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ABSTRACT: To make certain quantitative interpretations of spectra from NMR experi-
ments carried out on heterogeneous samples, such as cells and tissues, we must be able to
estimate the magnetic and electric fields experienced by the resonant nuclei of atoms in
the sample. Here, we analyze the relationships between these fields and the fields
obtained by solving the Maxwell equations that describe the bulk properties of the
materials present. This analysis separates the contribution to these fields of the molecule
in which the atom in question is bonded, the “host” fields, from the contribution of all the
other molecules in the system, the “external” fields. We discuss the circumstances under
which the latter can be found by determining the macroscopic fields in the sample and then
removing the averaged contribution of the host molecule. We demonstrate that the results
produced by the, so-called, “sphere of Lorentz” construction are of general validity in both
static and time-varying cases. This analytic construct, however, is not “mystical” and its
justification rests not on any sphericity in the system but on the local uniformity and
isotropy, i.e., spherical symmetry, of the medium when averaged over random microscopic
configurations. This local averaging is precisely that which defines the equations that
describe the macroscopic fields. Hence, the external microscopic fields, in a suitably averaged
sense, can be estimated from the macroscopic fields. We then discuss the calculation of the
external fields and that of the resonant nucleus in NMR experiments. © 2003 Wiley
Periodicals, Inc.  Concepts Magn Reson Part A 18A: 72-95, 2003
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INTRODUCTION

Overview

NMR spectroscopy is notable for its contributions to
the study of the chemical and physical properties of
heterogeneous samples including living cells and tis-
sues. Variations in the magnetic characteristics of a
sample often bring about readily observable changes
in resonance frequency and spectral line shapes, thus
providing unique probes of cellular function (e.g.,
1-4). A knowledge of the physics of systems with
multiple compartments of differing magnetic suscep-
tibility has already laid the foundation for new sorts of
NMR experiments. The insightful article by Chu et al.
(5) explains some fundamental aspects of contrast
enhancement in magnetic resonance imaging (MRI)
that are brought about by paramagnetic metal-ligand
complexes; and, the comprehensive review in this
journal by Levitt (6) gives an independent explana-
tion of some key phenomena. Both articles emphasize
the nature and value of the magnetic field “experi-
enced” by a nucleus in a magnetically polarizable
medium. They use the theoretical construct of the,
so-called, “sphere of Lorentz” in their analysis. How-
ever, this theory provoked us into some deeper ques-
tions that seemed to warrant exploration; and, with
this insight came the expectation of a better under-
standing of experimental data and new experimental
methods.

The accompanying (preceding) article illustrates
the results from some simple practical NMR experi-
ments in which samples were chosen in which there
were differences in magnetic susceptibility across the
(micro) boundaries of the heterogeneous samples. The
experiments were conducted on solutions, an emul-
sion in the presence of a solution of the same sub-
stance, and a suspensions of red blood cells (RBCs)
made relatively paramagnetic.

Fields in NMR

NMR spectroscopy is based on the interaction of the
spin and magnetic moment(s) of a nucleus with the
magnetic field in its neighborhood. To simulate NMR
experiments, the magnetic field in the immediate vi-
cinity of the nucleus in the “host” atom must be
calculated. The atom itself may be free or bonded as
part of a molecule or in rapid exchange between these

states. In what follows, we refer to the nucleus as
residing in a host molecule with the understanding
that “molecule” should be interpreted as simply the
host atom when it is not chemically bonded. An NMR
spectrometer has a magnet that is designed to produce
a strong uniform field, which we shall refer to as the
applied field, into which the sample is placed. As a
result of its introduction, the field in and around the
sample is perturbed by the interaction of the field with
the magnetic moments of the molecules in the sample.
Most molecules possess no intrinsic magnetic mo-
ment because the electrostatic binding forces lead to a
net cancellation of the orbital and spin angular mo-
menta of the electrons. In the presence of an applied
field, the orbital moments precess and generate an
extra component that is aligned opposite to the field;
this is the diamagnetic effect. On the other hand, a few
atoms, ions, and molecules, in which the angular
momenta of the electrons do not cancel, possess an
intrinsic dipole that is much larger than the induced
moment at room temperature. These molecules tend
to adopt the least-energy state in which the intrinsic
dipole moment is parallel to the applied field; this is
the paramagnetic effect. The intrinsic paramagnetic
dipole is much larger than the induced diamagnetic
dipole at room temperatures, so paramagnetic mole-
cules are often introduced as “agents” to make a
deliberate modification to the applied field (e.g., 5).
However, the magnetic field experienced by a nucleus
in the host molecule is modified by the fields pro-
duced by all the molecules that are external to the host
in which it is located and by the field produced by the
host molecule itself. The former field is sometimes
called the local field but because it is in the immediate
external environment of the host molecule we shall
refer to it as the external field. The field from the host
molecule we shall refer to as the host field. The
external field is dependent on the composition and
geometry of the whole sample and is a macroscopic
entity, whereas the host field depends solely on the
structure of the particular molecule and is a micro-
scopic entity. The change in resonance frequency due
to the former is called the bulk magnetic susceptibility
shift (BMS) and that due to the latter is the chemical
shift. (See our preceding article for illustrations of
chemical and BMS shifts that occur in samples in
containers with spherical and cylindrical geometries.)
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Both effects are the result of the electromagnetic
properties of charges in motion and are therefore
described by the Maxwell equations (e.g., 7, 8). In
microscopic form, these equations describe exactly
the electric field e and the magnetic induction b pro-
duced by each constituent-charged elementary parti-
cle. Hence, these equations can be used to calculate
the host field and the chemical shift at a nucleus.
However, it is not realistic to solve the array of
Maxwell equations for all the molecules in the sam-
ple, let alone all those in the microscopic system in
the vicinity of the nucleus of interest. Therefore, it is
necessary to invoke a simplification that uses the
Maxwell equations for the macroscopic system, and
then we work down to the microscopic system. The
macroscopic equations describe approximately the
bulk electric field E and the bulk magnetic induction
B, given the constitutive relationships between the
electric field and the electric displacement D, and
between the magnetic induction and the magnetic
field H. These relationships incorporate the effects
due to the paramagnetic and diamagnetic properties of
the bulk medium, described above. But, the macro-
scopic field calculated using the macroscopic Max-
well equations does not provide the average field at a
point where the nucleus resides within the host mol-
ecule. The macroscopic field at any point in fact
contains an average contribution from the host mole-
cule itself based on the assumption that the point is
distant from the host molecule, not within it. This
average host molecule field contribution must be re-
moved from the macroscopic field to estimate the
average field across the molecule due to the applied
field and the contributions of all the other molecules,
the external (or local) field. The actual field experi-
enced by the nucleus is obtained by adding the exter-
nal field component and the internal contribution from
the host molecule, namely, the microscopic host field
(see Fig. 1).

Analytic Strategy

The commonly used prescription for estimating the
field at the nucleus of interest (the host field) is based
on the idea of the sphere of Lorentz (e.g., 5, 6, 9). It
was introduced in electrostatics by Lorentz (/0) but
applies equally well to magnetostatic situations (e.g.,
11). It was first used in the context of NMR by
Dickinson (/2). The sphere of Lorentz is a notional
sphere drawn around a nucleus; it is large enough for
all the molecules external to it to be treated as a
macroscopic continuum that is locally uniform.
Within the sphere the host molecule is imagined to
reside in a vacuum surrounded by individual mole-
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Figure 1 Schematic representation of a solution of pen-
tagonal molecules with nuclei denoted by open discs. The
relative orientation of the molecules is random and the
nucleus of interest is placed at the arbitrarily chosen origin
of a Cartesian coordinate system. The three regions of space
that are relevant to the averaging, or smoothing, process
used in analyzing the fields experienced by the nucleus at
the origin are denoted host, external, and macroscopic.

cules whose net electromagnetic effect is taken to be
vanishingly small. The effect of introducing a spher-
ical cavity into a uniform continuous medium is sig-
nificant and yet the field arising from it can be readily
calculated; hence, this provides the estimate of the
external field.

The disadvantage of this approach is that it mixes
the microscopic and macroscopic pictures and the
justification for the field estimates at each level is not
entirely clear. It has thus assumed an almost “magi-
cal” air; for example, Springer (9) writes “For an
imaginary object, the sphere of Lorentz produces
amazingly profound real effects.”

Aims, Approach, and Outcomes

In this article, we set out to demystify the estimation
of the external fields from the macroscopic field(s).
We show that the results obtained by using the sphere
of Lorentz argument are in agreement with our new
more rigorous approach and are of general validity.
This is important because the sphere of Lorentz argu-
ment is simple to apply and can yield a semiquanti-
tative description of BMS effects in variously shaped
objects.

Our new analysis requires only that the measure-
ment “polls” a sufficiently large number of molecules
that are in random positions with respect to their
neighbors for the sample average to be equivalent to



the average of a single molecule surrounded by a
randomized medium. Then, local isotropy, i.e., spher-
ical symmetry, produces the same result as the sphere
of Lorentz construction for a nucleus residing at its
center in the otherwise empty space.

We first summarize the derivation of the expres-
sions that describe the macroscopic fields, which are
the average of the effect of all molecules present in
the sample; this averaging takes place over macro-
scopic length and/or time scales. On the microscopic
scale, all charged particles are taken to be in motion
so that the electric and magnetic properties are cou-
pled, so we must analyze the full set of Maxwell
equations. It is only on the macroscopic scale that
experiments can realize time scales that are suffi-
ciently long that the macroscopic equations governing
the magnetic field may be solved independently of
those governing the electric field. At this stage we
confine our discussion to the magnetic field in the
slowly time-varying situation. Next, we examine how
the average fields produced by all the other molecules
at the site of a particular molecule can be estimated by
using the macroscopic equations. The method of so-
lution of the macroscopic equations is summarized in
the appendix; hence, the calculation of the BMS shift
in NMR experiments is completed.

The detailed treatment of the chemical shift pro-
duced by the internal field of the host molecule at any
of its nuclei is beyond the intended scope of this
article (e.g., 9, 12, 13) but, for completeness, we
provide an estimate of the host field in the spirit of the
treatment of the BMS shift so that the relative mag-
nitudes of the combined effects can be seen.

MICROSCOPIC AND MACROSCOPIC
FIELDS

Maxwell Equations

The Maxwell equations are treated in all standard
texts on electromagnetism (e.g., 7, 8), so we present
them with little discussion.

The microscopic electric and magnetic fields e and
b produced by the moving charges of the submolecu-
lar particles are described by the following equations:

ob

VXe=——

€V-e=p, 5

Je

1
. = JR— X =1 —
V:b=0, onv b ‘]+E°at [1]
where the constants €, and ., are the electrical per-

mittivity and magnetic permeability of free space,
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Figure 2 Illustrations of Maxwell’s laws. Left: The elec-
tric flux is defined as the integral of the component of the
electric field e in the direction of the normal n to the surface
S. It is proportional to the total charge within the volume V
enclosed by the surface S. Right: The magnetic flux cross-
ing any surface S enclosing a volume V always vanishes.

respectively. We must treat the microscopic electric
and magnetic fields together in a coupled system
because the microscopic charge density p and current
density j vary on short time scales due to the rapid
motion of the point-like charges.

The Maxwell equations are written here in their
differential form using vector differential operators.
The properties of these operators and their application
in electrostatics are described in (/4). But, their inte-
gral form is more readily visualized. Two are obtained
by integrating the two equations on the left over a
volume V and transforming the left sides to integrals
over the surface S of V, using Gauss’s theorem (/2):

[iomo o o=

N Vv N

(2]

These are illustrated in Fig. 2. The unit vector normal
to the surface S at any point is denoted n so that the
scalar product, b + n, is the component of b in the
direction normal to the surface. The first equation thus
states that the normal component of e integrated over
the surface, the electric flux across the surface, is
proportional to the total charge contained within the
volume V. This is Gauss’s law. The second equation
states that the total magnetic flux across the surface
surrounding any volume V must vanish. The inward
flux exactly balances the outward flux. This is due to
the empirical fact that there are no sources of magne-
tism corresponding to point charges.

The other two forms are obtained by integrating
the two equations on the right in Eq. [1] over a surface
S that is bounded by a closed curve C, and then
transforming the left side to line integrals around C,
using Stokes’s theorem (/4):
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Figure 3 Illustrations of Maxwell’s laws. Left: The elec-
tromotive force is the integral of the component of the
electric field e in the direction of the vector path increment
dl around the curve C. This integral is equal and opposite to
the rate of change of magnetic flux across the surface S.
Right: The corresponding integral of the magnetic field b
around C is determined by the rate of change of the electric
flux across the surface S and the total current threading the
surface.

P{(}%bwﬂ:JJ(j-n)dS+«onlltfj(evn)ds [3]

Here, dl represents a small vectorial increment in
the path around C. These are illustrated in Fig. 3. The
first equation states that the line integral of the electric
field e around a closed path C, known as the electro-
motive force, is equal and opposite to the rate of
change of the magnetic flux across the surface S. This
is Faraday’s law of induction. The second equation
states that the line integral of the magnetic field b
around a closed path C is governed by two quantities.
The first term on the right side is the current crossing
the surface S, i.e., threading C. This term expresses
Ampere’s law. The second term is proportional to the
rate of change of the electric flux across S. This term
was introduced by Maxwell, who called it the dis-
placement current, and is essential for the existence of
electromagnetic waves.

These equations can be solved by eliminating the
electric field to derive the equation governing the
magnetic field and vice versa. The result in each case
is a wave equation with source terms provided by the
electric charge and current densities:

- 1oe 1 v 1 9 A
¢ cor € P c? ot [4]

. 1 )
Vb — 557 =~V X [5]

where ¢ = 1/Vegyp is the speed of light. The wave
equation can be solved formally in terms of an inte-
gral, over all space and all time, of the sources on the
right sides of these equations. They admit both “ad-
vanced” and “retarded” solutions, i.e., one in which
the effect of the source propagates backward in time
with the speed of light and one in which it propagates
forward in time. The advanced solution is discarded to
avoid violating causality. The resulting retarded solu-
tion can then be expressed as an integral over all space
of the contribution from every source at the retarded
time. This time is simply the time at which the elec-
tromagnetic signal, traveling at the speed of light,
must have left the source point to arrive at the selected
point of space x where the fields are measured at the
selected time ¢.

This formal integral solution can be written in a
variety of different ways. The Jefimenko form (e.g.,
7) is one of the most illuminating:

1 x—x)p'x,1) |
e(x, 1) = 4re, ffj x —x' dx

1 f J f (x — x")(9p'(x', ')/0t")
_I,_i
4mre, ( cx —x'

aj' (x', t')ot’
3 Jz( ), Py
Ax — x|

¥ J, )X x—-x)
b(x, 1) :4;;”[ X —x] P

9y’ (x', t)at') X (x — x’
o [[[@ w0 X 6 =x)
4 cJx — x/|

(7]

(6]

Without the final term, Eq. [6] is Coulomb’s law and,
again without the final term, Eq. [7] is the Biot—Savart
law. In these equations, ¢ = t — |x — x'|/c is the
retarded time referred to above, and the integration is
taken over all of space. In the steady state, only the
first terms of the right side of Eqs. [6] and [7] appear,
so that the electric field is seen to depend only on the
charge distribution, and the magnetic field depends
only on the current distribution. The size of the sec-
ond term relative to the first is 1:(d/cT), where d and
7 are the characteristic distance and time scales of the
system. If the system changes only slowly (viz., over
time scales long compared with d/c, the time for light
to travel a distance d), the second terms and the
variation in the retarded time can be neglected; we



call this situation the quasisteady case. At the micro-
scopic level, the time scale is determined mainly by
the orbital speeds of the electrons that are an order of
magnitude less than c¢. At the macroscopic level in
NMR experiments, the time scale is governed by
diffusion, i.e., the thermal speeds of the molecules and
these are many orders of magnitude smaller than c.
The quasisteady approximation is, therefore, good in
the latter case, but more care needs to be taken at the
microscopic level.

We now focus on the conceptual steps involved in
proceeding from the microscopic picture in which the
molecular constituents of the material are described as
charged particles in motion in a vacuum, for which
the solutions can be written down exactly, to the
macroscopic picture, which involves systematic aver-
aging over the sample. Only by doing this is the
relationship between the two pictures revealed. Be-
cause there are several steps that are mathematically
independent but logically connected, we use a nota-
tion that, although somewhat cumbersome, does help
keep track of the steps.

Temporal and Spatial Averages

The development presented by Jackson (7) is based
on Russakoff (15) and we follow his approach here:
The Maxwell equations are linear so they can be
averaged over space or time to describe the average
microscopic electric and magnetic fields & and b.
These are expressed in terms of the sources of the
fields, which are the charge density p and current
density j that are averaged in the same manner,

namely,

Eov'ézﬁ, VXE"’E

V-b=0 1V><f) e _s 8
- Y, E 605_.] []

The form of these equations is precisely that of Eq. [1]
so that the integral forms and the general solution
applied to the averaged fields in the sources are re-
placed by the averaged sources.

Significance of Linearity

The property of linearity enables the fields to be
obtained by averaging the sample point over a volume
in space or interval in time; this is precisely the value
of the field that would be obtained if it were measured
at a fixed point but arose from sources that were
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averaged over an equal volume or equal time interval.
As a further consequence of linearity, the average
fields and sources of any system are equal to the sums
of the average fields €& and b, due to the average
sources p and j, representing each of the N molecules
present in the system. Specifically, & = X~ | &,. Thus,
each average molecular field is described by the Max-
well equations, Eq. [8], with the corresponding aver-
age molecular sources.

Suppose that the ith molecule consists of n;
charged particles, namely, electrons and protons; it
also contains neutrons that generate no electromag-
netic effects per se. We shall not be interested in
following the submolecular motion, so we first aver-
age over a time scale that is long compared with that
of the orbital motion of the electrons but short com-
pared with that of the motion of some reference point
(usually taken to be the center of mass) of the mole-
cule. We denote any time-averaged value of a prop-
erty X, with an overbar:

X(x,10) = in(X, t — mw(r)dr

where the temporal smoothing function w(T) is nor-
malized so that [ w(7)dT = 1 and it vanishes for time
scales longer than that of the submolecular motion.
By treating each submolecular particle as a discrete
point charge, the charge and current density due to the
Jjth charge in the molecule can be expressed in terms
of a delta function (which has, it should be noted,
units of volume™') as

pij(X) = Qija(x - x(t) — gij(t))
350 = q;(a(0) + E,(0)8(x — x()) — £,(1)  [9]

Here, x,(¢) and x,(t) are the position and velocity of
the center of mass of the ith molecule; g;; is the
charge of the jth submolecular particle in this ith
molecule; and §;,(#) and &,(t) are the position and
velocity of the jth submolecular particle with respect
to its center of mass (see Fig. 4).

The delta function 8(x — Xx’) is a convenient math-
ematical device for representing a point particle. This
function vanishes everywhere except at the point x =
x', yet its integral over any volume containing the
point x’ is unity. Hence, the quantity p = ¢d(x — x')
is a charge density such that the total charge [[[,
pdV = 0 if the point charge at x’ is outside the
volume V and the total charge [[[, pdV = q if the
point charge at x' lies within V. Likewise, the quantity
j = gvd(x — x') is a current density such that the
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) i-th molecule

P

Origin

Figure 4 Vectors used to specify a general position in
3-space, X, the position of the center of the ith molecule,
X,(1), and the position of the jth electron in the ith atom,
g:,-(t), relative to the molecule’s center.

current [ [, jdV = 0 if the moving charge at x’ lies
outside V and the current [[[, jdV = gv if the
moving charge at x’ lies within V. Here, v is just the
rate at which the point charge is moving; because its
position vector is a function of time, X’ = x'(7), its
velocity is v = dx'(t)/dt = X'(1).

Multipole Expansion

At a point external to the molecule the inequality |x —
x,| > |§;| holds, so we can expand the expressions in
Eq. [9] as series in terms of increasing powers of the
small quantity |€|/|x — x;|. This procedure leads to
a multipole expansion. Normally, higher-order terms
are small enough to be negligible compared with the
first one or two terms. Truncation of the series after
the second term is referred to as the dipole approxi-
mation and it yields the following expressions for the
total charge and current densities for the ith molecule:

pix, 1) = gd(x — x,(1)) = V- (pi(Nd(x — x,(1))) [10]

-~ 0

Jix 1) = o (B0d(x — x,(0)) +
VX (m(1)3(x — x{(1)) + ¢:X()d(x — x(1))
+VX(p,(1) X %,()3(x — x,(1))) [11]

where the total molecular charge g, (independent of
time), electric dipole moment p;, and magnetic dipole
moment m; are defined by

n; ni

q:= Z qij> p:1) = 2 Qijgij(t)’

j=1 j=1

ni

1 .
m; = B 2 Qij(gij(t) X gij(t)) [12]

j=1

The significance of each of the remaining terms
will be explained below but, in the meantime, these
expressions suffice to convey the idea that when av-
eraged over time the whole molecule appears at dis-
tant points as if it were a point object. However, it is
conceptually convenient in what follows (although
not mathematically imperative) to restore the finite
extent of the molecule when we deal with its imme-
diate neighborhood. Thus, we smooth the ith mole-
cule over a volume V; that is comparable to the
volume that it occupies. The spatially smoothed quan-
tities are denoted by a double overbar:

):(i (x,1) = ffj X‘(X -C, t)h;(§')d3é'

where h; describes the form of the smoothing function
around x. It vanishes outside V; and is normalized so
that its integral over V; is unity.

The Maxwell equations written with these aver-
aged sources describe fields that vary smoothly over
length and time scales greater than those of the sub-
molecular structure. However, the sources and fields
still have features on the scale of intermolecular dis-
tances. The macroscopic equations are based on elim-
inating this fine structure by being smoothed over a
volume V of space that is sufficiently large to contain
a large number of molecules. These newly smoothed
quantities are denoted by angular brackets:

(Xi(x, 1)) = f f f X(x — & Dy (Qd’¢

where h, is another normalized function, like a
Heaviside step function, that vanishes outside V.
The macroscopic averaging process warrants some
discussion. It is implicit in this concept that the result
will describe a physical system that can be measured
with macroscopic equipment and produce repeatable
results, at least within an acceptable error range. As a
result, the macroscopic average must be made over a
volume large enough to ensure that the movement of
the molecular constituents both within this volume as
well as in and out of this volume results in little
change to the average properties. Further, the average
should reflect the results of measurement by different
instruments that may sample the volume in a similar,
but not identical, manner. So, the macroscopic aver-



age should not weight heavily any localized region
within itself. It is therefore logical, as well as expe-
dient because it simplifies the mathematical treatment,
to take the smoothing function to be uniform over V
so that i, = 1/V. Thus, we restrict the integration to
the volume V around x, writing

= 1 =
<Xi(Xs t)> = VJ'ff Xi(x - gv l)dzg [13]

1%

Combining all smoothings, the average charge and
current densities become

(pix, 1)) = giHy(x — x,(1)) =V (p:(t) Hy(x — x(1)))
[14]

- d
Qix, ) = o (b0 Hy(x — x,(1)))

+V X (my(r) Hy(x — x,(2)))
+q:X,(t) Hy(x — x,(1))
+V X (pi(t) X x,(1) Hy(x — x,()))  [15]

where

1
Hy(x) = foj hi(x — c)d3€

Vv

Thus, the charge sources are contributed by the mo-
lecular charge density and spatial variations of the
electric dipole density; the current sources are con-
tributed by the molecular charge flux, temporal vari-
ations of the electric dipole density, and spatial vari-
ations of the magnetic dipole density and the electric
dipole flux density.

Finally, the macroscopic charge and current
sources are obtained from Eqgs. [14] and [15] by
summing over all molecules. Hence,

(p(x, 1)) = =V-P(x, 1) [16]
- oP(x, 1)
(J&x, )= o + VXM, 1)+

VX E pi(t) X x,(t) Hy(x — x,(r)) | [17]

i=1
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where the macroscopic polarization P and magnetiza-
tion M are defined to be

N

P(x,1) = E p:(t) Hy(x — x,(1)),

i=1

M(x, 1) = >, m,(1) Hy(x — x,(1)) [18]

i=1

At this stage of the analysis, we made the usual
assumptions that the molecular charges g; and charge
fluxes ¢;X; sum to zero over a macroscopic volume, so
the expressions for both the average charge density
and average current density depend solely on the
dipole terms. The second term in the expression for
the average current density is the spatial average of
the (vector) product of the dipole moment and the
center-of-mass velocity of the molecules. If there is
no correlation between the dipole moment and the
velocity (one is microscopic, the other is macro-
scopic) then the average of the product is equal to the
product of the averages. In this case, if there is no bulk
motion in the system the average velocity of the
center of mass vanishes and the macroscopic current
density reduces to

oP(x, 1)
t

G(x, 1) = P V X M(x, ?) [19]

This yields the Maxwell equations that describe,
within the approximations detailed above, the macro-
scopic fields E and B in their standard form in the
absence of free charges:

B
V-E=-V:P, VXE=—
a1

1 P JE
CVXB=_ +VXMte

vV-B=0, - f”

[20]

These equations should be contrasted with the
original microscopic form in Eq. [1]. They have ex-
actly the same structure but the source terms are no
longer discontinuous functions of the microscopic
charges and of the currents produced as they move.
Instead, the sources are continuous functions of the
electric and magnetic dipole densities, which are the
highest-order terms to survive the averaging pro-
cesses. However, the general solution of these equa-
tions is the same as for the microscopic equations
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given by Eqs. [6] and [7] with the appropriate change
in the expressions for the source terms. In the qua-
sisteady case these are

m&n:—-l JJJ@—«gvr@gﬂfﬂ o1

4mre, Ix — x|
bo [[[(FXM&, ) X x—x)
B(x,t) = ﬁ JJJ |X — X/|3 d’x

Mo O P(x', 1) X (x — x') .,
+41'ratjfj x —x'P d'x

In practice, these are just formal solutions because
the dipole moment densities are, in general, not pre-
scribed functions of space and time. Following Max-
well, we must therefore proceed by introducing the
new fields

[22]

B
D=cE+P, H= —M [23]
0

Then, the new Maxwell equations assume the stan-
dard macroscopic forms:

oB
V:B=0, ——=-VXE
ot

oD
V:D=0, _ =VxH [24]

We now have four vector field quantities, i.e., 12
scalar quantities, to determine from only eight com-
ponent equations. This is impossible without addi-
tional information about how the four fields are re-
lated to one another. But, before considering this
question, we can use the prescription for obtaining the
macroscopic equations to answer the fundamental
question of how such fields can be used to estimate
the fields experienced at the site of a constituent
molecule, i.e., to calculate what we have defined to be
the external fields.

EXTERNAL FIELDS

Key Concept

The key concept in understanding the theoretical con-
struction derived in this article is: The external fields

at the site of an individual molecule within a sample
differ from the macroscopic fields as calculated above
because the macroscopic field already contains an
averaged contribution to the fields from the molecule
itself. It is obvious that the macroscopically averaged
fields experienced by the kth molecule are found
simply by solving the macroscopic equations, with
sources from the averaged contribution of that mole-
cule subtracted. It is not obvious, however, that the
actual external fields will always be such fields ob-
tained by macroscopic spatial averaging. Indeed, in
crystals, they may never be.

Crystals

In the case of a crystal with molecules arranged in a
regular lattice, there will be no spatial smoothing and
the external fields will be similar for all similar mol-
ecules and could differ greatly from the macroscopic
average. The external fields can only be estimated by
solving the full set of microscopic equations for the
whole lattice; however, this problem is not discussed
further here as it is not pertinent to molecules in
solution.

Amorphous Solids

In an amorphous solid, with random structure, an
individual molecule also does not experience spatially
smoothed external fields. Consider a group of like
molecules with random arrangements of their neigh-
bors in a volume V. If this volume is used to define the
macroscopic average then the external field experi-
enced by the group will be similar to the macroscop-
ically averaged field. The mean field experienced by a
smaller group (in a smaller volume) will, in general,
differ from the macroscopically averaged field be-
cause the system will retain structure on the scale of
intermolecular distances. The evaluation of the exter-
nal fields in the latter case poses an intractable prob-
lem.

Averaging Process for Fields and Sources

The question of how to estimate the mean external
field thus hinges on the nature of the averaging pro-
cess. Recall that linearity implies that averaging fields
is equivalent to averaging the sources. In a fluid, the
molecular sources move around, so a temporal aver-
age is equivalent to averaging over the locations of the
molecules, i.e., to spatial averaging around a fixed
site. This is the ergodic hypothesis of Boltzmann and
is plausible, although difficult to prove rigorously in
most cases. If a finite volume containing a large



number of molecules with host atoms is sampled,
each such molecule will be surrounded by other mol-
ecules in a series of random realizations. The external
field, averaged over such an ensemble of realizations,
is again equivalent to a spatial average around a fixed
site. The distribution of surrounding sources is then
locally uniform and isotropic within the averaging
volume V. This property characterizes the macro-
scopic average and defines how large the necessary
macroscopic averaging volume should be. We shall
consider this case exclusively.

Focus on this averaged spatial distribution of
sources in the neighborhood of an individual mole-
cule, labeled k. To maintain the identity of the mol-
ecule, we assume that it occupies a volume V, about
the “center” of the molecule at x,; all other molecules
are excluded from this volume. We now smooth the
molecules outside this volume over a spherical vol-
ume V to produce a continuous distribution that main-
tains the volume V, free of sources. As before, we
shall take the smoothing function to be uniform over
V. If V does not contain V,, the sources will be
averaged over the whole of V so that 2, = 1/V at
points inside V and A, = 0 outside. Then, the spa-
tially averaged sources contributing to Eqgs. [14] and
[15] will take the form

x| [
RY[FTr—

The prime on the sum indicates that the term i = k
must be omitted. The second expression follows from
the first because X, vanishes throughout V. It is pre-
cisely the definition of the macroscopic average (X) in
Eq. [13].

Smoothing Over Sources in the
Neighborhood of a Host Molecule

If we smooth (average) over a volume that includes
any part of V, we must confine the sources to the
volume V minus V, which is that part of V, within V
(see Fig. 5). This volume depends on the position of
the center, x, of the smoothing sphere relative to the
center of the molecule x,. The normalization now
gives hy, = 1/(V — V}) and the average sources are
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Figure 5 Molecular volumes V,, centered at x,, and the
smoothing volumes V, centered at x. Left: The molecule lies
wholly outside V. Right: The molecule lies wholly inside.
Center: That part of the molecular volume lying inside V is
denoted V.
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not match the definition of the macroscopic average
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Now, the first integral is the total source O, within
V. Because V is the macroscopic volume, this
source is given by Eq. [25] as Q, = WX). The
molecules will be randomly distributed over this
volume with an average number density 1/V,,
where V,, is the average molecular “volume” so we
can define the average source associated with each
molecule to be

V.
Qm - 7 QV - Vm<X>

unless the total source vanishes, i.e., Oy, = V(X) =0.
The second integral is the source due to the kth
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molecule within V). By definition, the source within

V, is
g=ffjiu—gﬂfc

Vi

If X « 1s uniform within V,, then it follows that

= Vi
JJJ X (x — L 0d’, = Vka
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If X is not uniform, we can always write

- Vi
JJJ X (x — §, nd’L = fe(x — x) Vk O

Vi

where fy is some smooth function of position with
respect to the center of the molecule and is a function
of the structure or shape of the kth molecule. When all
the molecules are of the same type Q, = Q,,; other-
wise, we write O, = a,0,,, where o is a propor-
tionality constant that depends on the other molecular
structure(s). Then, substitution yields

_ V = ‘/m VIL =
X(x,1) = m@ﬁ - akfxmvk X)

if (X) # 0. This case describes the contributions of
the molecular dipoles p, and m, to the sources in
Egs. [14] and [15]. When (X) # 0,

Vi
X(x,0) = —fx 7o
( ) fX (V_ Vk)vk Qk
This case describes the contribution of the possible
molecular charge g, to Eq. [14] because

kaCIkJJ’f hk(X_Xi_Od3§ZCIk

Vi

At locations within V, we must, of course, set X(x,
Hn =0.

Alternative Representation of the Sources

The results of the previous section can be put in an
alternative, perhaps more illuminating, form by noting
that they differ from the sources for the macroscopic
fields only within V, or when V includes some part of
V.. The external fields are therefore obtained from the
macroscopic fields E and B by removing the fields due
to the contribution of the kth molecule to the sources
within V, and around V,. We call these the self-fields.
They are produced by the sources, as follows:

X) if x is within V,
X(x, 1) =1{S(x — xk)(f() if V about x contains any part of V,
0 if V about x is wholly outside V;

or, if (X) = 0,

0 if x is within V,
X(x, ) = {Fo(x — x,)Q, if Vabout x contains any part of V,
0 if V about x is wholly outside V;

The shape functions,

_ V; <0kaXVm
V=v)\ Vi

VI
Yy —1), %, foVi

T (V= Vv
[26]

contain all the effects of the particular structure of the
kth molecule. The other quantities are all macroscopic
quantities.

The expressions for the self-fields then result from
solving the Maxwell equations with charge densities:
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if x is within V,

p(x,1) = {Foq — V- ($P) if Vabout x contains any part of V
0 if V about x is wholly outside V,

and current densities:

oP/ot + VX M

if x is within V,

jx, 1) = {0(FpP)ot + V X (FyM) + F g% + V X (F,P X ;) if V about x contains any part of V,
0

Prescription for External Fields

The previous section provides a prescription for eval-
uating the external field experienced by an individual
molecule due to a surrounding randomized configu-
ration of other molecules. The equations may be
solved if the structure and dynamics (position, orien-
tation, and velocity) of the molecule are known. In
practice, the dynamic state of individual molecules
will not in general be known, so this formalism has
limited utility. However, in NMR experiments the
signal is generated by a large number of nuclei resid-
ing in molecules, all in different dynamic states.
Therefore, we can perform another averaging: This
time it is done over the velocities and orientations of
the host molecule. If there is no net flux of the
molecules in question, i.e., there is negligible bulk
motion, the velocity-dependent terms will average to
zero. If we also average over all orientations then the
newly averaged sources must be distributed with
spherical symmetry. The host molecule is thereby
replaced by one that is spherically symmetrical, as in
Fig. 6. The molecular volume V, will then be a sphere
and all spatially dependent factors in the shape func-

Figure 6 Successive smoothing processes. Left: The host
molecule is surrounded by other molecules in random po-
sitions and orientations. Middle: The surrounding molecules
have been smoothed into a continuous source distribution
outside the host molecule. Right: The orientation of the host
molecule has been averaged, resulting in a spherically sym-
metrical distribution of sources outside a spherical “exclu-
sion” volume.

if V about x is wholly outside V,

tions ¥ will depend only on distance r = |x — x|
from the center at x;.

If we recall that the point x; is some reference
point in the molecule, not necessarily the center of
mass, it is clear that we can now choose that point to
be the location of the nucleus in the host molecule.
When the orientations of the molecule are averaged
about this point, the averaged sources due to all the
other molecules become spherically symmetrical
about the nucleus. The average fields experienced by
that nucleus are those due to the spherically symmet-
rical source distributions, evaluated at the center, i.e.,
at x = x;.

We can now construct the sources explicitly. Let-
ting R be the radius of V, and R,, the radius of V,, the
charge densities are given by

_V'P ifr<Rk
p(x,1) ={Fo(Ngy = V- Fp(nNP if R, <r<R+R,
0 ifR+R.<r

and the current densities are given by

J(x, 1)
aP/ot + V X M if r <R,
—o(LHPVor + V X (Fu(WM) if R, <r<R+R,
0 ifR+R.<r

where P and M are the macroscopic polarization and
magnetization around X = X;.

Isolated Molecules

Consider the idealized case in which there is a single
molecular species (so o, = 1 and g, = 0) and set
V, = V,, and fy = 0 so that each molecule occupies
the same exclusive spherical volume that is equal to
the molecular volume. Then, the shape functions van-
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ish, leaving only the uniform sources P and M within
V. Substitution into the quasisteady expressions Eqs.
[21] and [22] yields explicit estimates of the self-
fields at x = x, that are given by

1 2
Eself == 3760 P(Xk7 t)’ Bself = T M(Xk’ t) [27]

The contribution from the polarization P to B¢
integrates to zero at the center of the sphere. This does
not occur at other points within the sphere. However,
in the strictly time-independent case the fields are
uniform within a sphere with uniform polarization and
magnetization so Eq. [27] gives the estimate of the
static self-fields at all points within the sphere. This
case reproduces the result obtained from the sphere of
Lorentz construction, even though the spheres are
differently conceived and are of different size. The
contradictions inherent in this simplistic view of the
sphere of Lorentz are apparent, however, so we pur-
sue the rigorous treatment.

Rigorous Treatment

If we wish to identify values averaged over V in the
general case with the macroscopic averages, we must
take V > V,. The macroscopic sources are then
uniform throughout V, and its surroundings, within
the much larger volume V about the molecule. Thus,
in the surrounding shell only the shape functions vary
and then only with respect to the radial coordinate r.
The importance of this property was noted by (6);
substitution of these forms in Eqgs. [21] and [22]
produces exactly the same estimates as those in Eq.
[27] for the fields at the center of V. Away from the
center, the time-varying polarization will again con-
tribute to B In the strictly time-independent case,
the fields will again be uniform throughout V,, so
these estimates will apply at all points within V.

The external fields experienced at any position x
within an averaged molecule in averaged surround-
ings are the macroscopic fields less the self-fields. In
the static case, these are

1
E.(x) = E(x) + 3¢, P(x),
2py
B.u(x) = B(x) — 5~ M(x) (28]

In the time-varying case, these expressions are exact
at the center of the symmeterized molecule and ap-
proximate the fields close to the center.

The most significant conclusion, however, follows
from the fact that the nucleus of the host molecule is
placed, by construction, at the center of the symme-
terized distributions. The expressions in Eq. [28]
therefore give the average fields experienced by the
nucleus as a result of the surrounding molecules ex-
actly, even if the fields are not static.

Alternative Expression for the
External Field

An alternative form for the expression for external
fields can be obtained by recognizing that our assump-
tions allow us to rewrite Eq. [18] as

P =Np,, M=Nm, [29]

where N is the number density of molecules and p,,
and m are the mean molecular electric and magnetic
dipole moments in the sample. Then,

2wN
- m

S m, (30

E —E-I-N_ B..=B
ext 360 P> ext —

In the case of diamagnetic and paramagnetic mol-
ecules, which are of considerable interest in NMR
experiments, the external fields experienced by a mol-
ecule determine its microscopic (molecular) electric
and magnetic dipole moments. The mean moments of
all the molecules in the sample are linearly related to
the external field by the expressions

_ _ Ym
Pn = ’YcEOEexn m, = — Bext [31]
Ko

where vy, is the average molecular polarizability and
v,. 1s the average molecular magnetizability; these
quantities are provided by the analysis of molecular
dynamics and have the dimensions of volume. (Note
that these v,, y,, parameters are not the magnetogyric
ratio that is usually denoted by this symbol in NMR
theory.) Substituting for the external fields from Eq.
[30] it is seen that the moments are aligned with the
macroscopic field:

EO’YEE _ (Yn1/M0)B

Pr= 1 N3 ™ oy s 32

The polarization and magnetization are therefore
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P=Np, =7 vz M=M= N3
[33]
and
E

[34]

Eext = 1 _ 'YgN/S ’ Bext = 1 + 2,YmN/3

Susceptibilities

When calculating macroscopic fields, it is more usual
to introduce the susceptibilities x, and Y,,, which are
defined by

_ YN _ N
Xem L=y NB" X7 1 —y,N3

so that

D=€¢E, H=—B [35]
W

where € = €y(1 + x,) and b = po(l + x,,) are the
permittivity and permeability of the material, respec-
tively.

Thus, in terms of the susceptibilities, P and M are
given by

Xom

(1+X) o [36]

P=x.¢E M=

hence,

B =(1+%XE B, - 1—%LB [37]
oxt 3 ’ ot 3 (1 + Xlll)

The external fields can now be evaluated directly
from the macroscopic fields using Eq. [37], where the
macroscopic fields are found by solving the Maxwell
equations, Eq. [24], together with the constitutive
relations, Eq. [35].

Review

So far, we have developed the theory of external fields
for both the electric and magnetic fields for several
reasons. First, it is based on a model of microscopic
charges for which the electric and magnetic fields are
strongly coupled because of the rapid motion of the
submolecular particles. Second, the macroscopic
fields remain coupled, but much more weakly because

MAGNETIC SUSCEPTIBILITY 85

the macroscopic motions are much slower than the
microscopic ones and produce changes in the macro-
scopic properties only over much longer time scales.
Third, the external fields can be analyzed systemati-
cally when both the magnetic and electric fields are
varying slowly, the analysis leading to the remarkable
generalization of the sphere of Lorentz construct to
cases in which time variations are present. The results
of the construction may therefore be used when an
electric field is imposed on a sample in an NMR
experiment or when the applied magnetic field fluc-
tuates.

We can therefore safely adopt the simplification
made in most NMR applications that the system is in
a macroscopically stationary state because any real
deviations from this state will not affect the manner in
which the external fields can be estimated. The ad-
vantage of the stationary assumption is that the equa-
tions governing the electric and magnetic fields are
then decoupled, allowing one to be treated indepen-
dently of the other. Therefore, in the examples that
follow to illustrate the theory attention is restricted to
the static magnetic field. Then, the calculation of the
external magnetic field from Eq. [37] requires a
knowledge of the expression for the macroscopic field
B. This is found via the macroscopic Maxwell equa-
tions; the time-independent forms are

V-B=0, VXH=0,
B = pH = po(1 + )H = po(H + M)

Their formal solution is treated in standard texts such
as (7, 8) and an outline in the context of NMR is given
elsewhere (e.g., 16) and in the appendix.

HOST FIELD

General

The macroscopic fields, and the fields from the
charged particles, are calculated using the approxima-
tion in Egs. [10] and [11], which is appropriate for
points at a large distance from the system of charges
that constitute each molecule. When calculating the
fields experienced by the nucleus of a host molecule,
there are contributions—the host fields—from the
system of charges constituting that molecule. This
situation requires us to evaluate the fields at an inter-
nal point of the host molecule. Due to the proximity of
the electrical and magnetic field sources, these fields
will in general be more intense than those generated
by the other, distant, molecules. Their effect on the
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NMR resonance frequency of a nucleus, called the
chemical shift, is likely to be greater than that of the
external field, which produces the bulk susceptibility
shift. The host fields must therefore be determined
with care for each atomic nucleus in each molecular
species and it requires the full panoply of quantum
mechanics. This has been applied by many authors
from Ramsey (/7) onward and is beyond the intended
scope of this article. However, the effect may usefully
be illustrated by a simple model.

Simple Model

In the absence of an applied field, there will be no
preferred direction for a molecule and so the averaged
sources will have a distribution with spherical sym-
metry about any fixed reference point, the nucleus in
the host molecule, for example. Suppose first that the
nucleus is at the center of a host atom so we assume
that the positive charge resides at the center. The
negative charge due to the averaged electron cloud
will appear as a spherical shell around it. In the
presence of an external field, the first-order perturba-
tion of the spherical shell will be a dipole term with its
axis in the direction of the applied field. Take the
preferred direction to be that of the unit vector k. We
can take the nucleus as the origin of the coordinate
system without loss of generality. Then, the mean
charge density due to the electrons about the nucleus
can be written as

X
pu(x, 1) = po(r, 1) — p,(r, Dk -

where r = x| is the distance of the point x from the
center. The charge density is here a negative quantity
and the center of the distribution is shifted in the
negative k direction due to the Lorentz force due to
the local applied field. The mean current density can
likewise be written

x. 1) = r)(k x )

Note that the spherically symmetrical current term
vanishes and the first-order term is a circular current
system about the axis k. When j, is positive this
represents a paramagnetic effect; when negative, it
represents a diamagnetic effect.

The quasisteady microscopic host fields at the or-
igin are found by substituting these forms into the
appropriate terms of Eqs. [6] and [7] and performing
the integrations, giving

1
eln) = <3€OJA pi(r, t)d”>k,
blr) = (‘3’“ f i t)dr>k

We can also evaluate the average electric and mag-
netic dipole moment of these distributions from

41
pt) = _(3J p,(r, t)r3dr>k,
41
Iﬁk(t) = (3Jj|(r, t)r’gd")k

The electric dipole is always oriented antiparallel to
the applied field and the magnetic dipole is parallel to
the applied field for paramagnetic molecules and an-
tiparallel for diamagnetic molecules. Hence,

fjldr
Mo

b(7) = o r m,(7)
f}ﬁjldr

The internal electric field is always antiparallel to the
electric dipole moment and the internal magnetic field
is always parallel to the magnetic dipole moment. The
exact relationship between the dipole moments and
the internal field, of course, depends on the electronic
structure of the molecule. The result can be written in
terms of the effective volumes of the molecule V, and

V,.» defined by
f rjdr

f r3p1dr
fpldr jjldr

[38]

as



Mo

B0, b(t) = m () [39]

e =-— &V,

Similar expressions will therefore arise in the more
complicated cases that occur when the host atom is
chemically bound to a molecule. Averaging all pos-
sible orientations of the molecule will produce charge
and current distributions with spherical symmetry
about the reference point, which is the nucleus of the
host atom. The external field will produce first-order
perturbations of these distributions that give rise to net
dipole moments and to the related host field at the
nucleus (center) of the host molecule.

DISCUSSION

Sphere of Lorentz Argument

We have shown above that the sphere of Lorentz
construct does indeed provide a means of estimating
the fields, both electrical and magnetic, at points
within a molecule embedded in a macroscopic sample
composed of other molecules. Our derivation does not
depend on an ad hoc “hard” spherical construction but
it can be viewed as sort of “soft” spherical one. The
analysis demands that we do not attempt to estimate
the fields experienced by an individual molecule, but
we estimate the average fields experienced by a large
collection of similar molecules so that both the dy-
namic properties of the molecule and the locations of
the neighboring molecules are randomized. Under
these circumstances, the microscopic electromagnetic
sources in the close vicinity of the molecule display
spherical symmetry, as do the macroscopic ones. It is
the assumption of spherical symmetry that produces
the general results described by Eq. [28], not spheric-
ity. This explains why the radius of the assumed
sphere of Lorentz plays no role in the result; the
properties within a sphere of any radius drawn around
the center of a molecule will be symmetrical and lead
to the same result. Our argument is, however, not
independent of the distance scale so the size of the
averaging sphere is not totally irrelevant. The macro-
scopic properties of the material are required to be
locally uniform, so the size of the macroscopic
smoothing volume must be chosen to ensure this
apparent homogeneity. This volume must be suffi-
ciently large to randomize the contribution of the least
abundant molecular species. Therefore, the smoothing
volume will be least when all the molecules in the
sample are of the same species. For a macroscopic
model to make sense, this volume must be less than
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that of any macroscopic heterogeneities. Such cases
will be illustrated in the examples below.

Chemical Shift

The magnetic field experienced by a nucleus in an
atom in a molecule is dependent upon the local
bonded structure of the atom. This field is the basis of
the experimentally important chemical shift of the
intrinsic resonance frequency away from the value
that pertains to the isolated atom. In what follows is
an explanation of this phenomenon and a model of a
molecular system that provides an estimate of the
order of magnitude of the chemical shift effect rela-
tive to that of the BMS shift.

It is immaterial whether the host atom, in which the
nucleus of interest is located, is chemically bonded
into a larger molecule or not. In either case, the
nucleus will experience, on average, fields that are the
sum of the external fields, Eq. [28], and the host fields,
Eq. [39]. The size of the host fields will, of course,
depend on the molecular environment of the host
atom. Nevertheless, the dipole moments of the atom
or molecule to which it is bonded are linearly related
to the external fields as in Eq. [31] but with the mean
molecular polarizability and magnetizability replaced
by the quantities specific to the type of molecule in
question, k say. Carrying out these substitutions gives
the host fields at the nucleus, Eq. [39]:

’Yc,k ’\/m,k

eln) = — v E.. b()= Vo B

Then, we find the total fields at the nucleus to be

— Xe Ye.k
E,=E, +¢&= (1 +3><1 -V )E

= 2Xm 'Ym,k
By = Be b = (1 B m)(l * v)B

where E and B are the macroscopic fields. These can
be put in a more revealing form by writing vy, , in
terms of the mean polarizability vy, as

’Ye,k Xe
Yk Ty, NOU+ XJ3) 140]
and similarly for the magnetizability. Then,
B (14X (1Y L X gy
¢ 3 Ye NV, (1 + x./3)
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2Xm Yo 1 Xon )
B = (1 T30+ xm>><1 T NV, (L + 3B

[42]

Now, N is the number of molecules per unit volume
so 1/NV is the ratio of the average intermolecular
volume to the volume of the molecule, as defined by
Eq. [38]. In fluids this ratio is, say, of the order of 10,
falling to unity when the molecules are densely
packed. The other factor is the ratio of the specific to
the mean value of vy, or v,,. If there is only a single
species present, this ratio is unity so the chemical shift
due to the host field contribution will be an order of
magnitude greater than the bulk susceptibility shift
due to the external contribution. If the molecules are
diamagnetic then vy,, < 0 in the host field and this
reduces the field experienced by the nucleus; so, the
effect is referred to as diamagnetic shielding. If the
molecule is paramagnetic, y,, > 0 and the nuclear
field is enhanced. When there are several species of
molecules present, the host contribution depends on
the properties of the molecule in question relative to
the average. It will be greatest when the molecule to
which the host atom is bonded is strongly paramag-
netic while the mean is weakly diamagnetic. These
considerations simply emphasize the need to have
accurate estimates of the host field at the site of the
nucleus of the host atom when the molecule is aver-
aged over all orientations. In this situation the re-
quired analysis of chemical shifts is sophisticated and
computer intensive (e.g., 9).

ILLUSTRATIVE EXAMPLE

In the following we illustrate the theory by evaluating
the external field and the susceptibility shift in a
suspension of RBCs following the procedure outlined
by Wolber et al. (18).

Susceptibility-Induced Shifts

These authors begin their analysis with a system in
which a uniform strong magnetic field By, is created in
a material of susceptibility x,. There is then uniform
magnetization in the material given by Eq. [36]. If a
sample with susceptibility x, is now introduced then
the new field B will be the sum of the original field
and the field B’ due to the change in magnetization

_ x;B _ XoBo
o1 + %) mo(l + Xo)

’

[43]

inside the sample and

_ Xo(B — By)
Ro(1 + Xo)

’

[44]

outside the sample. But, B’ also satisfies the following
equation (see appendix, Eq. [75]) for the case of a
single surface S:

B = o — f f (AM'(x) mx = %)

417 Ix —x'

N

[45]

where S is the surface of the sample. As noted in the
appendix, these equations do not provide a full gen-
eral description of the field. For a full solution, it is
usual to solve the Laplace equation, Eq. [77], with
appropriate boundary conditions, for the scalar poten-
tial (e.g., 16). However, Eq. [45] does provide a
useful approximate form of the expression when the
magnetic susceptibilities are small. In practice, x is of
the order of —10 X 107 cgs-emu (—40m X 10~ '° SI
units) so that |B’|/|B| is also of order —10 X 107"
Hence, to first order in small quantities we can write

M,Q(XS_XO)BO [46]
Mo

inside the sample and M" = 0 outside. Again, to first
order,

B’ = (X, — Xo)Byo

+ (X\ - XO) J‘f (BO : n)(X - X’) dzxr [47]

47 x —x'P

N

The new macroscopic field inside the sample is thus,
approximately,

B(x) =B, + (X, = Xo)
1 By'n)(x—x) |
X B0+4Trff|x_x,|3d2x [48]

N

The integral over the surface of the sample is a func-
tion solely of the geometry of the surface. In general,
it is a function of the position x of the point within the
sample. For ellipsoidal surfaces (including the special



case of a spherical surface), however, the result is
independent of x; in other words, the field within the
sample is uniform. For a sphere,

IJJM(X_X,)de’=—BO [49]

4 Ix —x']’ 3

N

so the macroscopic field is

2
B~ (1 t3 X — Xo))Bo [50]

In general, we may write

= ” B0 e = @, - 0By 51

47 Ix — x|

N

where 9, is the geometric demagnetizing factor that
is described by (/8) among others; and, for a sphere
%, = 2/3. For an infinite cylinder aligned at right
angles to the field, @, = 1/2. Of course, there is no
surface effect for a cylinder aligned parallel to the
field and &, = 1. A table of such factors is provided by
Chu et al. (5). The geometric factor is the same at all
points within these objects and in all objects with ellip-
soidal surfaces (/6); the field is therefore uniform within
them. For other objects, the geometric factor will be a
function of position and the field will not be uniform. In
either case, we can write the macroscopic field as

and the external field as

B —(1 X )B
e\ 3(1+ x)

2
~By + (X, — X0)9,By — 3 X:Bo [53]

to first order in the susceptibilities. This expression
describes the external field in absolute terms, i.e., it is
the field experienced at a point surrounded by a local
vacuum in the sample. The expression agrees with (5)
but it agrees with Eq. [1] in (/8) only if the original
material is taken to be a vacuum, i.e., x, = O.

The difference arises from the focus of the latter
authors on the frequency shift observed in NMR exper-
iments. This shift is governed by the change in the
external field as a result of introducing the sample.
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Before the introduction the macroscopic field is B, so
the external field at the site of a nucleus is approximately

B! =(1—2 )B
ext 3XO 0

while the external field B2, at the site after the intro-

duction of the sample is given by Eq. [53]. The
change is therefore

2
ABexl = (gbx - 3)(Xx - XO)BO
which is Eq. [1] in (8).

Sample Heterogeneity

Wolber et al. (/8) also consider the case in which the
sample is heterogeneous, consisting of plasma and
RBC. If the magnetic field in the sample is averaged
over a volume large enough to contain many erythro-
cytes, the system can be considered to be uniform
with a volume-average susceptibility given by

VeXe T ViXp
= 4
="y v [54]
where the subscripts e and p denote erythrocyte and
plasma, respectively, and V, is the average volume of
an erythrocyte and V), the average volume of plasma
surrounding each erythrocyte. The macroscopic field
that determines the external field at a nucleus can then
be calculated as outlined above from the averages
bulk properties. If sample size is not large compared
to the size of the heterogeneities in the system, ac-
count has to be taken of the detailed distribution of
erythrocytes in the neighborhood of the nucleus in
question. To do this, these authors conceptually sur-
round the site by a sphere, 3, that is comparable in
size to the averaging volume (see Fig. 7). The field
source outside this sphere contributes at the center an
approximate field, called the “far” field, that is de-
scribed by

B’ z(Xb_XO) JJ (Bo'n)(X;X') g
[x = x|

41

N

L %= x0) f f (B, - n)(x’|—3x’> P [55]

the normal being directed out of the sample in the first
integral and into the sphere in the second. As a result,
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5

Figure 7 Representation of a heterogeneous system of
RBCs as randomly dispersed spheroids; in reality, mamma-
lian RBCs are biconcave discs. The sample is bounded by
the surface S. In the second panel, the system is treated as
continuous outside the virtual sphere 3 of Wolber et al.
(18). Within ¥, the individual erythrocytes have surfaces S;.
In the third panel, equivalent to the second, the system is
treated as continuous outside the selected RBC with surface S,,.

the two terms will almost cancel one another if the
averaging volume is comparable to the sample vol-
ume; however, the purpose of the construction is to
place as much as possible of the sample outside the
surface % so that it can be treated in an average
manner. Using the results from above, these expres-
sions yield

1
B’ = (x, — X0)(@, — DBy + (X, — Xo) gBo

2
=Xy — Xo)(gbs - 3>B0 [56]

This is the generalization of Eq. [3] of (/8) for x, #
0. To this must be added the “near” field contributed
by sources within the sphere; this field is estimated by
taking an alternative macroscopic average over a vol-
ume smaller than that of an erythrocyte but larger than
that of any internal structures. This construction en-
sures that the susceptibilities X, and x,, are uniform
within the erythrocyte and the surrounding plasma,
respectively. The macroscopic system is thus divided
into a hierarchy of macroscopic systems, each of
which contribute to the macroscopic field at the site of
a nucleus. Then, the changes of magnetization within
the spherical volume, which are given by

. — Xo)B - Xo)B
(x Xo) 0’ M;,z(Xp Xo)Bo [57]

MU ~
‘ Ko Ko
produce an approximate near macroscopic field at a
point in the plasma of

B, = (X, — Xo)Bo

LX) > f j Bo-n)x =x) , , 58]

47 |x _ x’|3

i

Si

d*x'

4m Ix — x|

1 JJ (Xs = Xo) By *m)(x — x")

N
(591

Here, the sum is taken of the integrals over the sur-
faces §; of all the erythrocytes within the sphere with
the normal at the surface n; pointing into the eryth-
rocyte; and, the final term is the integral over the
surface of the surrounding sphere 3 with outwardly
directed normal. The susceptibility xs at points on
this sphere will vary according to whether the point
lies in plasma or erythrocyte. However, the sphere
will, by construction, intersect a large number of
erythrocytes and so the integral may be approximated
by replacing xs by the average bulk susceptibility x,,
on the surface. In this approximation

dx'

417

b

4 x —x'P

1 f J (xz — Xo)(Bo m)(x — X')

1
~ =(X» — Xo) 3 B, [60]

which, of course, cancels the contribution of the sur-
face of the sphere to the field B'.

The near contribution to the macroscopic field in
an RBC is, in the same approximation, given by

B? =~ (x. — x0)Byo

+ (Xe - Xp) JJ (BO : nO)(X - X,) C{Zx, [61]

47 [x — x|

So

(Xe - X]I) . (BO : ni)(x - X’) ,
+ i > JJ' —’|3 d’x

i=1 |X —X
Si

[62]

dx’

4w Ix — x|

L J j (X = X0 (Bo*m)(x — x)
s

[63]

where S, is the surface of the selected RBC and the

sum is taken over all the others (n in total) in the

sphere, the normal now pointing out of each RBC.
The first integral is evaluated at an internal point and



can be treated as before in Eq. [51], replacing & ; by
9%,, which is the geometric factor appropriate to the
shape of the RBC. The integral over the sphere % is
treated as before but it appears to have been omitted
by (I8). After making this correction, the total mac-
roscopic field at a point in an RBC is

B~(1+ (X —X)+ & —x)@,— 1)
+(Xe - Xp)(@e - 1))BO + (Xe - Xp)Bm [64]

where

R B m)(x—x')
B —%2”& [65]

i=1 x —x'f
8;

To first order in the susceptibilities, the external field
experienced by a nucleus in an RBC will be

Bext = (1 + (Xe - XO) + (Xb - XO)(gbs - 1)

2
+ X —X)@.— 1) — 3 XF)BO + (x. — x,)B"” [66]

This expression corrects and generalizes Eq. [5] in
(18). These authors introduced a further term to de-
scribe the contribution of the particles within a sphere
of Lorentz drawn about a nucleus within the RBC;
then, they argued that it vanished “because of sym-
metry.” We have shown above that the contribution is
in fact included in the estimate of the external field if
the particles are randomized within the “local” mac-
roscopic volume that surrounds the nucleus, so the
final result is the same.

Wolber et al. (I/8) then claim that B” vanishes due
to symmetry. However, in general, there will be no
symmetry in the distribution of the other RBCs about
the selected cell. An exact evaluation is then impos-
sible. We argue that this contribution can be estimated
only if the experiment samples enough RBCs (either
in volume or time) that the configuration external to
any individual RBC is randomized. Then, the struc-
tured medium can be replaced by a homogeneous
medium with a mean susceptibility given by Eq. [54].
In this case

B? =~ (x. — xo)Byo

" (Xe = X) JJ' (B, - ny)(x — x') Py

417 |x _ x’|3

So
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n (X» = Xo) JJ (B, *n)(x — x') Px

41 Ix — x|}
s

(Xe - Xb)

= (X = X0)Bo + (2. = DB,y

1
- (Xb - Xo) 5 B,
and the external field becomes
Bext =~ <1 + (Xe - XO) + (Xb - XO)(QDA - 1)

2
+ (Xe - Xh)(@e - 1) - g Xe)BO [67]

Of course, this is exactly the same result as that which
would be obtained by ignoring the first spherical
construction and applying Eq. [75] directly to the
surfaces that define the selected erythrocyte and the
sample volume. The selected RBC is, on average,
completely surrounded not by plasma alone but by
plasma containing other RBCs, so the susceptibility in
the surrounding medium is x,,, not x,,. If we set x, =
0, we obtain

Bexl = <1 + Xb(gbs - 1)

1
+ X = xp) (@D, — 1) + 3 xe)Bo [68]

which corrects the result given by (16),

2 2
cht = (1 + Xb(@s - 3) + (Xe - Xp)(@e - 3))B0
[69]

CONCLUSIONS

In conclusion, we can finally consider the validity of
the assumption of spherical symmetry for a molecule
averaged over all its orientations: Exact spherical
symmetry would result if there were no preferred
directions. However, applied electric or magnetic
fields do provide preferred directions and the mole-
cules (especially macromolecules) may be distorted
systematically as a result. These departures from
spherical symmetry will lead to a second-order cor-
rection being required to the estimate of the external
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field. But, the first-order effect estimated above is of
order x ~ 1077, so second-order effects will be of
order x* ~ 10~ '* so they will be negligible. The
expressions in Eq. [28] therefore provide accurate
estimates of the averaged external fields. Hence, we
have shown that the mathematical constructs pre-
sented above are well defined and allow the bulk
susceptibility shift to be calculated on a more rigorous
basis than hitherto.

In practice, an NMR experiment samples a large
number of nuclei in a macroscopic volume over a
macroscopic time interval, and each will experience a
fluctuating environment as the neighboring molecules
move around. As a result, the molecules will not
experience a single average field but a spread of field
strengths. This fluctuation will appear as a broadening
of the resonance line about the mean value that can be
calculated as described here. In principle, the size of
the fluctuations can be estimated from the width at
half height of the NMR spectral line if the geometric
factors are known accurately (see previous accompa-
nying article).

APPENDIX

The steady-state solution of the Maxwell equations
that describes the magnetic field in a sample is given
by the first term in Eq. [22]. Recalling the fact that the
integration is performed over all space, this expres-
sion can be transformed into two alternative forms by
integrating by parts and assuming that the surface
integral vanishes sufficiently far from the sample nu-
clei. These expressions are

) o M) X (x— %)
B—VXJJJ%MdX

0 M) - -
:MM<X>_V(; [] Wd)

[70]

These two forms are equivalent for arbitrary volumes.
The first form displays the construction of the field
from the vector potential

o M(X') X (x = X)
A(X) = JJJ‘%MdX

because the Maxwell equation V + B = 0 guarantees
that we can write B = V X A.
The second can be rewritten as

iy —
4m [x — x'|

[71]

which exhibits the construction from the scalar po-

tential
M(x')- (x —x') .,
Pu = j f j “amk—xT ¥

because the Maxwell equation V X H = 0 guarantees
that we can write H = —V®,,.

If M is everywhere differentiable and the integral
is taken over all space, the scalar potential can be
rewritten as

Ve M
- _ X 3.,/
D, ”f p b L [72]

which is the solution over all space of the Poisson
equation

Vi, =V-M [73]

The Poisson equation is just a form of the wave
equations [4] and [5] when there is no time depen-
dence. The solutions can therefore be obtained from
the solutions of the wave equation, Eqgs. [6] and [7],
by performing the trivial integration over time when
the integrand has no time dependence. This produces
Eq. [72].

If space contains media with discontinuous distri-
butions of M, the field may be determined from either
of the two equivalent forms of Eq. [70], but the
volume integrals need to be evaluated with some care.

Suppose space is divided into n regions with vol-
umes V; within which M;(x) is differentiable. Let V;
and V; have a common surface §;;, which may have
zero extent (Fig. 8). Then, we can transform the
vector potential to obtain a contribution from both
within each volume V; and from each surface S

! 1 M,(x'—) X n;;
A= iq(':' E J’f( ) jdzx'

x —x'|



Figure 8 Heterogeneous system with volumes V; embed-
ded in a volume V,. The surfaces separating volumes V, and
V, are denoted §;; and the normal vector n,; at points of the
surface S, is dlrected from V; to V,, where j >

Here, the magnetization M,(x’ —) in the surface inte-
gral is evaluated just inside the volume V,, the primed
sum excludes the term with i = j, and n; is the
outward normal from V; to V; on S ;.

If the magnetization is uniform within V;, V X
M, = 0 within V, and the volume integral vanishes. If
the medium is uniform so x; is constant within V,,
then V. X M, = x,;V X H within V,. In the magne-
tostatic case, the volume integral will again vanish.

If space is composed only of such regions

EEE”M(")?(“”W

Ix — x|

Sij

and the terms can be paired because S;; = S;; and
n; = —n; to give

Z Z ”(M(x )| M(x+))><n,jdz

x —x/|
i=1j=i+1

Sij

where now M;(x" +) is now evaluated just outside the
volume V,. The quantity AM,(x") = M,(x'+) —
M, (x’—) is the jump in magnetization as the boundary
S;; 1s crossed from V; to V; (in the direction of n;;) at
the point x’.

The field follows immediately:
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M n n

0

2
i=1 j=i+1

”(AM,,(X')Xn)x(x—x)
X

x —x'f

&’x' [74]

Sij

Alternatively, we may work from a similar version
of the scalar potential:

=

IX—XI

Under the same conditions as before V- M = 0 and
the volume integrals vanish, leaving

:_72 EJJ'(X)FUdQ

Sij
The magnetic field is now given by

B:M()M

nS 3 [[ e g

x —x
i=1j=i+1
Sij

[75]

where M is the appropriate magnetization at the point x.

In this form it is easier to implement the boundary
conditions when the materials are diamagnetic or
paramagnetic. In either case, M - n is the normal
component of the magnetization at the boundary and

0 — x)

AM
Ro(1 + x)(1 + X))

‘n = B(x'):n

ij

because Maxwell’s equations require the normal com-
ponent of B to be continuous across a boundary.
Hence,
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1+ X i=1j=i+1
x—x) BX)n)x-x)
% ff 1+ Xj)(l + Xi) ’X - X,P dx
Sij
[76]

This appears to be an equation that defines B implic-
itly everywhere but it cannot be implemented as such
because it does not define the discontinuous tangential
component of B fields on the surfaces S;;. The general
method of solution when V - M = 0 everywhere is to
solve Eq. [73] with vanishing right side:

vV, =0 [77]

This is Laplace’s equation, a version of Poisson’s
equation without sources. Because there are no
sources, the construction in Eq. [72] is not applicable
and the solution of Laplace’s equation must be deter-
mined from the conditions imposed on the bound-
aries. The boundary conditions on ®,, at the surfaces
between the different media are fully determined by
the Maxwell equations, namely, that ®,, is continu-
ous across the boundary so that the components of H
parallel to the boundary are continuous and the com-
ponent of B normal to the boundary is continuous, i.e.,
(1 + x)(m - V®,,) is continuous.

These prescriptions allow the magnetic field B to
be found exactly in all circumstances. In practice,
however, the smallness of the susceptibilities allows
approximations to be made that greatly simplify the
estimation of the field. This is demonstrated in the
illustrative example in the text above.
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