UNIT 4 : **Surds**

Level 1

1
$$\sqrt{125} - \frac{3}{2}\sqrt{5} =$$

A $\frac{5}{2}\sqrt{5}$ $\mathbf{B} = \frac{7}{2}\sqrt{5}$ $\mathbf{C} = \frac{9}{2}\sqrt{5}$ $\mathbf{D} = 22\sqrt{5}$ $\mathbf{E} = \frac{47}{2}\sqrt{5}$
2 Simplify $\sqrt{ab^2c^6} + abc^2$.
A $\sqrt{abc^2}$ $\mathbf{D} = \sqrt{abc^2(c^2 + \sqrt{a})}$
B $\sqrt{abc^3} = \mathbf{E} = \sqrt{abc^3(c+a)}$
C $\sqrt{abc^2(c+\sqrt{a})}$

3 Arrange $\sqrt{5}$, $\sqrt[3]{9}$, $\sqrt[6]{36}$ in descending order of magnitude. A $\sqrt{5}$, $\sqrt[3]{9}$, $\sqrt[6]{36}$ D $\sqrt[3]{9}$, $\sqrt[6]{36}$, $\sqrt{5}$ B $\sqrt{5}$, $\sqrt[6]{36}$, $\sqrt[3]{9}$ E $\sqrt[6]{36}$, $\sqrt[3]{9}$, $\boxed{=}$ C $\sqrt[3]{9}$, $\sqrt{5}$, $\sqrt[6]{36}$

4 Simplify
$$(\sqrt{a} + \frac{1}{\sqrt{a}})^2$$
.
A $a + 2\sqrt{a} + 1$
B $a + 2\sqrt{a} + \frac{1}{a}$
C $a + \frac{1}{a}$
5 If $x = 1 + \sqrt{2}$, $x^2 - 2x = \frac{1}{a}$
A 0 B 1 C $\sqrt{2}$ D $2\sqrt{2}$ E $1 + \sqrt{2}$

$$\sqrt{\frac{n+1}{n}} - \sqrt{\frac{n}{n+1}} =$$

$$\mathbf{A} \qquad \frac{1}{n(n+1)} \qquad \qquad \mathbf{D} \qquad \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}}$$

$$\mathbf{B} \qquad -\frac{1}{\sqrt{n(n+1)}} \qquad \qquad \mathbf{E} \qquad \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n(n+1)}}$$

$$\mathbf{C} \qquad \frac{1}{\sqrt{n(n+1)}}$$

7 $\frac{98}{4\sqrt{7}} =$ A $\frac{5\sqrt{7}}{2} =$ B $6\sqrt{7}$ C $7\sqrt{7}$ D $\frac{7\sqrt{7}}{2}$ E $\frac{7\sqrt{7}}{4}$

[8] Rationalize
$$\frac{2}{\sqrt{5} + \sqrt{3}}$$
.
A $\sqrt{5} - \sqrt{3}$ \blacksquare D $\sqrt{5} + \sqrt{3}$
B $\frac{\sqrt{5} - \sqrt{3}}{2}$ E $2(\sqrt{5} - \sqrt{3})$
C $\frac{\sqrt{5} + \sqrt{3}}{2}$

Level 2

6

9 $\frac{1}{5}\sqrt{200} + \frac{\sqrt{2}}{2} - \sqrt{32} + \sqrt{\frac{1}{2}} =$ A 0 B $\sqrt{2}$ $= -2\sqrt{2}$ D $-\frac{3}{2}\sqrt{2}$ E $-\sqrt{2}$

10 If
$$2\sqrt[3]{6} = \sqrt{n}$$
, $n =$
A $\sqrt{48}$ B $\sqrt[3]{48}$ C $\sqrt[3]{12}$ D $\sqrt[3]{48^2}$ E $\sqrt[3]{12^2}$
11 Simplify $(x^2 + \sqrt{2}x - \sqrt{3})(x^2 - \sqrt{2}x + \sqrt{3})$.
A $x^4 - 2x^2 + \sqrt{6}x - 3$ D $x^4 + 2x^2 + 2\sqrt{6}x + 3$
B $x^4 - 2x^2 + 2\sqrt{6}x - 3$ E $x^4 - 2x^2 - 6x + 3$
C $x^4 + 2x^2 - 2\sqrt{6}x - 3$

12
$$(1+\sqrt{2})^3 =$$

A $5+4\sqrt{2}$ B $7+4\sqrt{2}$ C $5+5\sqrt{2}$ D $7+5\sqrt{2}$ E $11+5\sqrt{2}$
13 If $x+\frac{1}{x}=\sqrt{5}$, $x^2+\frac{1}{x^2}=$
A $\sqrt{5}-2$ B 2 C 3 D 4 E 5
14 $(\frac{\sqrt{3}+1}{4})^2+(\frac{\sqrt{3}-1}{4})^2 =$
A $\frac{\sqrt{3}}{16}$ B $\frac{\sqrt{3}}{4} =$ C $\frac{\sqrt{3}}{2}$ D $\frac{1}{4}$ E $\frac{1}{2}$

15
$$2\sqrt{2-\sqrt{3}} =$$

A $\frac{\sqrt{6}-\sqrt{2}}{2}$ B $\sqrt{3}-1$ C $\sqrt{2}-\sqrt{6}$ D $\sqrt{6}-\sqrt{2}$ E $\sqrt{6}+\sqrt{2}$

16 If
$$p = \sqrt{2}$$
, express $\frac{\sqrt{12} - \sqrt{3}}{2\sqrt{6}}$ in terms of p .
A p^3 B p^2 C $\frac{1}{p}$ $\stackrel{\text{D}}{=}$ $\frac{1}{p^2}$ E $\frac{1}{p^3}$

[17] If
$$x = \frac{\sqrt{5} + 1}{2}$$
, $x - \frac{1}{x} =$
A 1 B $\sqrt{2}$ C $\frac{1}{2}$ D $\sqrt{5}$ E $\frac{\sqrt{5}}{2}$

[18]
$$\frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} - \frac{\sqrt{5} + \sqrt{7}}{\sqrt{5} - \sqrt{7}} =$$

A -12 B $-2\sqrt{35}$ C $\sqrt{35}$ D $2\sqrt{35}$ E 12

[19] Rationalize
$$\frac{\sqrt{xy}}{x\sqrt{y} + y\sqrt{x}}$$
.
A $\frac{x\sqrt{y} - y\sqrt{x}}{\sqrt{xy}(x-y)}$ \implies D $\frac{\sqrt{x} - \sqrt{y}}{x+y}$
B $\frac{\sqrt{x} + \sqrt{y}}{x+y}$ E $\frac{\sqrt{x} + \sqrt{y}}{x-y}$
C $\frac{1}{\sqrt{x} + \sqrt{y}}$

.

