ALC
 Graphing Sine and Cosine Functions

TO GRAPH SINE AND COSINE

- If necessary, rearrange the equation into the form: $y=A \sin \omega\left(x-\frac{\phi}{\omega}\right)+B$
- Identify the amplitude.
- Identify the phase shift (if one exists).
- Identify the vertical shift (if one exists).
- Calculate the period.
- Find the key points (maximum and minimum values, intercepts) using the following procedure.
o Divide the period into 4 equal parts.
0 Add the result to the starting point (point of phase shift or 0 if no phase shift exists) and for the next 4 points thereafter. (see example on page 2)
- Connect the points with a smooth curve.

Graphing Sine and Cosine Functions

EXAMPLE PROBLEM

$$
y=2 \sin (3 x+\pi)+1
$$

IDENTIFY VALUES

Rearrange the equation to:

$$
\mathrm{y}=2 \sin 3\left(\mathrm{x}+\frac{\pi}{3}\right)+1
$$

Amplitude $=2$
Phase Shift $=\pi / 3$ units to the left
Vertical Shift = 1unit up
Period $=\frac{2 \pi}{3}$

FIND KEY POINTS

Divide the period into 4 equal parts.

$$
\frac{2 \pi / 3}{4}=\frac{2 \pi}{3} \times \frac{1}{4}=\frac{2 \pi}{12}=\frac{\pi}{6}
$$

The starting point is $-\frac{\pi}{3}$; write as $-\frac{2 \pi}{6}$ to make calculations easier.
Add $\pi / 6$ to the starting point to find the second point.
$-\frac{2 \pi}{6}+\frac{\pi}{6}=-\frac{\pi}{6}$
Continue adding $\pi / 6$ to find the remaining points.
$-\frac{\pi}{6}+\frac{\pi}{6}=0$
$0+\frac{\pi}{6}=\frac{\pi}{6}$
$\frac{\pi}{6}+\frac{\pi}{6}=\frac{2 \pi}{6}=\frac{\pi}{3}$

