Equations

Level 1

1 Solve the equation $\frac{x+1}{2}+3(2-x)=1$.
A $\quad-3$
B $-\frac{11}{5}$
C $-\frac{11}{7}$
D $\frac{11}{5}$
E 3

2 Solve the equation $\left(x^{2}+x+2\right)\left(x^{2}-x-2\right)=0$.
A $1,-2$
D
$1,-1,2,-2$
B $\quad 2,-1$
E \quad All values of x
C $\quad-1,-2$

3 One root of the equation $x^{2}+k x-6=0$ is $3 . k=$
A $\quad-2$
B -1
C 0
D 1
E 2

4 If $p x^{2}+\left(p^{2}-1\right) x-p=0, x=$

A $\quad \frac{1}{p}$ or p
D $-\frac{1}{p}$ or $-p$
B $\quad-\frac{1}{p}$ or p
E $\quad-1$ or p^{2}
C $\quad \frac{1}{p}$ or $-p$

5 If the equation $k x^{2}-2 x+k=0$ has equal roots, $k=$
A $\quad-1$
D $\quad-\frac{1}{\sqrt{2}}$ or $\frac{1}{\sqrt{2}}$
B $\quad 1$
E Cannot be determined.

6 Which of the following equations has no real roots?
A
$x^{2}+2 x+3=0$
D
$2 x^{2}+7 x+4=0$
B $\quad x^{2}+5 x+3=0$
E $\quad 2 x^{2}+7 x-4=0$
C $\quad x^{2}-5 x+3=0$

7 A square is removed from a rectangle of length $x(x>1)$ and width 1 . If the remaining rectangle is similar to the original one, $x=$
A $\frac{1+\sqrt{5}}{2}$
D $\frac{1-\sqrt{5}}{4}$
B $\frac{1-\sqrt{5}}{2}$
E $\frac{5}{4}$
C $\quad \frac{1+\sqrt{5}}{4}$

8
If $\left\{\begin{array}{l}x+2 y=5 \\ 2 x-y=0\end{array}, x+y=\right.$

A 1
B 2
C 3
D 4
E 5
[9] Solve the system $\left\{\begin{array}{l}y=2 x^{2}-x+3 \\ y=x+7\end{array}\right.$
A $\quad x=1, y=6$
$x=-1, y=6$ or $x=-2, y=5$
B $\quad x=-1, y=6$
E $\quad x=-1, y=6$ or $x=2, y=9$
C $\quad x=1, y=8$ or $x=-2, y=5$
[10] Solve $\left\{\begin{array}{l}x+y^{2}=14 \\ 2 x-3 y=1\end{array}\right.$
A $\quad x=5, y=3$
B $\quad x=5, y=3$ or $x=-\frac{9}{2}, y=-\frac{25}{4}$
C $\quad x=3, y=5$ or $x=\frac{9}{2}, x=\frac{25}{4}$
D $\quad x=3, y=5$ or $x=-\frac{9}{2}, y=-\frac{25}{4}$
E $\quad x=5, y=3$ or $x=-\frac{25}{4}, y=-\frac{9}{2}$
[11] The difference between two numbers is 4 and the sum of the squares of the numbers is 136 . Find the larger number.
A $\quad 10$
D $\quad 10$ or 6
B 6
E $\quad 10$ or -6
C 4
[12] The sum of the squares of two positive numbers is equal to the squares of the sum of the numbers, which is 16 . Find the larger number.
A 1
B 2
C 3
D 4
E 8

Level 2

[13] α and β are the roots of the equation $3 x^{2}-x+4=0 \cdot\left(\alpha^{-1}+\beta^{-1}\right)^{-1}=$

A 4
B 3
C $\frac{4}{3}$
D $\frac{1}{3}$
E $\frac{1}{4}$
[14] α and β are the roots of the equation $x^{2}-2 x-1=0 . \alpha^{2}+\alpha \beta+\beta^{2}=$
A 5
B 4
C 3
D 2
E

[15] The sum of the square of the roots of the equation $x^{2}+3 x+k=0$ is $1 . k=\square$
A -4
B -3
C 1
D 3
E 4
[16] If $3 x+y=x-2 y=x-y+2$, find x and y.
A $\quad x=-3, y=-2$
D $x=3, y=2$
B $\quad x=3, y=-2$
E $\quad x=2, y=3$
C $\quad x=-3, y=2$
[17] Solve the equation $x\left(x^{2}-2\right)=(2 x+1)\left(x^{2}-2\right)$.

A 0,2
B $\quad-\frac{1}{2}, 2$
C $0, \sqrt{2}$

D $\quad \sqrt{2},-\sqrt{2}$
E $\quad-1, \sqrt{2},-\sqrt{2}$
[18] If the roots of $a x^{2}+b x+c=0$ are equal, the roots of $2 a x^{2}+b x+2 c=0$ are
A Real and distinct.
D Unreal.
B Real
E None of the above.
C Real and equal.
[19] Solve $x^{2}+\frac{1}{x^{2}}=\frac{17}{4}$.
A $\quad 1,-1$
D $\frac{1}{4}, 4$
B $\quad 4,-4$
$\mathrm{E} \quad \frac{1}{2},-\frac{1}{2}, 2,-2$

C $\quad 1,-1,4,-4$
[20] The lengths of the sides of a right-angled triangle are consecutive even integers. Find its area.
A 6
B 8
C 12
D 24
E 48
[21] If x and y are positive integers and $\left\{\begin{array}{l}x y=12 \\ x+y=k\end{array}\right.$, find k.
A $\quad 7$
D $\quad 7,8,9$
B 8
E $\quad 7,8,13$
C $\quad 7,8$
[22] $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are the solutions of the system $\left\{\begin{array}{l}x+y=0 \\ y=x^{2}-4 x+2\end{array} . \alpha_{1}-\beta_{2}=\right.$
A 3
B 1
C 0
D -1
E -3
[23] Solve $\left\{\begin{array}{l}x=y^{2}-y-2 \\ x=3 y^{2}+2 y-1\end{array}\right.$
A $\quad x=0, y=-1$ or $x=-\frac{5}{4}, y=-\frac{1}{2}$
В $\quad x=0, y=-1$ or $x=\frac{5}{4}, y=\frac{1}{2}$
C $\quad x=-1, y=0$ or $x=-\frac{1}{2}, y=-\frac{4}{5}$
D $\quad x=-1, y=0$ or $x=\frac{1}{2}, y=\frac{5}{4}$
E $\quad x=4, y=1$ or $x=\frac{1}{4}, y=\frac{1}{2}$
[24] Solve $\left\{\begin{array}{l}2 x^{2}+x y+3 y^{2}=6 \\ 4 x-3 y=1\end{array}\right.$.
A $\quad x=1, y=1$ or $x=\frac{17}{26}, y=\frac{23}{26}$
B $\quad x=1, y=1$ or $x=-\frac{17}{26}, y=-\frac{47}{39}$
C $\quad x=-1, y=1$ or $x=-\frac{17}{26}, y=\frac{23}{26}$
D $\quad x=-1, y=-\frac{5}{3}$ or $x=\frac{17}{26}, y=\frac{23}{26}$
E $\quad x=1, y=1$
[25] Solve $\left\{\begin{array}{l}x^{4}-y^{4}=x^{2}-y^{2} \\ x^{2}-3 y^{2}=0\end{array}\right.$, where $x>0$ and $y>0$.
A $x=\frac{1}{4}, y=\frac{\sqrt{3}}{4}$
D $\quad x=\frac{\sqrt{3}}{4}, y=\frac{1}{4}$
В $\quad x=\frac{1}{2}, y=-2$
$\mathrm{E} \quad x=\frac{3}{4}, y=\frac{1}{4}$
C $\quad x=\frac{\sqrt{3}}{2}, y=\frac{1}{2}$
[26] If $\left\{\begin{array}{l}x+y=4 \\ x+z=5 \\ x^{2}+y^{2}+z^{2}=26\end{array}\right.$, find x.

A $\quad x=1$ or -5
D $\quad x=-5$ or 5
B $\quad x=1$ or 5
E $\quad x=1$ or 4
C $\quad x=-1$ or 1
[27]
If $\left\{\begin{array}{l}\alpha+\beta+\alpha \beta=1 \\ \alpha+\beta-2 \alpha \beta=7\end{array}\right.$, form an equation whose roots are α and β.
A $\quad x^{2}+x-1=0$
D $\quad x^{2}-3 x-2=0$
B $\quad x^{2}+x-2=0$
E $\quad x^{2}+3 x-2=0$
C $\quad x^{2}-3 x+2=0$
[28] α and β are the roots of the equation $2 x^{2}-9 x+20=0 \cdot \log \alpha+\log \beta=$
A 0
B 1
C 2
D $\quad \log \frac{9}{2}$
E $\frac{\log 9}{\log 2}$
[29] Which of the following equations has roots $p+\sqrt{q}$ and $p-\sqrt{q}$?
A $\quad x^{2}+2 \sqrt{q} x+p^{2}-q=0$
B $\quad x^{2}+2 p x+p^{2}-q=0$
C $\quad x^{2}-2 p x+p^{2}-q=0$
D $\quad x^{2}-2 p x+p^{2}-q^{2}=0$
E $\quad x^{2}-2 \sqrt{q} x+p^{2}-q^{2}=0$
[30]
If α and β are the roots of the equation $2 x^{2}-4 x+1=0$, the equation whose roots are α^{3} and β^{3} is
A
$8 x^{3}-3 x+1=0$
D
$8 x^{3}-40 x+1=0$
B
$8 x^{3}-3 x-1=0$
E $\quad 8 x^{3}+40 x+1=0$
C $\quad 8 x^{3}-5 x+1=0$
[31] α and β are the roots of $x^{2}+\alpha x+\beta=0$. Find α and $\beta(\alpha \neq \beta)$.
A
$\alpha=0, \beta=1$
$\alpha=1, \beta=-2$
B $\quad \alpha=\frac{1}{2}, \beta=1$
E $\quad \alpha=2, \beta=0$
C $\quad \alpha=1, \beta=1$
[32] If $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are the solutions of the system $\left\{\begin{array}{l}2 x+y=5 \\ 2 x^{2}+y^{2}=9\end{array}\right.$, form a quadratic equation whose roots are β_{1} and β_{2}. \square
A

$$
3 x^{2}-10 x+5=0
$$

B

$$
3 x^{2}-10 x+7=0
$$

C

$$
3 x^{2}-10 x+9=0
$$

D

$$
3 x^{2}-10 x+16=0
$$

$\mathrm{E} \quad 3 x^{2}+10 x+16=0$

