 ⁻⁶ per °F	9.4	9.4	12.8	6.4	

Stress-Strain Test



Stress-strain & creep elongation curves for 37 strand A1 conductor

Conductor Elongation

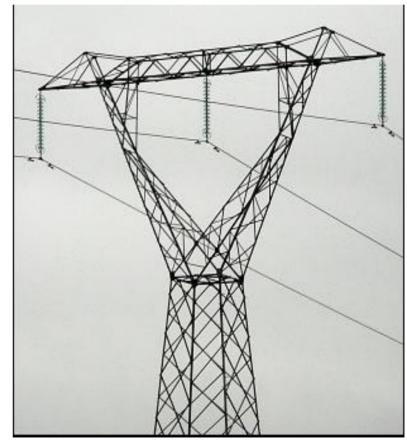
- Elastic elongation (reversible)
- Settlement & Short-term creep (permanent)
- Thermal elongation (reversible)
- Long term creep (permanent after years or high loads)

IEEE TP&C Tutorial

June 6/13/05

SAG10 Calculation Table

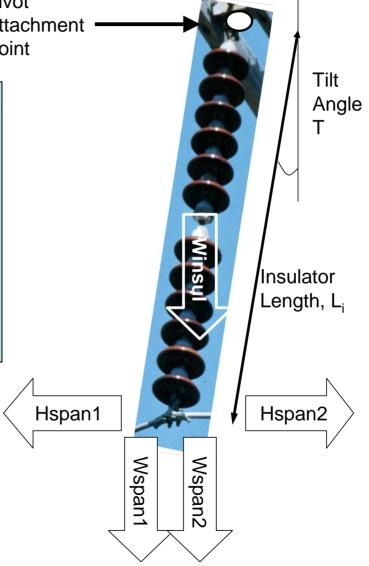
De	sign Po	ints			Final			Initial		
Temp	Ice	Wind	K	Weight	Sag	Tension	RTS	Sag	Tension RTS	
P	in	psf	1b/f	E 1b/f	ft	1ь	æ	ft	1ь %	
0.	.50	4.00	.30	2.509	23.91	13142.	41.7	23.03	13647. 43.3	
						7064	A.		7718.A	
						6078.	S		5929.S	
32.	1.00	.00	.00	3.715	29.08	16026.	50.9	29.08	16026. 50.9	
						8543	A.		8543.A	
						7483.	S		7483.S	
-20.	.00	. 00	.00	1.094	16.04	8532.	27.1	13.55	10103. 32.1	
						4361	A.		6269.A	
						4171.	S		3834.S	
0.	.00	. 00	.00	1.094	17.39	7875.	25.0*	14.43	9485. 30.1	
						3727	A.		5820.A	
						4148.	_		3665.S	
60.	.00	. 00	.00	1.094	21.48	•	20.3	17.45	7847. 24.9	
						2125.	1		4532.7	
						4254.	_		3315 5	
212.	.00	.00	.00	1.094	29.71	4619.		26.07	5259. 16.7	
						-32			1872.A	
						4652.			3387.S	
302.	.00	. 00	.00	1.094	32.46	4231.		30.94	4437. 14.1	
						-94			610.A	
						4325.	S		3827.S	


^{*} Design Condition
June 6/13/05

IEEE IP&C LUTORIAI

From Alcoa-Fujikura SAG10 program

What is a ruling span?


June 6/13/05

IEEE TP&C Tutorial

Pivot Attachment **Point**

Tension equalization at suspension points.

The basis of the ruling span concept.

The "Ruling Span"

$$RS = \sqrt{\frac{S_1^3 + S_2^3 + \dots + S_n^3}{S_1 + S_2 + \dots + S_n}}$$

$$RS = \sqrt{\frac{600^3 + 900^3 + 600^3}{600 + 900 + 600}} = 745 ft$$

- Based on Tension equalization
- Used for Stringing sags
 - Sag = $(w/8H)*S^2$

Sag-tension Calculations - Deliverables

- Maximum sag so that clearance to ground and other conductors can be maintained.
- Maximum tension so that structures can be designed to withstand it.
- Minimum sag to control structure uplift problems.
- H/w during "coldest month" to limit aeolian vibration.

Summary of Some Key Points

- Tension equalization between suspension spans allows use of the ruling span
- Initial and final conditions occur at sagging and after high loads and multiple years
- For large conductors, max tension is typically below 60% in order to limit wind vibration & uplift
- Negative tensions (compression) in aluminum occur at high temperature for ACSR because of the 2:1 diff in thermal elongation between alum & steel

General Sag-Ten References

- Aluminum Association Aluminum Electrical Conductor Handbook Publication No. ECH-56"
- Southwire Company "Overhead Conductor Manual"
- Barrett, JS, Dutta S., and Nigol, O., *A New Computer Model of A1/S1A (ACSR) Conductors*, IEEE Trans., Vol. PAS-102, No. 3, March 1983, pp 614-621.
- Varney T., Aluminum Company of America, "Graphic Method for Sag Tension Calculations for A1/S1A (ACSR) and Other Conductors.", Pittsburg, 1927
- Winkelman, P.F., "Sag-Tension Computations and Field Measurements of Bonneville Power Administration, AIEE Paper 59-900, June 1959.
- IEEE Working Group, "Limitations of the Ruling Span Method for Overhead Line Conductors at High Operating Temperatures". Report of IEEE WG on Thermal Aspects of Conductors, IEEE WPM 1998, Tampa, FL, Feb. 3, 1998
- Thayer, E.S., "Computing tensions in transmission lines", Electrical World, Vol.84, no.2, July 12, 1924
- Aluminum Association, "Stress-Strain-Creep Curves for Aluminum Overhead Electrical Conductors," Published 7/15/74.
- Barrett, JS, and Nigol, O., Characteristics of A1/S1A (ACSR) Conductors as High Temperatures and Stresses, IEEE Trans., Vol. PAS-100, No. 2, February 1981, pp 485-493
- Electrical Technical Committee of the Aluminum Association, "A Method of Stress-Strain Testing of Aluminum Conductor and ACSR" and "A Test Method for Determining the Long Time Tensile Creep of Aluminum Conductors in Overhead Lines", January, 1999, The aluminum Association, Washington, DC 20006, USA.
- Harvey, JR and Larson RE. Use of Elevated Temperature Creep Data in Sag-Tension Calculations. IEEE Trans., Vol. PAS-89, No. 3, pp. 380-386, March 1970
- Rawlins, C.B., "Some Effects of Mill Practice on the Stress-Strain Behaviour of ACSR", IEEE WPM 1998, Tampa, FL, Feb. 1998.

The End

A Sag-tension Tutorial
Prepared for the IEEE TP&C
Subcommittee by Dale Douglass