UNIT 5 : **Formulas**

Level 1

4

1 If
$$A = xy + yz + zx$$
, $x = 2$, $y = 3$ and $z = 4$, $A =$
A 22 B 24 C 26 D 28 E 30
2 If $2p + 5q = 7r$, $p = 1$ and $r = 2$, $q =$
A 2.2 B 2.4 C 3 D 6 E 12
3 If $y = mx + c$, $m =$
A $y - cx$ D $\frac{y - c}{x}$
B $y - \frac{c}{x}$ $\overleftarrow{\Box}$ E $\frac{c}{x} - y$
C $xy + c$

If
$$\frac{a}{b} = \frac{x}{1+x}$$
, express x in terms of a and b.
A $\frac{a}{1+b}$ D $a = \frac{a}{a-b}$
B $\frac{ab}{1+ab}$ E $\frac{a}{b-a}$

5 Make *h* the subject of the formula $V = \frac{1}{3}\pi r^2 h$.

A
$$h = \frac{3V}{\pi r^2}$$

B $h = \frac{V}{\pi r^2}$
C $h = \frac{3V\pi}{r^2}$
D $h = \frac{\pi r^2}{3V}$
E $h = \frac{V}{3\pi r^2}$
D $h = \frac{\pi r^2}{3V}$

6 If
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$$
, $a =$
A $\frac{1}{c} - \frac{1}{b}$
B $\frac{bc}{b-c}$
C $\frac{bc}{c-b}$
D $\frac{c-b}{bc}$
E $\frac{b+c}{bc}$

[7] If
$$E = mc^2$$
, $c =$
A $\frac{E}{m}$ B mE^2 C $\pm \sqrt{\frac{m}{E}}$ D $\pm \sqrt{\frac{E}{m}}$ E $\pm \sqrt{Em}$

Level 2

8 If $a = \frac{b+c}{b-2c}$, c =A $\frac{b(a-1)}{2a+1}$ B $\frac{b(1-a)}{2a+1}$ C $\frac{b-a}{2a+1}$ D $\frac{b(a-1)}{2a-1}$ E $\frac{b(2a+1)}{a-1}$

9 Given that
$$p = \pi x^2 + 1$$
, find x when $p = 4\pi + 1$.
A 4 B 3 C 2 D 1 E 2 or -2
10 If $b = 1 - \frac{1}{1 - a}$, $a =$
A $1 - \frac{1}{1 + b}$ D $1 + \frac{1}{2b - 1}$
B $1 - \frac{1}{b - 1}$ E $1 + \frac{1}{1 - 2b}$
C $1 - \frac{1}{1 - b}$

12

If x = 2t + 1 and y = 3t - 2, express y in terms of x.

A	$\frac{3x+7}{2}$	D	$\frac{3x-7}{\square}$
B	$\frac{2x+7}{3}$	Ε	$\frac{3x-5}{2}$
С	$\frac{3x}{2}$ - 3		

13 If x = 2at and $y = at^2$, express y in terms of x.

	$\mathbf{A} = \frac{4}{x}$	$\frac{4a}{x^2}$	B 4	4 <i>ax</i>	С	$4ax^2$	$\square \frac{\mathbf{D}}{4a^2}$	E	$\frac{x^2}{4a}$
[14]	If $(x-1)^2 = y+1$, $x =$								
	A	$\pm \sqrt{y}$ +	-1 + 1			D	$\pm \sqrt{y-1}-1$		
	B	$\pm \sqrt{y}$ +	-1 - 1			Ε	$\pm \sqrt{y}$		
	С	$\pm \sqrt{y}$	-1 + 1	_V					

[15] If
$$x = \frac{-1 + \sqrt{1 - 4a}}{2}$$
, express *a* in terms of *x*.
A $1 - \frac{(2x - 1)^2}{4}$
D $= \frac{1 - (2x - 1)^2}{4}$
B $1 - \frac{(2x + 1)^2}{4}$
E $\frac{(2x + 1)^2 - 1}{4}$

$$\mathbf{C} \qquad \frac{1-(2x+1)^2}{4}$$

[16] If $\sqrt{\frac{a}{a+b}} = \frac{1}{a+b}$, express b in terms of a.

 $\frac{y}{\sqrt[3]{1+z^3}}$

 $\frac{\sqrt[3]{z^3-1}}{y}$

[17] If
$$x^3 + y^3 = (xz)^3$$
, $x =$
A $\sqrt[3]{z^3 - y^3}$
B $\frac{y}{\sqrt[3]{z^3 - 1}}$
C $\frac{y}{\sqrt[3]{1 - z^3}}$