\qquad

1. Write the first five terms of the sequence defined by the formula: $a_{n}=27-4 n$	2. Write a recursive formula for the sequence, then write the next three terms. $-2,5,-9,19, \ldots$	3. Evaluate $\sum_{n=1}^{6}\left(n^{2}+10 n-2\right)$
4. Determine if the sequence is arithmetic. If it is, identify the common difference, d. $\frac{1}{3}, 1, \frac{5}{3}, \frac{7}{3}, 3, \ldots$	5. Find the four arithmetic means between 40 and 100.	6. Write an explicit formula for the nth term of the geometric sequence. $20,5, \frac{5}{4}, \frac{5}{16}, \ldots$
7. Find the three geometric means between 12 and 3072 .	8. Evaluate $\sum_{j=1}^{17}(-3 j+4)$	9. Find the sum of the first 15 multiples of 3 .
10. Find S_{22} for the arithmetic series: $-6+(-4)+(-2)+0+\ldots$	11. Find t_{14} for the geometric sequence $3,6,12,24, \ldots$	12. Evaluate. Round to the nearest hundredth, if necessary. $\sum_{k=1}^{8} 6\left(2^{k-1}\right)$
13. Find the sum of the infinite geometric series, if it exists. $\frac{4}{5}+\frac{4}{15}+\frac{4}{45}+\frac{4}{135}+\ldots$	14. Write 0.49 as a fraction in simplest form.	15. Write an infinite geometric series that converges to the given number: 0.934934934934...
16. State the location of the entry in Pascal's triangle, then give the value of the expression. ${ }_{7} C_{4}$	17. Find the $4^{\text {th }}$ and $6^{\text {th }}$ entries in row 10 of Pascal's triangle. (a) 120; 210 (b) 210; 210 (c) $126 ; 84$ (d) 120; 252	18. For the expansion of $(r+s)^{22}$, a) How many terms are in the expansion? b) What is the exponent of r in the term that contains s^{15} ? \qquad c) Write the term that contains r^{4}
19. Expand the binomial raised to a	20. Find the $7^{\text {th }}$ term in the expansion of $(3 x-1)^{10}$.	
21. Which one of the following represents the $5^{\text {th }}$ term in the series of: $\sum_{k=0}^{18}\binom{18}{k} a^{18-k} b^{k}$		

(a) $\binom{18}{5} a^{18} b^{5}$
(b) $\binom{18}{4} a^{14} b^{4}$
(c) $\binom{18}{5} a^{13} b^{5}$
(d) $\binom{18}{4} a^{18} b^{4}$

