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Aeolian Vibration
Chuck Rawlins

• Single conductors
• Bundled conductors
• Ground wires
• Insulators
• Davit arms
• Aircraft warning devices
• Etc., etc., etc.

Single conductors with dampers
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Prandtl & Tietjens 1934

Aeolian Vibration of 
Damped Single Conductors

1. Fundamentals

2. Waves, Dampers &
Damping Efficiency

3. How the Technology Works

4. What to Do
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1. Fundamentals
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Koopman 1967
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Koopman 1967
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Fundamentals
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Pick a wind velocity e. g. 10 mph.

Pick a conductor, e. g. Drake
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Fundamentals
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Self dampingFundamentals
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2. Waves, Dampers & Damping Efficiency
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Waves & Dampers
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Waves & Dampers
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Waves & Dampers
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Waves & Dampers
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Fixed rails
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Waves & Dampers
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Waves & Dampers
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Damping efficiency measured in the laboratory
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Predicted Amplitudes

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

Frequency - Hz

Y
m

ax
 - 

in
ch

es 2500
3000
3500
4000

38

Power Balance at 32.8 Hz
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Power Balance at 40.1 Hz
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3. How the Technology Works

(a) A Look Under the Hood

(b) Road Test  
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Damper impedance

Damping efficiency on conductor

Vibration amplitudes

Incidence of conductor fatigue

Damper design

Conductor tension,
mass & stiffness

Damper spacing

Conductor self-damping

Wind
power
function

Span
length

Conductor fatigue
characteristics

42Courtesy Alcoa Laboratories
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Tunnel throat
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Brika & Laneville 1995
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Specific Wind Power - Sine Loops

0.1

1

10

100

0.01 0.1 1
ymax/D

P w
/f3 D

4

Rawlins 1982
Brika & Laneville 1995
Polimi 2003
Diana et al 2005

46

Reduced Decrement - Sine Loops
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Damper impedance

Damping efficiency on conductor

Vibration amplitudes

Incidence of conductor fatigue

Damper design

Conductor tension,
mass & stiffness

Damper spacing

Conductor self-damping

Wind
power
function

Span
length

Conductor fatigue
characteristics
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Alcoa Massena
Memorial University

of Newfoundland

Measuring self-damping
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Munaswamy & Haldar (1997)

Self damping of Drake at 25% RS 
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Self Damping of Hawk at 25%RS    (4 Labs)
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Courtesy GREMCA, University of Laval
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    Laws of motion

       Cable/Damper Interaction

     Power balance

    Fatigue exposure

Damper impedance

Damping efficiency on conductor

Vibration amplitudes

Incidence of conductor fatigue

Damper design

Conductor tension,
mass & stiffness

Damper spacing

Conductor self-damping

Wind power
function

Locale Span
length

Turb effects

Conductor fatigue characteristics
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Damper design
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Damper spacing

Conductor self-damping

Wind power
function

Locale Span
length

Turb effects

Conductor fatigue characteristics

   Laws of motion
F ma=

       Cable/Damper Interaction
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Damper impedance
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   Laws of motion

       Cable/Damper Interaction

     Power balance

    Fatigue exposure
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Damper impedance

Damping efficiency on conductor

Vibration amplitudes

Incidence of conductor fatigue

Damper design

Conductor tension,
mass & stiffness

Damper spacing

Conductor self-damping

Wind power
function

Locale Span
length

Turb effects

Conductor fatigue characteristics

Shaker test
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Damper impedance
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Damper design
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Damper impedance

Damping efficiency on conductor

Vibration amplitudes

Incidence of conductor fatigue

Damper design

Conductor tension,
mass & stiffness

Damper spacing

Conductor self-damping

Wind power
function

Locale Span
length

Turb effects

Conductor fatigue characteristics

Shaker test

Lab
span test

Field
recordings
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of line
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(b) Road Test!

3. How the Technology Works
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CIGRE Study Committee B2 - Working Group 11
Task Force 1 “Vibration Principles” / G. Diana

Assessments of the Technology

“Modeling of Aeolian Vibrations of Single Conductors -
  Assessment of the Technology,” Electra No. 181 (1998)

“Modeling of Aeolian Vibrations of a Single Conductor
Plus Damper: Assessment of Technology,” Electra No.
223 (2005)

The Source

65Photo courtesy of IREQ

IREQ’s Varennes Test Line The Course
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IREQ Varennes Test Line near Montreal

The Course
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Diana et al (University of Milan)

H-J Krispin (RIBE)

Leblond & Hardy (IREQ)

Rawlins (Alcoa Fujikura)

Sauter & Hagedorn (University of Darmstadt) 

The Drivers
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Benchmark Comparison - 15% Turbulence  Rawlins 
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Differences between teams:
1. Wind power functions.

2. Self damping models.

3. Secondary effects, e.g. stiffness.

4. Modeling damper/conductor
    in different ways.

A

B
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Differences between teams:
1. Wind power functions.

2. Self damping models.

3. Secondary effects, e.g. stiffness.

4. Modeling damper/conductor
    in different ways.

Differences with field data:

1. All of the above.

2. Modeling damper/conductor interaction.
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Benchmark Results
• The different teams differed widely in their

predictions of vibration amplitudes.
• Some differences were due to different data bases

on wind power and self-damping.
• None of the predictions agreed well with field

measurements.
• This is mainly due to problems in the modeling of

the interaction of the damper with the conductor.
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Conclusion

This branch of the technology is not
accurate enough to use in specifying
vibration protection.
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accurate enough to
use in specifying
vibration
protection.. Lab

span test
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1. Why did I spend all this time presenting the technology,
 when I knew it wasn’t very useful to the designer?

2. OK, if that isn’t useful, what is?
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4. What to Do?

2. OK, if that isn’t useful, what is?
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Resources:

1. Your own experience. If it worked before 
    (or didn’t), it will do the same again.

2. Experience of others. If it worked for them...
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Alcoa Field Experience Case Collection - ACSR with Armor Rods
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"Conductor Vibration - A Study of Field Experience," C. B. Rawlins,
K. R. Greathouse & R. E. Larson, AIEE Conférence Paper CP-61-1090.
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Alcoa Field Experience Case Collection - ACSR with Armor Rods
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Safe Design Tension with Respect to Aeolian Vibrations
CIGRE B2 WG11 TF4 - Claude Hardy, Convenor

Part 1: Single Unprotected Conductors
            Electra No. 186, October 1999

Part 2: Damped Single Conductors
            Electra No. 198, October 2001
Part 3: Bundled Conductors
            Electra No. 220, June 2005

Overhead Conductor Safe Design Tension
with Respect to Aeolian Vibrations,

CIGRE Technical Brochure No. 273, June 2005

88
CIGRE Brochure 273, Fig. 5.4

Recommended Safe Tensions for Single Conductor Lines

89

Safe Design Zone
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Figure 4 : Ranking parameters of twin horizontal bundled lines in North America fitted
with non-damping spacers and end-span Stockbridge dampers in relation to estimated

safe boundaries.

Electra No. 220, June 2005 90

Resources:

1. Your own experience. If it worked before 
    (or didn’t), it will do the same again.

2. Experience of others. If it worked for them...

3. Your friendly….
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Why???!!
All suppliers have some system for making
recommendations.

They have the most comprehensive knowledge of
their system’s performance.

They are well motivated to avoid repetition of
any unsatisfactory performance.

They are in the best position to maintain the
system to achieve that.

93

Protection recommendations will not agree.

2. Their damper designs are different.

1. Suppliers have different technical approaches.

3. Their exposures to field experience have differed.

1. Why did I spend all that time presenting the technology,
     when I knew it wasn’t very useful?

94

The End


