Linear Programming

Level 1

[1] Which of the following inequalities represented the shaded region?

A	$x+y \geq 1$
B	$x+y>1$
C	$x+y<1$
D	$x-y>1$
E	$x-y \leq 1$

[2] Which of the following inequalities represented the shaded region?
A $\quad x>1, y>-2$
B $\quad x \geq 1, y \geq-2$
C $\quad x>-2, y \leq 1$
D $\quad x \geq-2, y \leq 1$
E $\quad x \geq-2, y<1$

[3] Find the maximum value of $x+y$, where (x, y) is any point in the shaded region (including the boundary).

A	1
B	3
C	5
D	7
E	9

[4] In the figure, (x, y) is a point in the shaded region (including the boundary). Which of the following is/are true?
(1) $x \leq-1$

(2) $y \leq 1$
(3) $x-y \leq 0$

A (1) only
B (3) only
C (1) and (2) only
D (2) and (3) only
E (1), (2) and (3)

[5] Which of the following shaded regions represents the solution of the system $\left\{\begin{array}{l}x+y \leq 2 \\ x-y+1 \leq 0 \\ x \geq 0, y \geq 0\end{array}\right.$

A	I
B	II

C III
D IV
E V

[6] In the figure, (x, y) is a point in the shaded region (including the boundary). The greatest value of $4 x+3 y$ occurs at A $\quad x=0$
B $\quad x=1$
C $\quad x=2$
D $\quad x=3$
E Cannot be determined.

 Which of the following shaded regions represents the solution of $\left\{\begin{array}{l}x \geq 0, y \geq 0 \\ x \leq 2, y \leq 2 \\ x+y \leq 3\end{array}\right.$?

A

D

B

E

C

Level 2

[8] Which of the following systems of inequalities represents the shaded region?
A $\left\{\begin{array}{l}x \geq 0, y \geq 0 \\ x-2 y+4 \leq 0 \\ 2 x+y-4 \leq 0\end{array}\right.$
В $\quad\left\{\begin{array}{l}x \geq 0, y \geq 0 \\ x-2 y+4 \geq 0 \\ 2 x+y-4 \leq 0\end{array}\right.$
C $\left\{\begin{array}{l}x \geq 0, y \geq 0 \\ x-2 y+4 \leq 0 \\ 2 x+y-4 \geq 0\end{array}\right.$

D $\left\{\begin{array}{l}x \geq 0, y \geq 0 \\ x-2 y+4 \geq 0 \\ 2 x+y-4 \geq 0\end{array}\right.$
E $\quad\left\{\begin{array}{l}x \geq 0, y \geq 0 \\ x-2 y-4 \leq 0 \\ 2 x+y-4 \leq 0\end{array}\right.$
[9] How many points $(x, y)(x, y$ being integers) satisfy the inequalities $x+2 y \leq 5$, $3 x+y \leq 5, x \geq 0$ and $y \geq 0$?
A 5
B 6
C 7
D 8
E 9
[10] Find the maximum value of $2 x-y$ if (x, y) is a point in the shaded region (including the boundary), and x, y are integers.

A	2
B	3
C	4
D	5
E	6

[11] (x, y) is a point in the region $P Q R S$ (including the boundary). The least value of $x-2 y$ occurs at

A	P
B	Q
C	R
D	S
E	T

[12] The maximum value of $x+k y$ occurs at P, where (x, y) is a point in the shaded region (including the boundary). Find the range of values of k.
A $\quad \frac{1}{4}<k<4$
B $\quad-4<k<-\frac{1}{4}$
C $\quad \frac{1}{3}<k<3$
D $\quad-3<k<-\frac{1}{3}$
E $\quad-\frac{3}{4}<k<\frac{4}{3}$

[13] A cinema has 200 seats (each person occupies a seat). For a particular show, each adult ticket costs $\$ 100$, each child ticket costs $\$ 50$. To ensure that the total income of the show is not less than $\$ 15000$, which of the following is not a constraint on x (number of adults) and y (number of children)?
A
x is an integer.
D
$2 x+y \geq 300$
B $\quad y \geq 0$
E $\quad x \geq y$
C $\quad x+y \leq 200$
[14] Which of the following systems of inequalities represents the shaded region?
A $\left\{\begin{array}{l}y \leq 2 \\ 3 x-y+8 \geq 0 \\ x+5 y+8 \geq 0 \\ 4 x-y-10 \leq 0\end{array}\right.$

B $\left\{\begin{array}{l}y \leq 2 \\ 3 x-y+8 \leq 0 \\ x+5 y+8 \leq 0 \\ 4 x-y-10 \geq 0\end{array}\right.$
C $\left\{\begin{array}{l}y \leq 2 \\ 3 x-y-10 \leq 0 \\ x+5 y+8 \geq 0 \\ 4 x-y-10 \leq 0\end{array}\right.$

D $\left\{\begin{array}{l}y \leq 2 \\ 3 x-y-10 \leq 0 \\ x+5 y+8 \leq 0 \\ 4 x-y-10 \geq 0\end{array}\right.$
E $\left\{\begin{array}{l}y \leq 2 \\ 3 x-y+8 \geq 0 \\ x+5 y-10 \leq 0 \\ 4 x-y+6 \geq 0\end{array}\right.$
[15] Which of the following inequalities can be taken away from $\left\{\begin{array}{l}x \geq 0, y \geq 0 \\ x+y \leq 4 \\ x \leq y-1 \\ 2 x \geq y-1\end{array}\right.$ so that the solution of the system remains unchanged?
A $\quad x \geq 0$
D $\quad x \leq y-1$
B $\quad x \geq 0, y \geq 0$
E $\quad 2 x \geq y-1$
C $\quad x+y \leq 4$

