Maximum/Minimum Value of a Quadratic Function

Level 1

2

3

- The minimum value of $y = (x-2)^2 + 1$ occurs at x =1
- B -1 C 0
- **D** 1
- E 2

- The maximum value of $y = 3 \frac{(x-1)^2}{2}$ is
 - 3

- $\mathbf{B} \quad \frac{5}{2} \qquad \qquad \mathbf{C} \quad 2 \qquad \qquad \mathbf{P} \quad \mathbf{1}$
- The function $f(x) = (ax 1)^2 + b$ has a minimum value of -1 at x = 2. Find the values of a and b.
 - a = -2, b = -1A

D $a = \frac{1}{2}, b = -1$

B a = -1, b = -2

E $a = \frac{1}{2}, b = -2$

- C $a = -1, b = \frac{1}{2}$
- If $y = -2x^2 + x 3$, the maximum value of y is [4]

- A $\frac{23}{8}$ B $-\frac{47}{16}$ C $-\frac{49}{16}$ D $-\frac{23}{8}$ E $-\frac{25}{8}$
- The function f(x) = (x-1)(x-2) attains its minimum value at x =[5]
 - 2 A
- **B** $\frac{3}{2}$ **C** 1 **D** 0
- $\mathbf{E} = -\frac{1}{2}$
- The minimum value of $y = x^2 + ax + b$ occurs at x = -2. a =**[6]**

A

D

B -1 \mathbf{E} Cannot be determined.

 \mathbf{C} 1

Level 2

- Given the function $f(x) = ax^2 + bx$. If f(-1) = -3 and the maximum value of [7] f(x) is 1, find the values of a and b.
 - a = -9, b = -6A
 - a = -1, b = -6B
 - a = -1, b = 2 \mathbf{C}
 - a = -1, b = -6 or a = -9, b = 2
 - a = -1, b = 2 or a = -9, b = -6 \mathbf{E}
- The maximum/minimum value of the function $f(x) = \frac{1}{x^2 2x + 2}$ is [8]
 - -1 (maximum) A

1 (minimum) D

-1 (minimum) B

E 2 (minimum)

- 1 (maximum) \mathbf{C}
- When $y = (x^2 1)(x^2 \frac{1}{2})$ reaches its minimum value, the value(s) of x is/are [9]
 - A 0

 $\mathbf{D} \qquad \pm \frac{5}{2}$

В

 $\mathbf{E} \qquad 0 \text{ or } \pm \sqrt{\frac{5}{2}} \quad \blacksquare$

- $\pm\sqrt{\frac{5}{2}}$ C
- Find the maximum/minimum value of $y = 2 \frac{4}{r^2 4r + 8}$. [10]
 - -2 (minimum) A

1 (maximum) D

1 (minimum) B

-2 (minimum) \mathbf{E}

2 (maximum) \mathbf{C}

- The minimum value of $y = x^2 + ax + b$ is $a^2 \cdot b =$ [11]
 - **A** $-\frac{a^4}{4}$ **B** $-\frac{a}{2}$ **C** a^2 **D** $\frac{3a^2}{4}$ **E** $\frac{5a^2}{4}$

- The difference between two numbers is 6. Find their num product. [12]
- **B** -6 **C** -3

A rectangle is inscribed in an equilateral triangle of side 2a, as shown in the figure. Find the maximum area of the rectangle.

[13]

B
$$\frac{a}{4}$$
 C $\frac{\sqrt{3}a^3}{4}$

$$\mathbf{D} \qquad \frac{\sqrt{3}a}{4}$$

$$\mathbf{E} \qquad \frac{\sqrt{3}a^2}{8}$$

[14] In the figure, A and B are two variable points on the x-axis and y-axis respectively.
Let
$$AB = 10$$
. Find the maximum area of $\triangle OAB$.

B

[15] The minimum value of
$$y = (a-x)^2 + (b-x)^2$$
 occipat $x =$

A a B b C $\frac{a+b}{2}$ D $a+b$ E

$$\mathbf{A}$$
 a