UNIT 31:
 Circles

Level 1

[1] The centre of the circle $x^{2}+y^{2}+a x+b y+c=0$ lies on the x-axis. Which of the following must be true?
A $\quad a=0$
B $\quad b=0$
D $\quad a^{2}+b^{2}-c<0$
E $\quad b^{2}-4 a c>0$

C $\quad c=0$
[2] Find the area of the circle $x^{2}+y^{2}-4 x+6 y-3=0$. 㔷
A 4
B 4π
C 8π
D 16π
E 36π
[3] Given the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}-6 x+8=0$. Which of the following may represent the relative positions of the two circles?

A

D

B

E

C

[4] In the figure, the circle touches both axes, $x=4$ and $y=4$ are the tangents in the circles. The equation of the circle is
A

$$
x^{2}+y^{2}-4 x-4 y+4=0
$$

B $\quad x^{2}+y^{2}-4 x-4 y-8=0$
C $\quad x^{2}+y^{2}-4 x-4 y=0$
D $\quad x^{2}+y^{2}+4 x+4 y+4=0$
E $\quad x^{2}+y^{2}-2 x-2 y-4=0$

[5] The figure shows the circle $x^{2}+y^{2}-10 x-6 y+9=0 . A B=$

[6] The number of points of intersection of the line $x-y+2=0$ and the circle $x^{2}+y^{2}-3 y+1=0$ is

A
0
D
3
B $\quad 1$
E
Cannot be determined.
C
2
[7] Which of the following is true about the circle $x^{2}+y^{2}+4 x-8 y=0$?
(1) Its centre is $(-4,8)$.
(2) Its radius is $\sqrt{20}$.
(3) It passes through the origin.
A
(1) only
D
(2) and (3) only
B
(3) only
E
(1), (2) and (3)
C (1) and (2) only
[8] The figure shows the circle $C: x^{2}+y^{2}-6 x-2 y+9=0 . l$ is a tangent to $C \cdot \tan \theta=$ A 0

B $\quad \frac{1}{2}$
C $\quad \frac{3}{4}$
D $\frac{4}{3}$
E $\quad \frac{3}{2}$

Level 2

[9] The line $x+y+k=0$ divides the circle $x^{2}+y^{2}+3 x+4 y=0$ into two equal parts. $k=$

A $\frac{9}{2}$
B $\frac{7}{2}$
C $\frac{5}{2}$
D $\frac{3}{2}$
E $\frac{1}{2}$
[10] Find the coordinates of the centre of the circle $(2 x+1)^{2}+4 y^{2}=3$.
A $(-1,0)$
B $\left(-\frac{1}{2}, 0\right)$
C $\left(0,-\frac{1}{2}\right)$
D $\left(\frac{1}{2}, 0\right)$
E $(1,0)$
[11] In the figure, the equation of the circle is

A

$$
x^{2}+y^{2}-\frac{3}{2} x-\frac{3}{2} y-9=0
$$

B

$$
x^{2}+y^{2}+3 x+3 y-18=0
$$

C $\quad x^{2}+y^{2}-3 x-3 y-18=0$
D $x^{2}+y^{2}-3 x+3 y=0$
E $\quad x^{2}+y^{2}+3 x-3 y=0$

[12] Given the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$. If $f g<0$ and $g^{2}+f^{2}-c>0$, which of the following may be the graph of the circle?

A

B

C

[13] The figure shows the circle $x^{2}+y^{2}-2 x-4 y-4=0$. Find the shaded area.
A $\quad 20.0$
B $\quad 17.2$
$\begin{array}{ll}\text { C } & 16.7\end{array}$
D $\quad 16.2$
E $\quad 13.9$

[14] Find the equation of the circle having $A(-1,2)$ and $B(3,4)$ as the end points of a diameter.
A
$x^{2}+y^{2}-2 x-6 y+5=0$
D $\quad x^{2}+y^{2}-x-3 y-10=0$
B $\quad x^{2}+y^{2}-2 x-6 y-5=0$
E $\quad x^{2}+y^{2}+x+3 y-10=0$
C $\quad x^{2}+y^{2}+2 x+6 y+5=0$
[15] The line $y=m x+c$ is a tangent to the circle $x^{2}+y^{2}=1$. Which of the following must be true?
A $\quad m^{2}+c^{2}=1$
D $\quad c=m+1$
B $\quad m^{2}=c^{2}+1$
$\mathrm{E} \quad c=m-1$
C $\quad m^{2}=c^{2}-1$
[16] The line $y=2 x$ cuts the circle $x^{2}+y^{2}-6 x-4 y-3=0$ at two points A and B. Find the length of $A B$.

A $\frac{16}{5}$
B $\frac{16}{\sqrt{5}}$
C $\frac{14}{5}$
D $\frac{14}{\sqrt{5}}$
E $\frac{3}{5}$
[17] Find the equation(s) of the tangent(s) from the origin to the circle $x^{2}+y^{2}-2 x-6 y+9=0$.

A $y=\frac{4}{3} x$
D $y=\frac{4}{3} x, y=0$
B $y=\frac{3}{4} x$
$\mathrm{E} \quad y=\frac{3}{4} x, x=0$
C $y=\frac{4}{3} x, x=0$
[18] Which of the following must be true about the circles $C_{1}: x^{2}+y^{2}=4$ and $C_{2}: x^{2}+y^{2}+6 x+8 y+16=0$?

A They are concentric.
B They are of the same size.
D They intersect at two points.

B
E They do not intersect.
C They touch each other.
[19] The line $y=m x$ intersects the circle $x^{2}+y^{2}-2 x-2 y-7=0$ at two points A and
B. Find the range of values of m.

A $m<\frac{1}{4}$
B $\quad m>\frac{1}{4}$
D No such values of m exist.
E
All values of m.
C $\quad m>-\frac{1}{8}$
[20] Given the circle $x^{2}+y^{2}-8 x-6 y+21=0$. Find the ratio in which the line segment joining the origin and the centre of the circle is divided by the circle.
A 1:4
B 1:1
C 2:5
D 3:2
E 3:5

