Identities

Level 1

Which of the following is/are identities? 1

(1)
$$(x+1)(x+2) = x^2 + 3x + 2$$

(2)
$$4x^2 - 9 = (2x+3)(2x-3)$$

(3)
$$(x+1)^2 = x^2 + x + 1$$

A

(2) and (3) only D (1) only

E (1), (2) and (3)B (3) only

C (1) and (2) only

If $(A-2)x^2 + (2A+B)x \equiv 0$, find the values of A and B. 2

A = 2, B = 4A

D A = 2, B = -1

A = 2. B = -4B

A = 4, B = 2 \mathbf{E}

A = 2, B = 1 \mathbf{C}

3 If
$$x^2 + px + 7 \equiv (x+q)^2 - 2$$
, find the values of p and q.

A
$$p = 3, q = 6$$

B
$$p=3, q=6 \text{ or } p=-3, q=-6$$

C
$$p = 6, q = 3 \text{ or } p = -6, q = -3$$

D
$$p = 6$$
, $q = -3$ or $p = -6$, $q = 3$

E
$$p=3, q=-6 \text{ or } p=3, q=-3$$

If $A(x-2)^2 - B(x-3)^2 \equiv x^2 - 6$, find the values of A and B.

A = 3, B = 2A

A = 2, B = -3D

A = 2, B = 3B

A = -3, B = 2 \mathbf{E}

A = 3, B = -2 \mathbf{C}

If $(x-a)(x+2) \equiv x^2 + bx - 6$, find the values of a and b. 5

a = -3, b = -1A

a = 3, b = -1D

a = -3, b = 5B

a = -1, b = 3 \mathbf{E}

a = 3, b = 1 \mathbf{C}

6 If
$$m(x^2-1)-n(x^2-x)+p(x^2+x) \equiv 1$$
, find m.

2

B 1 0

 \mathbf{E} -2

Level 2

7 If
$$(x+A)(x+B)^2 \equiv x^3 + 5x^2 + 8x + 4$$
, $B =$

- **B** 2
- **D** 4
- **E** 5

8 If
$$A(x^2-2x)+B(1-3x^2)+C(x^2+x+) \equiv x^2-x-1$$
, $A=$

- **A** $\frac{9}{21}$ **B** $\frac{11}{21}$ **C** $\frac{11}{25}$ **D** $\frac{9}{26}$ **E** $\frac{11}{27}$

9 If
$$ax^2 + 3x + 4 = (2x - 1)(bx + 2) + c$$
, find the values of a, b and c.

- a = 2, b = 1, c = 6
- **D** a = 14, b = 7, c = 2
- a = 2, b = 1, c = 2
- **E** a = 4, b = 2, c = 6
- a = 2, b = 7, c = 6

[10] If
$$\frac{x^3 - 2x^2 + 1}{x - 2} \equiv Q(x) + \frac{R}{x - 2}$$
, where $Q(x)$ is a quadratic polynomial and R is a constant, find the value of R .

- A 3 B 1
- **C** 1
- **D** 2
- **E** 5
- For what value of k does the equation in x: $(x-2)(x-k) = x^2$ become an identity? 11
 - 0 A

- **E** No such value of k exists.

 \mathbf{C}

- If $\frac{1}{x^2 x 2} \equiv \frac{A}{x + 1} + \frac{B}{x 2}$, find the values of A and B.
 - **A** $A = \frac{1}{2}, B = -\frac{1}{2}$

B $A = -\frac{1}{2}, B = \frac{1}{2}$

 $\mathbf{E} \qquad A = \frac{2}{2}, \ B = \frac{1}{2}$

A = -1, B = 1 \mathbf{C}