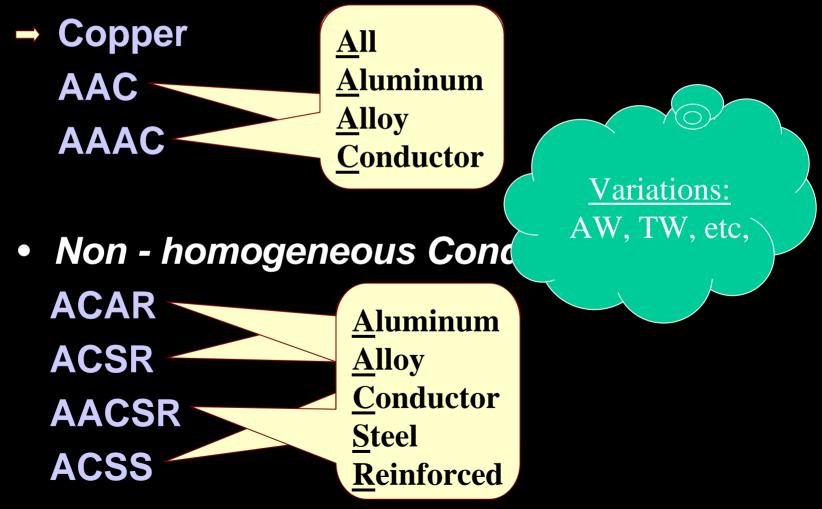


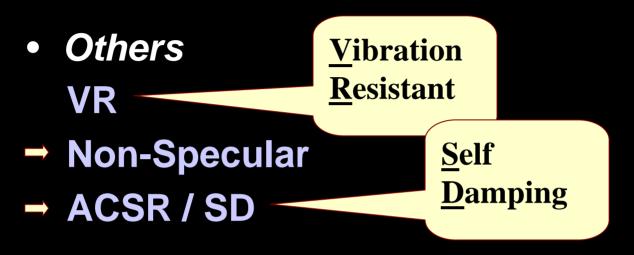
IEEE TP&C Winter Meeting Albuquerque, NM January 23,2006

Mini Tutorial

Bare Overhead Transmission Conductors, Selection and Application Chapter 3

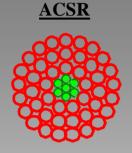


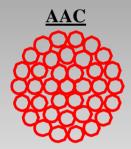
Conductor Properties

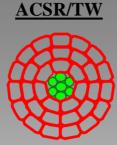

- Current Carrying Capacity
- Strength
- · Weight
- Diameter
- Corrosion Resistance
- Creep Rate
- Thermal Coefficient of Expansion
- Fatigue Strength
- Operating Temperature
- Short Circuit Current/Temperature
- Thermal Stability
- Cost

Categories of Overhead Conductors

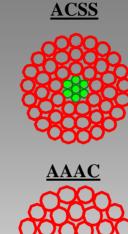
Homogeneous Conductors

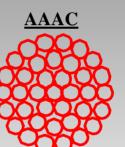

Categories of Overhead Conductors

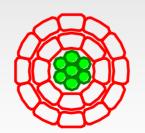


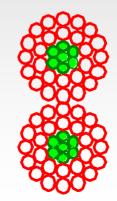

Why so many Choices?

- Power Delivery Requirements Current Carrying Capacity Electrical Losses
- Line Design Requirements Distances to be Spanned Sag and Clearance Requirements
- Environmental Considerations Ice and Wind Loading Ambient Temperatures

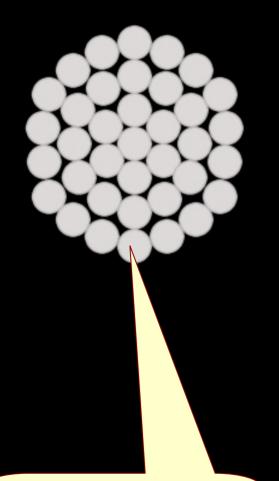

Variety Of Conductor Designs Available






ACAR

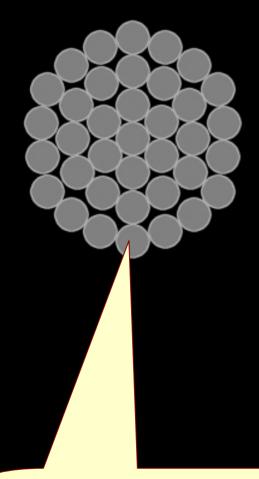
<u>ACSR/SD</u> (SELF-DAMPING)



<u>VIBRATION</u> RESISTANT (VR)

AAC

(All Aluminum Conductor)


- Good Conductivity 61.2% IACS
- Good Corrosion Resistance
- High Conductivity to Weight Ratio
- Moderate Strength

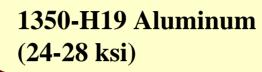
<u>Typical Application</u> Short spans where maximum current transfer is required.

1350-H19 Aluminum (24-28 ksi)

AAAC

(All Aluminum Alloy Conductor)

- Higher Tensile Strength
- Excellent Corrosion Resistance
- Good Strength to Weight Ratio
- Lower Electrical Losses
- Moderate Conductivity 52.5% IACS


Typical Application

Transmission and Distribution applications in corrosive environments, ACSR replacement.

6201-T81 Aluminum Alloy (46-48 ksi)

ACAR

(Aluminum Conductor Al. Alloy Reinforced)

- Balance of Mechanical & Electrical
- Excellent Corrosion Resistance
- Variable Strength to Weight Ratio
- Higher Conductivity than AAAC
- Custom Designed, diameter equivalent to ACSR most common.

Typical Application

Used for both transmission and distribution circuits.

6201-T81 Aluminum Alloy (46-48 ksi)

ACSR

(Aluminum Conductor Steel Reinforced)

1350-H19 Aluminum (24-28 ksi)

- Good Ampacity
- Good Thermal Characteristics
- High Strength to Weight Ratio
- Low sag
- High Tensile Strength

Typical Application

Commonly used for both transmission and distribution circuits.

Coated Steel Core (Typically 11 – 18% by weight) (210-230 ksi)

ACSR

(Aluminum Conductor Steel Reinforced)

Typical Strandings (Aluminum / Steel)

3/4	8/7	48/7
4/3	12/7	54/7
5/1	20/7	72/7
6/1	22/7	30/19
7/1	24/7	54/19
8/1	26/7	76/19
18/1	30/7	84/19
36/1	42/7	
6/7	45/7	

ACSR

(Aluminum Conductor Steel Reinforced)

Steel Core Coatings

Galvanized - (Zinc Coated) Class A, Class B, Class C

- **AZ Aluminum Coated**
- AW Aluminum Clad (or AC, or AS)
- MA Zinc-5% Aluminum-Mischmetal Alloy (Trade names: *Galfan* and *Bezinal*)

Equivalent to a Class C without corresponding loss of strength

AACSR

(Aluminum Alloy Conductor Steel Reinforced)

6201-T81 Aluminum Alloy (46-48 ksi)

- Extra High Tensile Strength
- Good Thermal Characteristics
- High Strength to Weight Ratio
- Low sag
- Moderate Conductivity 52.5% IACS

Typical Application

Long span and severe loading applications for both transmission and distribution circuits.

Coated Steel Core (Typically 11 – 18% by weight) (210-230 ksi)

ACSS

(Aluminum Conductor Steel Supported)

1350-O Aluminum (~8.5 ksi)

- Excellent Conductivity 63% IACS
- Excellent Thermal (250 °C)
- Low Sag Improved with HS285
- Excellent Corrosion Resistance
- Excellent Self-Damping

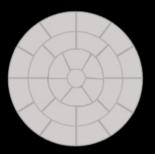
Typical Application

Applications requiring high power transfer for short periods of time.

Zinc-5% Aluminum Mischmetal Alloy Coated Steel Core 210-285 ksi Hmmm.... Where would that be???

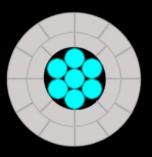
Why use Trapezoidal Shaped Wires?

Roundwire: 1970


Trapwire: Early '90s

Conductors made from round wires have "interstices".

<u>In</u> be sti


No interstices means more aluminum conductor in an equivalent diameter construction!

Trap Wire Constructions

- Trapezoidal Shaped 1350-H19 Aluminum Strands

<u>ACSR/TW</u>

- Trapezoidal Shaped 1350-H19 Aluminum Conductor

- Galvanized – Zinc or AW Coated Steel Core Wires

<u>ACSS/TW</u>

 Trapezoidal Shaped 1350-O Aluminum Conductor
Zinc – 5% Mischmetal Aluminum Alloy or AW Coated Steel Core wires, HS285 EHS Steel Cores.

ACSR - TW

(Al. Conductor Steel Reinforced – Trap Wire)

Trapezoidal Shaped 1350-H19 Aluminum Strands

Two Types of Construction Available:

- Equal Area (of Aluminum) to ACSR
- Equal Diameter to ACSR (different code name)

<u>Typical Application</u> Used for both transmission and distribution circuits.

Galvanized Zinc Coated or AW Coated Steel Core

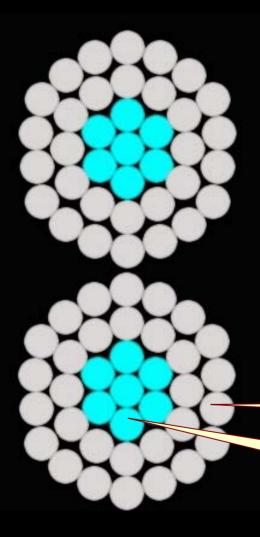
Comparison of ACSR/TW Type Number with Equivalent Stranding of ACSR

Type	Conventional
Number	ACSR Stranding
3	36/1
5	42/7
6	18/1
➡ 7	➡ 45/7
8	84/19
10	22/7
13	54/7
13	54/49
13	24/7
16	26/7

The equivalent stranding is that stranding of conventional ACSR that has the same area of aluminum and steel as a given ACSR/TW type. The ACSR/TW type number is the approximate ratio of the area of steel to the area of aluminum in percent.

ACSS - TW (Al. Conductor Steel Supported – Trap Wire)

Trapezoidal Shaped 1350-O Aluminum Strands

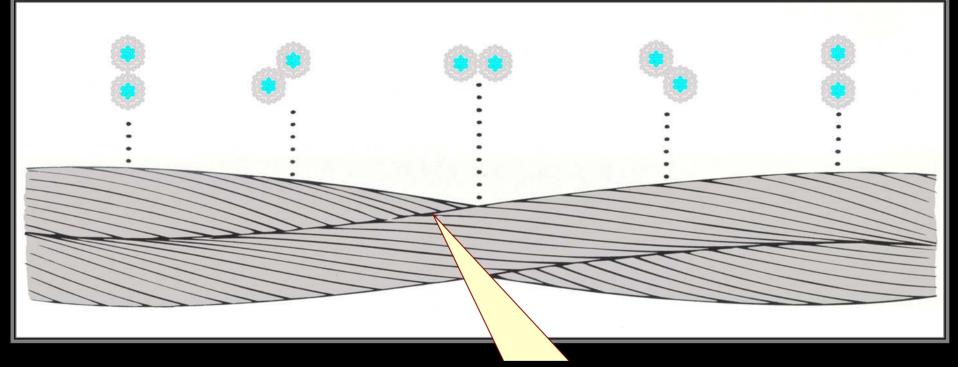

Two Types of Construction Available:

- Equal Area (of Aluminum) to ACSR
- Equal Diameter to ACSR (different code name)

Typical Application

Re-conductoring and new applications to increase capacity and contingency ratings.

Zinc-5% Aluminum Mischmetal Alloy Coated, Alumoweld Coated and HS285 EHS MA Steel Core ACSR/TP Conductor (VR - Vibration Resistant)


Basically two ACSR conductors "plexed" (twisted) together.

Southwire Trade Name: VR Conductor

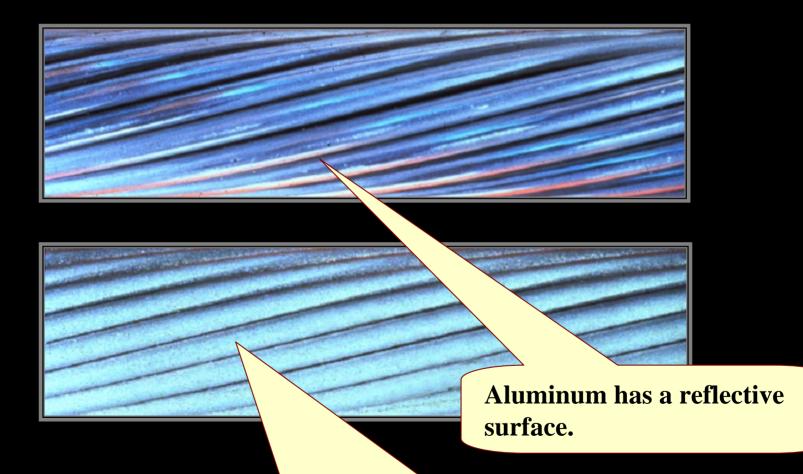
1350-H19 Aluminum

Galvanized or Alumoweld Coated Steel Core

VR Conductor

Vibration Resistant Conductor presents a non-uniform profile to the wind which reduces the vortices that are formed compared to a uniform shaped conductor.

ACSR – SD Self Damping - Motion Resistant Conductor


1350-H19 Aluminum

Inner trap wire layers bridge to create gaps allowing the conductor to absorb vibration.

~ 30 mil Gaps

Galvanized or Alumoweld Coated Steel Core

Non-Specular

Non-Specular conductors are treated to reduce the amount of light reflected .

