Maximum/Minimum Value

 of a Quadratic Function
Level 1

1 The minimum value of $y=(x-2)^{2}+1$ occurs at $x=$
A $\quad-2$
B -1
C 0
D 1
E 2

The maximum value of $y=3-\frac{(x-1)^{2}}{2}$ is

A 3
B $\frac{5}{2}$
C 2
D 1
E $\frac{1}{2}$

The function $f(x)=(a x-1)^{2}+b$ has a minimum value of -1 at $x=2$. Find the values of a and b.
A $\quad a=-2, b=-1$
D $\quad a=\frac{1}{2}, b=-1$
В $\quad a=-1, b=-2$
$\mathrm{E} \quad a=\frac{1}{2}, b=-2$
C $\quad a=-1, b=\frac{1}{2}$
[4]
If $y=-2 x^{2}+x-3$, the maximum value of y is
A $\frac{23}{8}$
B $-\frac{47}{16}$
C $-\frac{49}{16}$
D $-\frac{23}{8}$
E $-\frac{25}{8}$
[5] The function $f(x)=(x-1)(x-2)$ attains its minimum value at $x=$
A 2
В $\frac{3}{2}$
C 1
D 0
E $\quad-\frac{1}{2}$
[6] The minimum value of $y=x^{2}+a x+b$ occurs at $x=-2 . a=$

A	-4
B	-1
C	1

Level 2

[7] Given the function $f(x)=a x^{2}+b x$. If $f(-1)=-3$ and the maximum value of $f(x)$ is 1 , find the values of a and b.
А $\quad a=-9, b=-6$
B $\quad a=-1, b=-6$
C $\quad a=-1, b=2$
D $\quad a=-1, b=-6$ or $a=-9, b=2$
E $\quad a=-1, b=2$ or $a=-9, b=-6$
[8] The maximum/minimum value of the function $f(x)=\frac{1}{x^{2}-2 x+2}$ is
A $\quad-1$ (maximum)

D $\quad 1$ (minimum)
B $\quad-1$ (minimum)
E 2 (minimum)
C $\quad 1$ (maximum)
[9] When $y=\left(x^{2}-1\right)\left(x^{2}-4\right)$ reaches its minimum value, the value(s) of x is/are
A $\quad 0$
D $\pm \frac{5}{2}$
登
B $\sqrt{\frac{5}{2}}$
E $\quad 0$ or $\pm \sqrt{\frac{5}{2}}$
C $\pm \sqrt{\frac{5}{2}}$
[10] Find the maximum/minimum value of $y=2-\frac{4}{x^{2}-4 x+8}$.

A	-2 (minimum)	D	1 (maximum)
B	1 (minimum)	E	-2 (minimum)
C	2 (maximum)		

[11] The minimum value of $y=x^{2}+a x+b$ is $a^{2} \cdot b=$
A $-\frac{a^{4}}{4}$
В $-\frac{a}{2}$
C a^{2}
D $\frac{3 a^{2}}{4}$
E $\frac{5 a^{2}}{4}$
[12] The difference between two numbers is 6 . Find their minimum product.
A $\quad-9$
B -6
C $\quad-3$
D 0
E 3
[13] A rectangle is inscribed in an equilateral triangle of side $2 a$, as shown in the figure. Find the maximum area of the rectangle.

A
A $\frac{a}{2}$
B $\quad \frac{a^{2}}{4}$
C $\quad \frac{\sqrt{3} a^{2}}{2}$

D $\frac{\sqrt{3} a^{2}}{4}$
$\mathrm{E} \quad \frac{\sqrt{3} a^{2}}{8}$
[14] In the figure, A and B are two variable points on the x-axis and y-axis respectively. Let $A B=10$. Find the maximum area of $\triangle O A B$.

A	15	y	[
B	25	4	
C	50	B	
D	100		
E	625		

[15] The minimum value of $y=(a-x)^{2}+(b-x)^{2}$ occurs at $x=$ 厚
A a
B b
C $\frac{a+b}{2}$
D $a+b$
E $\frac{a-b}{2}$

