

Graphing Sine and Cosine Functions

TO GRAPH SINE AND COSINE

- If necessary, rearrange the equation into the form: $y = A \sin \omega \left(x \frac{\phi}{\omega} \right) + B$
- Identify the amplitude.
- Identify the phase shift (if one exists).
- Identify the vertical shift (if one exists).
- Calculate the period.
- Find the key points (maximum and minimum values, intercepts) using the following procedure.
 - Divide the period into 4 equal parts.
 - Add the result to the starting point (point of phase shift or 0 if no phase shift exists) and for the next 4 points thereafter. (see example on page 2)
- Connect the points with a smooth curve.

EXAMPLE PROBLEM

 $y = 2\sin(3x + \pi) + 1$

IDENTIFY VALUES

Rearrange the equation to:

$$y = 2\sin 3(x + \frac{\pi}{3}) + 1$$

Amplitude = 2 Phase Shift = $\pi/3$ units to the left Vertical Shift = 1 unit up Period = $\frac{2\pi}{3}$

FIND KEY POINTS

Divide the period into 4 equal parts.

$$\frac{\frac{2\pi}{3}}{4} = \frac{2\pi}{3} \times \frac{1}{4} = \frac{2\pi}{12} = \frac{\pi}{6}$$

The starting point is $-\frac{\pi}{3}$; write as $-\frac{2\pi}{6}$ to

make calculations easier.

Add $\pi/6$ to the starting point to find the second point.

$$-\frac{2\pi}{6} + \frac{\pi}{6} = -\frac{\pi}{6}$$

Continue adding $\pi/6$ to find the remaining points.

$$-\frac{\pi}{6} + \frac{\pi}{6} = 0$$
$$0 + \frac{\pi}{6} = \frac{\pi}{6}$$
$$\frac{\pi}{6} + \frac{\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3}$$

Compliments of the Academic Learning Centers at Union County College. Visit our website at <u>www.ucc.edu/academics/alc</u> for more information. green