![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Orthogonal Hyperbola | ||||||||||||||
![]() |
||||||||||||||
![]() |
||||||||||||||
Find the orthogonal hyperbola that passes through points (4,2), (5,6), and (6, -1). Solution : The general equation of orthogonal hyperbola : (x-p)*(y-q)=ab where (p,q) is its asymptotes cross connect. Passes through (4,2) means : (4-p)*(2-q)=a*b [1] Passes through (5,6) means : (5-p)*(6-q)=a*b [2] Passes through (6,-1) means : (6-p)*(-1-q)=a*b [3] from [1] and [2] : (4-p)*(2-q)=(5-p)*(6-q) 8-2p-4q+pq=30-6p-5q+pq 4p+q=22 [4] from [2] and [3] : (5-p)*(6-q)=(6-p)*(-1-q) 30-6p-5q+pq=-6+p-6q+pq 7p-q=36 [5] from [4] and [5] : 4p+q=22 7p-q=36 ------- + 11p=58 p=58/11 [6] q=22-4*58/11 q=(242-232)/11 q=10/11 [7] from [1], [6], and [7] : (4-58/11)*(2-10/11)=a*b (44-58)/11*(22-10)/11=a*b -14*12/121=a*b a*b=-168/121 [8] from [1] to [8] we get the final solution : (x-58/11)*(y-10/11)=-168/121 or (11x-58)*(11y-10)=-168 |
||||||||||||||
My Favorite Links: | ||||||||||||||
home | ||||||||||||||
previous | ||||||||||||||
next | ||||||||||||||
Nicest Idea | ||||||||||||||
|
||||||||||||||