

#### **TUTORIAL ON AC Resistance Calculation** for Bare Stranded Conductors (TB345)

Prepared by Study Committee B2 Advisory Group 4 – Electrical Effects January, 2009



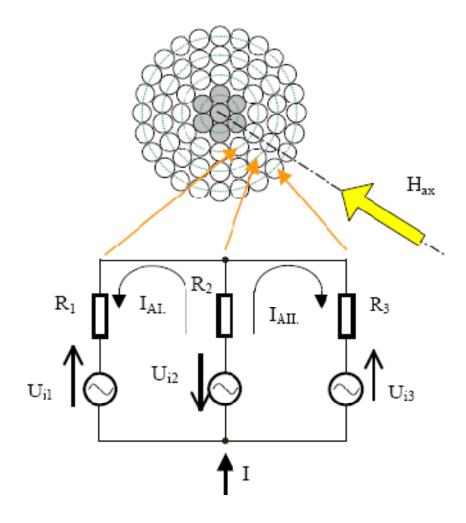


- Calculation of AC Resistance of Stranded Conductor
  - DC Resistance
  - Temperature Effects
  - Skin Effect
  - Core Losses (ACSR)
  - "Transformer" Effect (ACSR)



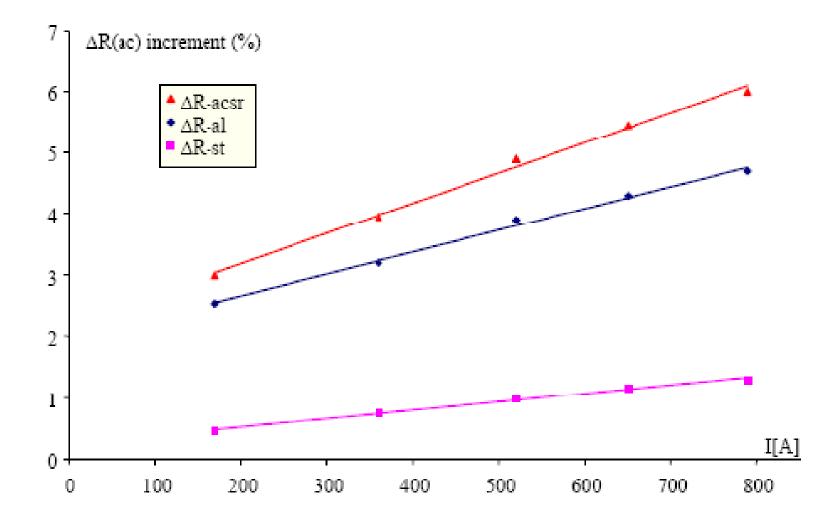
- Aluminum Strands carry 98% of current so Rdc primarily depends on aluminum conductivity and crossection area.
- Helical stranding 2% increase in Rdc
- RDC increases 4% per 10C
- Skin Effect increase is 1% to 10%
- For ACSR, Transformer effect is <20% for 1-layer and <5% (multi-layer) for >2 amps/kcmil



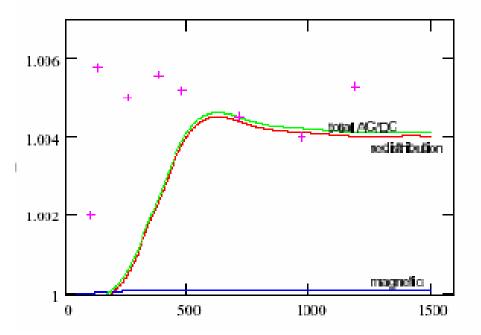

$$R_{dc} = 4 \rho_{20} [1 + \alpha_{20} (T - 20)] / \pi D_s^2$$

$$\frac{1}{R_{dc}} = \frac{\pi d_s^2}{4 \rho_s} \left( 1 + \sum_{1}^{n_s} \frac{6 n_s}{k_{ns}} \right) + \frac{\pi d_a^2}{4 \rho_a} \left( 1 + \sum_{n_a+1}^{n_a} \frac{6 n_a}{k_{na}} \right)$$

$$k_n = \left[1 + \left(\frac{\pi D_n}{\lambda_n}\right)^2\right]^{1/2}$$




#### **Transformer Effect**

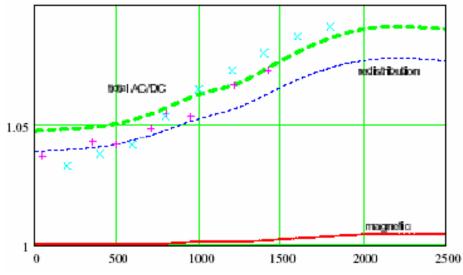





## **INCREASE IN RAC for Current**








Notice that the core losses and transformer effect (magnetic coupling) is small for 2-layers of aluminum strands

| Current<br>(A) | Skin<br>effect<br>contributi | Current<br>redistribution<br>increment | Magnetic<br>losses<br>incremen | Total<br>AC/DC<br>resistance<br>ratio |
|----------------|------------------------------|----------------------------------------|--------------------------------|---------------------------------------|
| 0              | 0.000                        | 0.000                                  | 0.000                          | 1.000                                 |
| 250            | 0.004                        | 0.0005                                 | 0.0001                         | 1.0006                                |
| 500            | 0.004                        | 0.004                                  | 0.0001                         | 1.0041                                |
| 750            | 0.004                        | 0.0043                                 | 0.0001                         | 1.0044                                |
| 1000           | 0.004                        | 0.0041                                 | 0.0001                         | 1.0042                                |
| 1250           | 0.004                        | 0.004                                  | 0.0001                         | 1.0041                                |
| 1500           | 0.004                        | 0.004                                  | 0.0001                         | 1.0041                                |



# **3-Layer ACSR**



Notice that the core losses and transformer effect (magnetic coupling) is stronger for 3-layers of aluminum strands

| Current<br>(A) | Skin<br>effect<br>contributi<br>on | Current<br>redistribution<br>increment | Magnetic<br>losses<br>incremen<br>t | Total<br>AC/DC<br>resistanc<br>e ratio |
|----------------|------------------------------------|----------------------------------------|-------------------------------------|----------------------------------------|
| 0              | 0.000                              | 0.000                                  | 0.000                               | 1.000                                  |
| 250            | 0.008                              | 0.040                                  | 0.001                               | 1.049                                  |
| 500            | 0.008                              | 0.042                                  | 0.001                               | 1.051                                  |
| 750            | 0.008                              | 0.047                                  | 0.001                               | 1.056                                  |
| 1000           | 0.008                              | 0.053                                  | 0.002                               | 1.063                                  |
| 1250           | 0.008                              | 0.058                                  | 0.002                               | 1.068                                  |
| 1500           | 0.008                              | 0.066                                  | 0.003                               | 1.077                                  |
| 1750           | 0.008                              | 0.073                                  | 0.004                               | 1.085                                  |
| 2000           | 0.008                              | 0.077                                  | 0.005                               | 0.090                                  |
| 2250           | 0.008                              | 0.078                                  | 0.005                               | 0.091                                  |
| 2500           | 0.008                              | 0.077                                  | 0.005                               | 0.090                                  |



## **Rac MathCadd Program**

#### PROGRAM FOR CALCULATION OF AC RESISTANCE OF HELICALLY STRANDED CONDUCTORS

#### GENERAL INPUT DATA:

| f:= 50                                                                      | Hz                                                                          | - frequency                                |                |             |                       |                        |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|----------------|-------------|-----------------------|------------------------|
| $\mu_0 := 4 \cdot \mathbf{x} \cdot 10^{-17}$                                |                                                                             | - magnetic permeability of the air         |                |             |                       |                        |
| Pat:= 0.1775                                                                | $\frac{\Omega \cdot mn^2}{m}$                                               | - specific resistance of steel,            | Code 1         |             |                       |                        |
| ost := 0.00393                                                              | 96 .                                                                        | - temperature coefficient of steel         |                | yst:= 7.78  | kg<br>dm <sup>3</sup> | - density of steel     |
| Peael := 0.0327                                                             | Ω·mm <sup>2</sup><br>π                                                      | - specific resistance of alloy,            | Code 2         |             | dm                    |                        |
| $\alpha_{\text{saal}} = 0.00360$ de                                         | 1<br>90                                                                     | - temperature coefficient of alloy         |                | na∎:= 2.7   | kg<br>dm <sup>3</sup> | - density of alloy     |
| ρ <b>gi</b> := 0.028126                                                     | Ω·mm²<br>m                                                                  | - specific resistance of aluminium,        | Code 3         |             |                       |                        |
| osall := 0.00404 de                                                         | 90                                                                          | - temperature coefficient of alumin        | ium            | %al:= 2.7   | dm <sup>3</sup>       | - density of aluminium |
| CONDUCTOR                                                                   | GEOMETRY DA                                                                 | TA:                                        | 3-rd A         | Arper       |                       |                        |
| example: Grack                                                              | le ACSR                                                                     |                                            | 2-001          | menta       |                       |                        |
| Nis:- 3                                                                     |                                                                             | - number of steel layers                   | 1-# 43         | laywe - / / |                       |                        |
| Maa = 0                                                                     |                                                                             | <ul> <li>number of alloy layers</li> </ul> |                | 11          |                       |                        |
| Nia := 3                                                                    |                                                                             | - number of aluminium layers               |                |             |                       | CREAR                  |
| NI = Nis + Niaa + N                                                         | la NI=6                                                                     | - total number of layers ( limited to      |                | UNX SPELC   | SME                   |                        |
| $M_{C0} = 1$                                                                |                                                                             | -material code of 1st layer (first wire    | e in centre as | sumed as 1s | t layer)              |                        |
| $\mathbf{n}\mathbf{w}_0 \coloneqq 1  \mathbf{d}\mathbf{w}_0 \coloneqq 2.24$ | - 1 dw <sub>0</sub> = 2.24 - number and diameter (mm) of wires in 1st layer |                                            |                |             |                       |                        |
| Layratio <sub>0</sub> := 0                                                  |                                                                             | <ul> <li>lay ratio of 1st layer</li> </ul> |                |             |                       |                        |



- Aluminum Strands carry 98% of current so Rdc primarily depends on aluminum conductivity and crossection area.
- Helical stranding 2% increase in Rdc
- RDC increases 4% per 10C
- Skin Effect increase is 1% to 10%
- For ACSR, Transformer effect is <20% for 1-layer and <5% (multi-layer) for >2 amps/kcmil