Final Exam Review Chapter 11

Name:_____

1. Write the first five terms of the sequence defined by the formula: $a_n = 27 - 4n$	2. Write a recursive formula for the sequence, then write the next three terms2, 5, -9, 19,	3. Evaluate $\sum_{n=1}^{6} (n^2 + 10n - 2)$
4. Determine if the sequence is arithmetic. If it is, identify the common difference, d. $\frac{1}{3}$, 1, $\frac{5}{3}$, $\frac{7}{3}$, 3,	5. Find the four arithmetic means between 40 and 100.	6. Write an explicit formula for the <i>n</i> th term of the geometric sequence. 20, 5, $\frac{5}{4}, \frac{5}{16}, \dots$
7. Find the three geometric means between 12 and 3072.	8. Evaluate $\sum_{j=1}^{17} (-3j+4)$	9. Find the sum of the first 15 multiples of 3.
10. Find S_{22} for the arithmetic series: -6 + (-4) + (-2) + 0 +	11. Find t_{14} for the geometric sequence 3, 6, 12, 24,	12. Evaluate. Round to the nearest hundredth, if necessary. $\sum_{k=1}^{8} 6(2^{k-1})$
13. Find the sum of the infinite geometric series, if it exists. $\frac{4}{5} + \frac{4}{15} + \frac{4}{45} + \frac{4}{135} + \dots$	14. Write 0.49 as a fraction in simplest form.	15. Write an infinite geometric series that converges to the given number: 0.934934934934
16. State the location of the entry in Pascal's triangle, then give the value of the expression. $_7C_4$	 17. Find the 4th and 6th entries in row 10 of Pascal's triangle. (a) 120; 210 (b) 210; 210 (c) 126; 84 (d) 120; 252 	18. For the expansion of $(r+s)^{22}$, a) How many terms are in the expansion? b) What is the exponent of <i>r</i> in the term that contains s^{15} ? c) Write the term that contains r^4 .
19. Expand the binomial raised to a power. $(x-2y)^5$ 20. Find the 7 th term in the expansion of $(3x-1)^{10}$.		
21. Which one of the following represents the 5 th term in the series of: $\sum_{k=0}^{18} \binom{18}{k} a^{18-k} b^k$		
(a) $\binom{18}{5}a^{18}b^5$ (b) $\binom{18}{4}a^{14}b^4$ (c) $\binom{18}{5}a^{13}b^5$ (d) $\binom{18}{4}a^{18}b^4$		