Trigonometric Identities
Links:
previous
home
next
Nicest Idea
Prove that :
{[cos(-x)]/[sec(-x) + tan(-x)]} = 1 + sin x
Proofing :
Consider the left hand side only :
cos(-x)/[sec(-x)+tan(-x)]=
=cos(x)/[sec(x)-tan(x)]=
=cos(x)/[1/cos(x)-sin(x)/cos(x)]=
=cos(x)/[{1-sin(x)}/cos(x)]=
=cos(x)*cos(x)/[1-sin(x)]=
=cos^2(x)/[1-sin(x)]=
=[1-sin^2(x)]/[1-sin(x)]=
=[1-sin(x)]*[1+sin(x)]/[1-sin(x)]=
=1+sin(x) to be proved
since this result equals to the right hand side of the problem.