Trigonometric Functions

Level 1

1 If $0^{\circ}<\theta<90^{\circ}$ and $3 \sin \theta=2, \theta=$
A 33.7°
B 41.8°
C 48.2°
D 56.3°
E $\quad 60^{\circ}$

2
If $0^{\circ}<\theta<90^{\circ}$ and $2 \tan \theta-5=0, \theta=$
A 21.8°
B 23.6°
C 36°
D 66.4°
E $\quad 68.2^{\circ}$
[3] Which of the following functions shows the given graph?

A	$y=\sin x+1$
B	$y=\sin x+2$
C	$y=2 \sin x$
D	$y=2 \sin x-1$
E	$y=2 \sin x+1$

[4] Which of the following functions shows the given graph?
巨
A $y=\tan x+1$

B $y=\tan x-1$
C $y=-\tan x$
D $y=1-\tan x$
E $y=\tan x$

[5] The figure shows the graph of $y=2 \cos \frac{x}{3}$. The coordinates of P are
A $\quad\left(\frac{\pi}{3},-1\right)$
B $\quad\left(\frac{\pi}{3},-2\right)$
C $\quad(\pi,-2)$
D $\quad(3 \pi,-1)$
E $\quad(3 \pi,-2)$

[6] The maximum value of $\frac{1}{2-\cos \theta}$ is
A -1
B $\frac{1}{3}$
C $\frac{1}{2}$
D 1
E 3
[7] Solve $(\sin \theta-1)(3 \cos \theta-2)=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

A $\quad 90^{\circ}$
B $\quad 48.2^{\circ}, 90^{\circ}, 311.8^{\circ}$
C $\quad 48.2^{\circ}, 90^{\circ}, 131.8^{\circ}$
D $\quad 48.2^{\circ}, 90^{\circ}, 270^{\circ}, 311.8^{\circ}$
E $\quad 41.8^{\circ}, 90^{\circ}, 138.2^{\circ}, 270^{\circ}$
[8] Solve $\tan ^{2} \theta-3 \tan \theta-4=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
A $\quad 45^{\circ}, 225^{\circ}$
B $\quad 135^{\circ}, 315^{\circ}$
C $\quad 76.0^{\circ}, 135^{\circ}, 256.0^{\circ}, 315^{\circ}$
D $\quad 45^{\circ}, 76.0^{\circ}, 225^{\circ}, 256.0^{\circ}$
E $\quad 14.0^{\circ}, 135^{\circ}, 194^{\circ}, 315^{\circ}$

Level 2

[9] Which of the following functions shows the given graph?
A $\quad y=2 \sin x$
B $\quad y=2 \sin (x-10)$
C $\quad y=2 \sin (x+10)$
D $\quad y=2 \cos (x-10)$
E $\quad y=2 \cos (x+10)$

[10] The figure shows the graph of $y=\frac{1}{2} \sin 2 x$. Find the area of the rectangle $O A B C$.
A $\frac{1}{4}$
B
$\frac{1}{4}$
$\frac{1}{2}$
C $\quad \frac{\pi}{4}$
D
$\frac{\pi}{2}$
E

Which of the following shows the graph of $1-2 \cos x$?
A

A
D
B

E

C

둘
[13] The maximum value of $\sin ^{2} \theta+3 \cos ^{2} \theta-2$ is
A 0
B 1
C 2
D 3
E 4
[14] Find the minimum value of $y=\frac{1}{(\sin x-2)^{2}}$.
A $\frac{1}{9}$
B $\frac{1}{3}$
C 1
D 3
E 9
[15] The maximum value of $2 \sin \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}$ is

A $\quad-4$
B -2
C 0
D 2
E 4
[16] If $\frac{\tan \theta}{\cos \theta}=2 \sqrt{3}$ and $0^{\circ} \leq \theta \leq 2 \pi, \theta=$

A $\frac{\pi}{6}$
D $\quad \frac{\pi}{3}$ or $\frac{4 \pi}{3}$
B $\quad \frac{\pi}{3}$
E $\quad \frac{\pi}{3}$ or $\frac{2 \pi}{3}$
C $\quad \frac{\pi}{3}$ or $\frac{5 \pi}{3}$
[17] Solve $\cos ^{2} \theta+\sin \theta+1=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

$\mathrm{A} \quad 90^{\circ}$
D $\quad 30^{\circ}, 150^{\circ}$
B $\quad 270^{\circ}$
$\mathrm{E} \quad 30^{\circ}, 330^{\circ}$

C $\quad 90^{\circ}, 270^{\circ}$
[18] Solve $3 \sin ^{2} \theta-5 \sin \theta \cos \theta+4 \cos ^{2} \theta=1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

A $\quad 45^{\circ}, 135^{\circ}$
В $\quad 33.7^{\circ}, 135^{\circ}, 236.3^{\circ}, 315^{\circ}$
C $\quad 33.7^{\circ}, 45^{\circ}, 135^{\circ}, 213.7^{\circ}$
D $\quad 45^{\circ}, 56.3^{\circ}, 225^{\circ}, 236.3^{\circ}$
E $\quad 45^{\circ}, 56.3^{\circ}, 225^{\circ}, 303.7^{\circ}$
[19] For $0 \leq \theta \leq 2 \pi$, how many roots does the equation $\sin ^{2} \theta-3 \sin \theta+2=0$ have?
A 0
B 1
C 2
D 3
E 4

[20] Find the numbers of points of intersection of the graphs $y=\sin x$ and $y=\cos ^{2} x$ in the interval $0^{\circ} \leq \theta \leq 360^{\circ}$.
A 0
B 1
C 2
D 3
E 4

